next up previous
Next: About this document ... Up: Representing numerical results Previous: Representing results on one-dimensional

Function values at particular points

The contour plots and the one-dimensional cuts can only show rough errors. When serious comparisons begin, we need to see numerical values of $u(x,y;\varepsilon )$. Such values can be given at the points of intersection of the one-dimensional cuts given above. So, for each $\varepsilon $ for which a computation is made, we propose a table of type


$u(x,y;\varepsilon )$ $x=-1$ $x=0$ $x=1$ $x=2$ $x=4$ $x=8$
$y=1+\varepsilon ^{1/2}$            
$y=1 $            
$y=1-\varepsilon ^{1/2}$            
$y=0 $            


$u(x,y;\varepsilon )$ $r=1+\varepsilon $ $r=1+\varepsilon ^{2/3}$ $r=1+\varepsilon ^{1/2}$ $r=1+\varepsilon ^{1/3}$
$y=1 $        
$y=1-\varepsilon ^{1/2}$        
$y=0 $        
$x=-1$        
$x=0$        
$x=1$        


next up previous
Next: About this document ... Up: Representing numerical results Previous: Representing results on one-dimensional