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Abstract

In this paper we analyze the approximation of functions on partially ordered sequences of regular grids. We
start with the formulation of minimal requirements for useful grid transfer operators. We introduce the notions
of nested and of commutative transfer operators. We define mutual coherence for representations on grids that
are not related by coarsening or refining. We show necessary and sufficient conditions for mutual coherence and
we show how a hierarchical decomposition is generated by a set of commutative transfer operators. The usual
piecewise constant and piecewise d-linear approximations are identified as special instances of tensor product
type.

In the second part of the paper we derive error estimates for approximation in these spaces, in different norms
on general d-dimensional dyadic sequences of regular and sparse grids. Some of these results have been published
before, e.g., in doctoral theses by Bungartz and Pflaum. Here, the results are presented in a unified framework
and the proofs are much simplified. We pay special attention to a convenient notation. © 1997 Published by
Elsevier Science B.V.

1. Introduction and notation
1.1. Introduction

Recently, in the research on multigrid methods for problems in three dimensions more and more
attention is paid to semi-coarsening [5,12,14,17] and sparse grid approaches [2,6-8,13,16]. This can
be understood if we notice that the classical multigrid approach, where a linear sequence of nested
grids s used for the approximation on different grids, requires very strong relaxation techniques. The
selection of a suitable relaxation is difficult because of the large number of possible choices, each with
their particular advantages and disadvantages.
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In semi-coarsening, where more coarser grids are introduced, each coarsened in a single direction,
the role of the smoothing procedure is reduced, and simpler relaxation procedures can be applied [10].
This makes it attractive to study partially ordered sets of grids, rather than sequentially ordered ones.

Another difficulty, that particularly arises when regular grids are used for the approximation of
functions, is the curse of three dimensions: the number of cells increases cubically with each refinement
in all directions. This results in enormous amounts of degrees of freedom in the approximation, and in
very large systems of algebraic equations to solve. This difficulty can be removed to a large extent by
adaptive refinement, i.e., by adding only those degrees of freedom that contribute significantly to the
improvement of the accuracy. Of course, what each additional degree of freedom adds to the higher
accuracy depends on the choice of basis-functions that span the approximating function space. If, on a
regular rectangular grid, a hierarchical basis is chosen, for a sufficiently smooth function the degrees
of freedom associated with a “‘sparse grid” are the optimal choice. The sparse grid can be seen as
a combination of regular grids, each with a different cell aspect ratio. In this way semi-coarsening
multigrid and sparse grid approximations are much related and make an interesting match.

It appears that the relations between the approximations on the different grids in the partially ordered
set are not always clear [4], and that the requirements for the prolongations and restrictions between
the approximations on the different grids are often chosen in an ad hoc way. In the present paper we
study the approximation of functions on partially ordered sets of regular grids (on a grids of grids). In
particular we are interested in the minimal requirements that are needed to introduce the necessary grid
transfer operators. Analyzing these requirements results naturally in the introduction of a hierarchical
decomposition of the approximation on the grid of grids, and we are able to show how the usual
approximations by piecewise constant and piecewise linear basis functions appear as a special case
of tensor product form. In the next sections we concentrate on the piecewise constant and piecewise
linear approximations. We define their construction in a systematic way and we derive error estimates
for the approximations in different norms.

So, the purpose of this paper is twofold: (1) we show what are the essential requirements for
prolongations and restrictions to be able to prove the useful properties that are used in computational
schemes, such as mutual coherence [4], and (2) we show the approximation properties of piecewise
constant and multilinear approximations on anisotropic and sparse grids. In the first part (Section 2) we
see that the requirement of nested transfer operators is useful to define restrictions berween different
grids and to define mutual coherence. Furthermore, we see that we need the stronger requirement
of commutativity in order to construct a pre-wavelet decomposition (28). Of course, tensor product
spaces give the most interesting and useful examples. In the second part of this paper (Section 3)
we derive general error estimates for the simplest cases: piecewise constant and piecewise multilinear
approximations.

Studying the approximation on a grid of grids, it appeared that a simple and convenient notation
was lacking and that the data structures that are used in practice to realize the related algorithms, are
rather complicated. Therefore, in the treatment much attention is given to a convenient notation that
can be used in general for the description and analysis of algorithms on a grid of grids [11].

Sparse grids yield a way for obtaining approximations with a high accuracy relative to the number of
degrees of freedom (unknowns) used. This was first observed by Smoljak [15] for numerical integration
and interpolation with trigonometric functions. A different approach of constructing sparse grids is
presented in [16]. This approach uses hierarchical basis functions for interpolation with piecewise
multilinear functions. Error estimates in different norms and with different assumptions are found
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in [2,13,16]. For obtaining optimal estimates, it is necessary to assume that suitable derivatives of
the functions are bounded. In case of singularities these assumptions may not hold. Then, optimal
estimates can be obtained on adaptive sparse grids, which can be constructed in a natural way with
hierarchical basis functions [2].

1.2. Notation

Let kK € Z% be a multi-integer in d dimensions, then k = (ki,ka,. .. kg), with k; € Z for
i=1,2,...,d. We define relational operators between multi-integers by
k<m& (k) <mjpand ky < my and ... and kqa < my),

and analogously we define k < m, k >m, k = m and k = m. Further we define

max(m, n) = (max(my,n), max(my,ny), ... , max(mgq, ng)),
and min(m,n) similarly. In a few instances we will use these operators with the same meaning for
real vectors & = (z1,...,14) € R%
With n = (ny,...,ng) € Z% we denote [n| = ny + -+ + ng. We also use the notation 0 =
(0,...,0) € N%; 27 = (2m .. 2md); Qg = Mz, ...,2%zy); nom = D iz1,..qimi, and
Imll = ni---ng. Further we introduce in Z¢ the unit vectors e, k =1,...,d, as follows: e =

(1,0,...,0); ex = (0, 1,0,...,0); eq =(0,...,0,1), and we use e = (1,...,1). Finally we define
E ={e,...,eq}.

Let either Q@ = R? be the d-dimensional Euclidean space, or let Q = (0,1)% ¢ R? be the d-
dimensional open unit cube. With any multi-integer n € Z% we associate a function space Vp,, e.g.,
the space of piecewise constant or piecewise linear (bi-linear, tri-linear, d-linear) functions on a uniform
grid with mesh size h = (hy,... hg) = (27™,...,27 ™). These grids are uniformly spaced in each
of the d coordinate directions, but possibly with a different mesh size in the different directions. The
volume of these cells is denoted by ||h|| = 27!/, The functions in Vj, all are constant or d-linear on
each dyadic block or cell

Qnr = [k127™, (k) + D27™M] x o x kg2 (kg + 1)2774],
and this family of cells forms the grid

Qn = {Qni [ Qnik CQ, kez}.
The family of cell centers or cell nodes is denoted by

Q= {Zn,k | Znk = (k+€/2)2°™; ke 7% Znk € Q}.

Other grids are obtained by considering the cell vertices or vertex nodes of the cells in Q,, as a grid
of points. We denote these grids by Q.

Apparently, all grids are identified by a multi-integer m; the number In| is called the level of the
grid n. Notice that—different from classical multigrid theory—we make a clear distinction between
the grid-identification n and the level number |n|.

We also use the following notation for partial derivatives, with n € N,

a n| a Mg
Dn — Dnl,...,nd — - . o .
(a:tl ) <ald>
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For the Banach spaces of continuously differentiable functions we use, with n € Ng, the notation
C™(Q) for the space of functions with finite norm

n = Dm .

fulen =, max, may [Pl

For | € Ny, we introduce the notation C™!(Q) = (=t C™t™(Q). This is a generalization which
combines C™(Q) = C™P(Q) with the usual space of [ times continuously differentiable functions
CHQ) = C*(Q). With a C(Q) and Cy (©) we denote the corresponding subspaces with homoge-
neous boundary conditions.

For the Banach spaces of integrable functions, 1 < p < oo, we, similarly, use the notation W;‘(Q)
for the space of functions with finite norm

oty = (5 lwm>/

0<m<n
Further we use the semi-norm |u|wn or, with 0 < k < d, the norm [[u[|y;n.+, defined by
P

- » 1/p . » 1/p
e = ([ 10mu@P) a0 Gl = (5 o)
TEQ o<m<e,|m|=k
For | € Ny, we write W,’]’l(Q) = Nimi=t W™ (Q) and we obtain the Sobolev space WI';(Q) =

W(p)’l(Q). Again, with a W;’O(Q) and W;f 01 (Q) we denote the corresponding subspaces with homoge-
neous boundary conditions. For p = co we use the standard modifications, and for W, we also write H.
Thus, for the Hilbert spaces of square integrable functions we use the notation H™(Q) = WJ* (),
and for the semi-norm and norm |u|g» = |ulwn and |jul|g» = |lullwn. For [ € Ny, we write
HMH(Q) = m|m|=l H™™(Q) and we obtain the usual Sobolev space H'(Q) = H*!(Q). Again, with

a H)(Q) and Hg ’l(Q) we denote the corresponding subspaces with homogeneous boundary conditions.

2. Space decomposition

In this section we introduce nested and commutative sets of restrictions and prolongations. We see
that the nested property is required to define restrictions between coarser and finer spaces. The property
of commutativity is needed to check coherence of approximations on different grids, and, moreover,
it allows characterization of approximating spaces by a hierarchical decomposition.

2.1. Nested restrictions and prolongations

Let X be a Banach space; e.g., X = C°(Q), X = Ly(Q) or X = LI**(Q), where Q C R Let
k € Z¢ and let

RkZX—évk (1)
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be a restriction, 1.e., a linear surjection. Possibly V. C X, but this is not necessary. We notice that for
any such Ry, because of the surjection, there exists the right-inverse or reconstruction

Pk : Vk - X B (2)
such that
Ry P, = I 3)

is the identity operator on Vj. We notice that Py is an injection (and hence a prolongation) and
Ran(Pg) C X, but Py is not uniquely determined by a given Rp. In this section we study properties
of such sets of transfer operators { Ry }pcz4 and { Py} peza-

It is a consequence of (3) that

ITy, = PRy
is a projection
Il : X — Ran(II}) = Ran(P) C X,
as is
I — IIy: X — Ker(IT}) = Ker(Ry) C X,

and we observe that X can be written as a direct sum X = Ran(P) @ Ker(Ry,).

Definition 2.1. A set {Ry}cza is called a nested set of restrictions (or NSR) iff

k > m = Ker(Rg) C Ker(R,,). 4)
A set { Py }yeza is called a nested set of prolongations (or NSP) iff
k > m = Ran(Px) D Ran(P,,). )

It is obvious that for an NSR {Rg} a set of corresponding reconstructions is not necessarily an
NSP. On the other hand, given an NSP, the corresponding set of restrictions is not necessarily an NSR.
However, in some cases both the restrictions and their reconstructions may form nested sets. Then we
say that the transfer operators are nested and {V},} forms a nested set of representations of functions
in X.

Theorem 2.2. Let {Ry}ycza be a nested set of restrictions, and {Py}pecza a set of corresponding
reconstructions, then

V2 m 3! Royn i Vi — Vi,
with the properties:

(1) Rpn is a restriction,

(3) Rmn = RmmPn (independent of the choice of Pp!).

Proof. (i) Define R}, = RmP, and R%, = Ry, P2. Then we know that R,,P. = I, = R,P?
and hence Vv, € V,, Rn(P) — P2)u, = 0. Because {Ry} is an NSR and m < n it follows that
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R (PL — P2)v, = 0 and hence R!,,, = R2,,,. So that there exists a unique R,nn. This means that
we can write Ropn = RBmPn, and Ry, is independent of the choice of P,.

(i) RmnRn = RmPnRn = RmlIl, = Rm on Ran(P,). Now, because X = Ran(P,) ® Ker(R,,)
we may write Vv € X: v = v, + vy, so that

RmnBRnt = RmnRnVp + Rin Rnvn = Rmvp + 0 = Rpnuyp,.

Further, because of Ker(R,,) C Ker(Ry,) we see Rt = RmUp + RmUn = Rmtp + 0 = Rpnup, so
that Rppn Rnv = Rmvp = Rmv Vo € X and hence RpynRn = Rp.

(iii) Because R, is a surjection, and by (6), Ry, is necessarily a surjection. Of course, Rp,p, is
linear (trivial). Therefore R, is a restriction. 0O

Given an NSR { R, },ez4. and a set of corresponding reconstructions { Pp, }p,ez4, We introduce,
for m < n,

Pom = RnPp Vi — Vi @)

Notice that there are many possible choices of P, for a give R,,. Of course, some actual properties
of P,,, may depend on this choice!

Lemma 2.3. P, is a right inverse of Rpm:
Rm'nan = Im (8)

Proof. RonPrm = Ry PrnRnPm = Ry P — R (I — PoRy) Py = Ly + 0, because Ker(R,,) C
Ker(Rp,). O

Corollary 2.4. With n > m:
(1) Pnm is a prolongation (i.e., a linear injection);
(2) PrumPBmn is a projection Vi, — Ran(Pppm) C Vi,
(3) In — PamRmn is a projection Vy, — Ker(Rpmn) C Vi
(4) Vi, = Ran(Ppm,) ® Ker(Rmn);
(5) Pum:Vm — Ran(Ppm) C Vi, is a bijection.

Lemma 2.5. Let {Ry}ycza be an NSR and let k > m > 1, then with a given set of corresponding
reconstructions { Py }1,cza we have

Prt = PrnPpi.
Proof.
PanPri = RiPpRn Py = RiPl — R(I — PaRy) Py = RiP, — Ri(I — I1,) P,
= Rk-lDl -0= Rk-F)b

because Ker(Ry) C Ker(IT,,). Hence
Po = RpP = PepnPpy. O

Lemma 2.6. Let {Ry}yegqa be an NSR with the corresponding { Py} eza an NSP, then
m>l=>Puml=B
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Proof. PPy = PR P = I1,,P, = Fy. The last equality holding because I7,,u = u for all
u € Ran(Il,,) = Ran(P,,) D Ran(F;). O
Lemma 2.7. If {Rg},cz4 is an NSR, then
m 21l = I, = II,.
If. in addition, { Py} ycza is an NSP, then also
m > 1= [I,I0, = II,.

Proof. The first equality follows by
1Ty = PR Py Ry, = P Rim R = PR, = IT),
and the second equality by
Hm Il = P Bon FiRy = Py Ron, P Pt Rim R, = P, Pyt Ry, R = PRy = I, O

If {Rr}reze is an NSR, and if m < n, then a bijection exists between Ran(P,,) and a subset
of Ran(P,). We denote this relation by Ran(P) =< Ran(P,). Le., a function that can be found in
Ran(Fp,), can uniquely be associated with a function in Ran(P,). This follows because a bijection
exists between Ran(P,) and V,,, and between Ran(Pp,) and Vi, ; and also a bijection exists between
Vim and Ran(P,,,) C V,,.

Hence, given a Banach space X with a nested set of restrictions {Rk}reze, a family of subspaces
Ran(P,) exists, with a partial ordering corresponding with the partial ordering of {n}. This means
that, although not necessarily Ran(P,,) C Ran(P,), a partial ordering exists such that

m < n < Ran(P,) < Ran(P,) & FPamBRmRan(Py,) = RyRan(P,,) C RnRan(P,).

If {Pg}reza is an NSP, this partial ordering simply reduces to Ran(P,,) C Ran(P,). Then, in
the case that V;, C X and we take P, to be the natural injection, this means that Ran(P,,) can be
identified with V,, and m < n <V, C Vi, and, thus, we find {V;,} to be a partially ordered family
of subsets of X.

Definition 2.8. Functions f,,, € V,, and f,, € V,, are mutually coherent?® iff

dfx € Vi with k > m, k>n,

such that fm = Rmkfk and f, = Rk fr.
Theorem 2.9. Let {Ry}jcz4 be an NSR and {Pk}reze an NSP. Then, if fp, and f,, are mutually
coherent, we have

vl € 72 with 1 Ssm, L < n, we have Ry frn = Rin fr. 9)
Moreover, under the additional condition that intmn) = HmIT,, also the reverse holds: it Sfollows

SJrom (9) that f,, and f,, are mutually coherent.

2 For the practical use of mutual coherence see, e.g., [4].
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Proof. (=) First we assume that fr, € Vi and fpn, € Vi, are mutually coherent. Then 3fx € Vi with
k > m, k > n such that f, = Rmkfr, fn = Rnkfr, and hence

Rimfm = RimRmkfk = Rikfe = RinBnkfe = Rinfn,

which proves (9).
(<) Now we assume (9). Let k = max(m,n) and take I = min(m, n). We introduce fr by

fk = Pkmfm + Pknfn - Pkllefm = Pkmfm + Pknfn - PklRl'n.fn-
Then
Rk fi = Rk Piem fm + RmkPenfn — Bmik Pt Rinfn
= RmkPkmfm + Rmkpkn(In - Panln)fn~

Now, because k > m and k > n > 1, we know Rk Prm = Im (Lemma 2.3).
The additional condition and Lemma 2.7 show I, IT, = II; = II,I|II,, so that O (I —
II)II,, = 0. Hence,

Rmkpkn(-[n - Panln) = RmPkRkPn(In - RnPlRlP'n.)
= Rm Py Ri(I — PnRn P R)) P
= Ry T (I — D) T, Py,
= Ry I (I — )T, Py, = 0.

Thus, we find Rymkfte = fm +0 = fm. Analogously we prove Rukfk = fn. O

2.2. Commutative restrictions and projections

Definition 2.10. A set {Ry}cze is called a commutative set of restrictions (or a CSR) iff for all
m,n e Z¢

Ker(Rn) (1 Ker(Rm)
@
Ker(Ruin(m.n)) = Ker(R,) N Ran(Pr,) - (10)
>
Ran(P,) NKer(Rm)

A set {Pi}yeze is called a commutative set of prolongations (or a CSP) iff for all m,n € 7e
Ran(Pyin(m,n)) = Ran(Pn) N Ran(Pr). (11)

If {Rg}peza is a CSR and {Pi}reze is a CSP, then we say that we have commutative transfer
operators.

It is immediate that each CSR is an NSR and each CSP is an NSP: which simply follows from the
equivalence n < m < n = min(n, m). On the other hand not necessarily every NSP is a CSP nor
every NSR a CSR.
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In the next theorem we show how the above definition of a CSR and an NSP lead to commutative
projection operators indeed. To prove the theorem, we derive the following three lemmas.

Lemma 2.11. If (12) holds, then {Ry}cz4 is a CSR.

Proof. Let m,n € Z? be arbitrary, and let I = min(m,n), then we know by assumption 11,11, =
Iy = II,I1,,. We define

M = Span((Ker(Ry,) N Ker(Ry,)), (Ker(Ry,) N Ran(P,,)), (Ran(P,) N Ker(Rpm))).

To prove the lemma we show:
() M C Ker(II,),
(i) Ker(IT;) c M,
(i) M = (Ker(R,) NKer(Ry,)) @ (Ker(Ry,) N Ran(Pp,)) @ (Ran(P,) N Ker(R,y,)).
To prove (i), let x € M, then 2 = z,,, + z, + z; with z,, € Ker(II,) N Ran(I1,,), =, €
Ker(II,,) NRan(I1,), z; € Ker(IT,) N Ker(1,,). Then

Iz = Hp Iz + Dy pz, + Iz = 10,0 + 11,0 + 11,0 = 0.

So that z € Ker(IT;).

To prove (ii), let = € Ker(I;) be arbitrary and define x,,, := I (I — ITp)z = IIpz and Ty =

ITo(I — IIp)x = I,z and

2o = (I — Iy, — I, + IInm)x = (I = I, — )z,
Then a simple calculation shows: 29 € Ker(R,,) N Ker(Rm,) and 2, € Ker(R,) N Ran(P,,) and
zn € Ran(Py,) NKer(R,,) and xg + 2,, + 2, = 2.

To prove (iii), we show that M is a direct sum of the three spanning spaces. For this we have to
prove: if zg € Ker(R,)NKer(R,,) and z,, € Ker(Ry)NRan(Pp,) and z,, € Ran(P,)NKer(R,y,) and
o+ Tm +x, = 0, then 2y = z,, = z,, = 0. This is seen by 0 = IIp (I = IIn) (20 + T + ) = Ty
and 0 = II,(I — Ip,) (20 + Tpm + ) = &, This implies zp = 0. O

Lemma 2.12. If (12) holds, then {Py}ycza is an NSP

Proof. Let n < m then (12) implies 1,11, = II,, and hence, for all z € X we have 1,z =
IInz. 1t follows that for all z € X holds [T,z € Ran(T,,). Therefore Ran(17,,) C Ran(I1,,) for all
m,n € Z¢ with n < m. Hence {Pr}reza isa NSP. O

Lemma 2.13. If {Rx}yega is a CSR and {Py,}yezq is an NSP then (12) holds.

Proof. Let I = min(m, n) and let z € X be arbitrary. We know that
X =Ran(P;) & Ker(R;)
=Ran(F}) & (Ker(Rn) NKer(Rym)) & (Ran(P,) N Ker(Ry)) ® (Ker(Rp,) NRan(Py,))

because {Ry} is a CSR. Hence, we may split & = x; + z, + ., + 2, accordingly. Now we know
ITix = x; and
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Iz = My IIn(z) + 2o + Tm + Zn)
= Iz + Dn 2o + p In@Tm + Iz,
= 1z + 0+ D@ + 1m0
= [T Il,2.
Because { Pg }rezq is an NSP, we know that ; € Ran(P;) C Ran(P,) and z; € Ran(F;) C Ran(Pp,);

hence [T, I1nz; = x;. We conclude that, for arbitrary z € X holds I, IInz = 21 = II;z; which
proves the lemma. O

Theorem 2.14. The two following statements are equivalent:
(1) {Ri}reza is a CSR, and {Pi}rega is an NSP; and
2

Il = Dgingmm)y Ym0 E AR (12)
Proof. The theorem is a direct combination of the three lemmas above. O

It is an immediate consequence of the theorem that operators II,, associated with commutative
transfer operators { Ri }reze and { P }reze do commute:

I Il = Hmin(m,n) = pllm.

Further, combination of Theorem 2.14 with Theorem 2.9 gives the following corollary, which is a
direct generalization of [4, Proposition 2.5]. By the present framework we recognize immediately the
essential conditions that lead to this result.

Corollary 2.15. Let {Rk}xeze be a CSR and {Pi}yezs an NSP. then fm and fn are mutually
coherent if and only if

vi € Z¢ with 1 <m, 1 < n, we have Rimfm = Rinfn. (13)

Having seen what the essential structure of commutative transfer operators is, further in this section
we assume all transfer operators to be commutative.

2.3. The merging operator

Now we have seen how information about a function u € X can be represented on V,, and how
the representations R,,u are related for different n € 7Z4. An important question is how these Rpu,
given for a limited number of n € 72, can be used to restore the picture of the original function u as
complete as possible.

We start with the situation where information is available from two representations, viz. in Vn, Vin.
Therefore we introduce the merging operator IImn, which selects for an z € X the information that
can be represented by the combined representations in Vi, and V.

Definition 2.16. The merging operator Iy : X — X is defined by
I = m + I - Hmin(m,n)- (14)
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Lemma 2.17. Let {R,} and {P,} be a set of commutative transfer operators, then:

(1) Hppn =nm, (15)
2) ifm < nthen Iy, = I1,, (16)
(3) Imn is a projection, 17
Ran(P,) NRan(P,,)
@
4) Ran(II;n) = Ran(P,) N Ker(R,) (18)
>
Ker(R,) NRan(Pp,)
(5) Ker(IImn) = Ker(R,) N Ker(Ry,)- (19)

Proof. The first two statements are trivial by the definition of II,,,. Now set I = min(m,n).
Because I1p, 1y = IIplly = Ilgin(m,n) We have
Iyndlmn = (Hm + I, — Hmin(m,n))(ﬂm + 1IIn ~ Hmin(m,n))
=, + 1L — I, + I} + IT,, — ITy — II; — II; + 11
Hence, I1,,, is a projection.
z € Ran(IT,,,) implies 3z:
t=Ipnz=pz+ pz — Iz = (I, — )z + (I — )z + Iz = 2 + 2, + 21

Itis clear that this is a decomposition according to the direct sum in (18): z; € Ran([1;) C Ran(II,,,)N
Ran(I1,); zm € Ran(Il,,) and z,, € Ker(II,) because

anm = Hn(Hm - Hl) = Hmin('n.,m) - le =0;
and similarly z, € Ran(IT,) N Ker(/I,).
On the other hand, if z = 2; + 2, + 2,, is a splitting according to the direct sum, then
Iz =ITi(2z + 2m + 2n)
=z + Iz + I I p 2,
=2z + Iz, + 2, = 2,

(T, — )z = (I, — 1)) (21 + 2m + 2n)
= (Hm — Hl)Zl + (Hm — Hl)zm + (Hm - Hl)zn
=2z — 21+ (I — IIp) 2 + I (I — ) 2,
= limZm = Zm-
Analogously (II,, — II})z = z,. Thus
z=21+ 2m + 2n = Mz + (I — )z + (I — II})z = (IIpp + I, — II}) 2 = Ipnz.



66 P.W. Hemker, C. Pflaum / Applied Numerical Mathematics 25 (1997) 55-87

Hence z € Ran(Ilmy).
Assume that 0 = 2 = z, + z, + 25, is a splitting as above, then it follows that 0 = z; = 2, = z,,
because

Oznl(z) = (Hmﬂn)(zl +2n + zm) =z,

0=Tm — II)(2) = (I = IIn) (21 + 20 + 2m) = 2m
and

0= (IIn—I)(2) = (I = Hp)In(21 4 20 + 2m) = 2n.

Imn = PmBRm + PoRyp — PRy, hence Ker(Iln,) D Ker(R,) N Ker(R,y,) is trivial.
Ker(/Imn) C Ker(Ry) NKer(Ry,) is shown as follows. Let 2 € Ker(ITp,,,), then

0= Hpmz = (I, — )z + (I, — )z + Iz =: 2, + T + 2.

This implies z; € Ran(/];) and z,,, z,,, € Ker(IT}), so that 2; = 0 and z,, + z,,, = 0. Further, from
Tn = —Zm € Ran(Ily,) N Ran(Il,) = Ran(Iyinn,m)) = Ran(F))

it follows that z,, = x, = 0, and hence Ker(II,,,) = Ker(R,) NKer(R,,). O

Now we can introduce the hierarchical surplus, Hp,pnu, of a function u. This hierarchical surplus

represents the amount of information in an approximation u € Vinax(m,n) that cannot be represented
on the Span(V,,, Vin).

Definition 2.18. Let {R,} and {P,} be a commutative set of transfer operators, then we define
Hpn: X — Ran(Pmax(m,n)) C X, the hierarchical surplus, relative to the grids m and n, by

Hoppn = max(m,n) — mn. (20)

Clearly, the hierarchical surplus is a projection operator, and we can write
Hmn = (Hmax(n,m) - Hn)(nmax(n,m) - Hm)

This general idea of a hierarchical surplus leads naturally to a partitioning of the spaces V,, in more
elementary subspaces (pre-wavelet spaces) in the following section.

2.4. The hierarchical decomposition

In this section, again, we assume {R,} and {P,} to be commutative sets of transfer operators.

Definition 2.19. For a fixed ng € {—o0, Z}%, which indicates a coarsest grid, we define for arbitrary
n > ny, n € Z% the operator Qp, : X — Ran(P,) C X, by

d
Qn - H (H'n. - H’n—e])- (21)

J=1, nj#no;

We use the convention that Qp, = IIp,. The operator @, is called the (direct) hierarchical surplus
at grid n.
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If ng € Z% we call ng € Z? the coarsest grid, and, without loss of generality we may assume
ny = 0. If a no; = —oo then no coarsest grid exists in the Jth direction.

Lemma 2.20. Q,, is a projection and QmQy = 0 for all m #n.

Proof. First we show that Q,, is a projection. For simplicity of notation, we set ¢ = ny.

d
@nQn= H (I — Hn—ej)(Hn - Hn—ej)
j:l,nj#c]
d d
= H (Hn - Hn—ej - Hn—ej + 11 —ej) = H (Hn - Hn—ej) = Qn- (22)
j=lnj#c, J=lnj#c;

To show that QmmQrn = 0 for all m # n, let m # n. Without loss of generality we may assume
n; < m; for some i € {1,...,d}. We consider the case n; # ¢;; the other cases are similar.

QmQn = [T — T, )(Tn — 1))
J

= (Hm - m—e,,)(ﬂn - Hn—ei) H T
J#
=gy = Ty = Iy, ) + I n-1,)) H - =0. (23)
JF
The indices indicated by dots correspond with those of min(n, m). O

Notice that, for n > ny, the two-dimensional case the relation (21) reads

Qnu = ITyu — Hn—elu —IIn_e,u+ Iy _cu, (24)
where e = (1, 1), and in the one-dimensional case we have
Qnu = yu — IT,,_.u. (25)

Corollary 2.21. From Definition 2.19 it is immediately obvious that the projection IT,, can be decom-
posed as

I, = Z Qm, (26)
no<m<n
and, hence, Ran(Il,) = Span(Ran(Qm))ny<ms<n. Because of Lemma 2.20 we can write

Ran(Il,) = P Ran(Qm). 7)

no<m<n

If V, € X and P, is the natural injection, then we see that Ran(P,) = Ran(I1,) = V, and,
defining the pre-wavelet space W,, = Ran(Q.y,), we find

Vo= D Wn (28)

nys<m<n
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Notice that, given the set { Wy, }ny<m. the expansion (28) essentially describes the complete partiall_y
ordered set of approximating spaces. In fact, if we can write X = @nogm W, we induce auFomau—
cally a structure for prolongations and restrictions, which—now by nature—form a commutative and
hence nested sequence.

2.5. The tensor product case

In this section we introduce the usual and by far the most interesting examples of commutative
sets of operators, constructed by means of tensor products. Of course it is also possible to construct—
by trivial means—cases where (28) is no tensor product space, e.g., by taking arbitrary linearly
independent spaces Wr,. Although such non-tensor product spaces maybe useful in particular cases,
tensor product spaces give more regular and interesting examples.

Forany:=1,...,d,letQ; CRandletQ = ®f=1 Q; C R? be their Cartesian product. Let X; (£;)
be a function space on €; with functions wu; o, (2;) so that X;(€;) = Span({u; 4, }a;ec4,), for some
index set A;. Let A = ®§i:1 A; be the Cartesian product of index sets. Then the tensor product space
X(Q) is defined by

d d
XQ=QXi(@)=Span [Juia. (29)
i=1

(a1,a2,...,04)€A ;4

It is well known, e.g., that for X;(Q;) = C§°(R), the tensor product space X (Q) is densely embedded
both in CY(R?) and in H!(RY).

Foreach i =1,...,d, let {R; »}nez be a sequence of restrictions (for functions in one dimension)
defined on X;(Q;), with R; ,: X;(Q;) — Vi 2(Qs) C X;(Q;), then, similar to X (), for each n € Z4
we may define a tensor product space V,(Q) = ®;1=1 Vi, ().

If the elements of V;,,(€;) are all determined by values associated with Q,, (Q} or QF), then
we find a bijection Vi, = Vp(Q) = Vi, (Qn) (or = V,(QfF) or = V,(Q2)). This notation indicates
that its elements are determined by their values on the Cartesian product space ,, = ®f:1 Q,,, (or
QF or Q).

n

Definition 2.22. We define the tensor product restriction Ry, : X(Q) — Vn () by its action on a
typical basis function

d d
ua(®) = [ [ i, (3:) —~ Rnua(z) = [ Rinttia, (). (30)
i=]

i=1
We also write Ry, = @), Ry n,. Since V,,(Q) C X(Q), we can take the natural injection P, as the
corresponding reconstruction for R,,. This P, we call the tensor product prolongation.
Theorem 2.23. For each i € {1,...,d} let Q; C R, and let {Vin () ynez form a nested sequence
of subspaces of the function space X (Q;), with
Vip(Q:) C Vig(Qi) € X(Qi) forp< g, (31)

and let each sequence of (one-dimensional) operators { R; n }nez form an NSR. If we take for the cor-
responding reconstructions {P; 1 }nez the natural injection, then the tensor product restrictions {Rn}
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and prolongations {Pyn} form a CSR and a CSP, respectively. (So, together they form a commutative
set of transfer operators.)

Proof. By the nesting of the subspaces it is immediate that for each ¢ the set {P; ,},cz forms an
NSP (Section 2.1). Further, using the fact that the prolongation is the natural injection, we can identify
restrictions R; with the corresponding projections I7;, and by Lemma 2.7 we see that for each i we
have I1; pI1; g = II;  IT; , = IT; , if p < q. Thus, for each i it follows that the sequences {F; , }nez and
{R;n}nez are CSP and SCR. Now we prove that {R,,} is an CSR by showing R, R,, = Ruin(m,n)
as follows.

Let I = min(m,n) and let v € X(Q) be arbitrary, then we can write

v(z) = Z Calla (),

acA

Rpv(x) = Z CaBlmua(z) = Z Ca HRi,miui,ai (z3).
Similarly,

RILanv(m) = Z Ca.Rn. H Ri,miui,ai (xz) = Z Ca H Ri,n,;-Rfi,mi Ui a; (x't)
a ) a %
=> ca H Ry min(ma,ne) Uia: (1) = Y _ CaRumin(m,m) H Ui, q, (T3)
a 7 a 1
= Rmin(m,n) Z Ca H Usa; (xt) = Rmin(m,'n)v(m)'
%

Hence R, R,, = Ruin(m,n)> and, thus, IT, 11, = min(m,n)- Now Theorem 2.14 shows that {R,,} is
an CSR and {P,} is an NSP.
To prove that {P,,} is an CSP, we have to show Vinin(m,n) = Vin N Vy, or

® ‘/i,min(mi,ni) = ® ‘/i,mi N ® Vi,ni - (32)
i A z

As for each 7 we know that {Vin(Q:) }nez is a nested sequence of subspaces of X;(Q;), we can
construct a sequentially ordered set of basis functions B; = {usp}s in X;(€;), such that n; < m;
implies u;p € Vi, = u;p € Vi m,. It follows that we have Viom; = Span({u;; € B; | Uiy € Vim,})
and similarly

V;,min(n,',mi) = Span({ui,l € Bi I Uil € V;,ni N szmz})
So we see

Span H Us = Span H (T Span H Ui,

ui,l¢EBinVi,min(mi,ni) i ui,mieB’inViy‘mi i ui,nieBimVi,ni i

which is equivalent with (32). O

Example 2.24 (Piecewise constant approximation). If we consider L¥(Q) = X(Q) and we choose
for Ri, the one-dimensional Ly-projection R;,: X(Q;) — V,(Q;) c X (Q;), where Q; C R and



70 PW. Hemker, C. Pflaum / Applied Numerical Mathematics 25 (1997) 55-87

Va(£2;) is the space of piecewise constant functions on dyadic intervals (i.e.3 if R;, denotes tak‘~
ing mean values over intervals [j27", (5 + 1)27"] in the ¢th coordinate direction), then, for each 1,
the restrictions {R; ,},, form a one-dimensional NSR. The corresponding reconstructilons P, ,, repre-
sent piecewise constant interpolation over dyadic intervals. This makes the prolongations {F; ,, }» an
NSP.

Then, as a consequence of the above theorem, {Ry} and {P} are commutative transfer operators,
i.e., {Rg} is a CSR and {Py} a CSP.

Example 2.25 (Piecewise d-linear approximation). If we select the restriction R;,:C%(Q;) —
V,(Q:) C RZ to be taking function values at dyadic points j27™ in the interval Q; C R, then
{R; ..}, is an NSR. Corresponding reconstructions P, ,, defined by piecewise linear interpolation over
dyadic intervals, make the prolongations {P;n}n an NSP.

As a consequence of the previous theorem, with C%(Q) = X (Q), the tensor product operators { Rz }
and { Py}, defined on X (Q), are commutative (are a CSR and a CSP respectively). The restriction R
takes the function values at grid points Qf, and the prolongation Py, makes a multi-linear interpolation
over cells in €,,.

In the above examples, with V,, C X we took for the reconstruction P,, the natural injection (the
identity in X). In this way we may identify R, and II,,. It appears that in both cases, i.e., for the
piecewise constant and the piecewise linear approximation, we have a projection II,, of the form

d
Do =[] Mnye, = [ Rae,.

j=1 j=I
Here Ry e, : X(Q) — X(Q) is the operator on the tensor product space X (Q2) such that

d
aneJ ua(m) = Rj,n] Uj,aj (1]) . Hui,ai (IL‘Z)
i#]

In the following section we consider the case of nested subspaces {Va} with V,, € X and X =
Un Vn. and where all spaces V,, are spanned by dilations of a single function ¢(x), together with all
its dyadic translations. This leads to the more-dimensional multiresolution analysis or MRA. In this
case the spaces W,,, = Ran(Q,,) correspond with more-dimensional wavelet spaces.

2.6. More-dimensional MRA and wavelets

It will be convenient if
(1) we can make an arbitrarily accurate approximation of any function v € X by taking the
multi-integer m large enough.
Moreover, it will be convenient if
(ii) all spaces {Ran(P,)} or {V,,} have a similar structure, and
(iii) there is a clear relation between the spaces in {Ran(Py,)} or {V,,}.
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In order to create such a structure, in this section we introduce the multidimensional multiresolution
analysis. For this purpose we will restrict ourselves to Hilbert spaces. First we introduce the important
notion of frame.

Definition 2.26. A sequence {x,} in a Hilbert space H is a Jframe if there exist numbers A, B > 0
such that for all x € H we have

Allzf* <7 (2, 20)) < Bz (33)

The numbers A, B are called frame bounds. The frame is tight if A = B. The frame is exact if it
ceases to be a frame whenever any single element is deleted from the sequence. If the sequence {z,,}
satisfies (only) the second part of the inequality (33) then the sequence is called a Bessel sequence.

Having introduced the exact frame, we can define the partially ordered, more-dimensional mul-
tiresolution analysis. Notice that this is different from the more-dimensional multiresolution analysis
introduced in [1], which considers a sequentially ordered nested set of approximating spaces.

Definition 2.27. Let Q = R? and let X(Q) be a Hilbert space of functions defined on Q. A mulridi-
mensional multiresolution analysis of X (Q), is a partially ordered set of closed linear subspaces

{Vin | Vi C X(Q)}

with the four properties:

nezd

(Ve = {0}; UVva = x(), (34a)
f(@) € Voo f(2™2) € Vipym  Vn,m e Z%, (34b)
f@)eVne flx—2""k)c Vs, Yn keZ? (34c)
o e Vo {olx— k)}keZd is an exact frame for Vj,. (344d)

The function ¢() in (34d) is called the father function or the scaling function of the multiresolution
analysis.

For Q = R? the tensor product Examples 2.24 and 2.25 in Section 2.5 also yield examples of a
multidimensional MRA.

For piecewise constant interpolation we take X (Q) = L*(R%) as the starting point. The characteristic
function on the unit cube (the more-dimensional Haar function) is the scaling function ¢. The set {Vn}
contains the spaces of piecewise constant functions on Q,,, and a CSR is obtained by Ry : X(Q) — V,,
the L2-projection. It is obvious that in this case the set {#(x — k)} is an orthonormal basis and hence
an exact frame with bounds A = B = 1.

For piecewise linear interpolation we take X (Q) = H¢(R?) as the Hilbert space. The set {Va}
contains the space of piecewise d-linear functions, determined by their nodal values at Q}. A CSR
is obtained by Ry, : X () — Vp, the piecewise d-linear interpolation at Q. Here, the d-linear finite-
element basis function is the scaling function ¢. By [9, Theorem 2.1.3] it is easily seen that in this
case {¢(x — k)}r is an exact frame, with as frame bounds the extreme eigenvalues of the frame
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operator S: L}(Q) — L2(Q) defined by Su = Y, (u, ¢(x — k))¢(x — k). Bounds for these extreme
eigenvalues are A = 37% and B = 1, respectively.

As in the tensor product case, we take for the reconstruction the natural injection Pp,: Vp — X s0
that R,, = II,, for all n € Z¢.

More-dimensional wavelets

A wavelet space Wy, C Vj,, a closed subspace of V;, which contains those functions in V,, that
cannot be represented in any of the function spaces on the next coarser level, i.e., these functions are
in V,, but not in Span(Vp,—e,, - . ., Vn—e,). Thus W, CVy is a closed subspace so that

V=W, @ Span(Vp—e,,- -, Va-ey)- (35)
This means that W, contains the ‘difference information’ that is available in the fine grid V;, but not
in the span of the coarser grids Vp—e,s Vn—e;>- - -: Vn—ey-

The space W,, is the complement of Span(Vi—e,,-- -, Vn—e ,) in V. Of course, this complement is

not uniquely determined. If we want we can make use of the Hilbert space structure and consider the
(unique) orthogonal complement

Wn L Span(Vp—e,,- - -, Vn—ey)- (36)

This choice corresponds with R, : X — V,, being the orthogonal projection. However, in many cases
we will use spaces W, that don’t satisfy this orthogonality property!

As soon as we have selected a CSR { Ry}, then corresponding pre-wavelet spaces are defined as in
Section 2.4. These pre-wavelet spaces on an MRA are wavelet spaces.

In the case of an MRA no coarsest grid exists, so that (28) gives

Vo =P W;. (37)
js<n
Because of property (34a) we can decompose the space X (Q) in
X(Q) =P w; (38)
jezd

5o that we can write any u € X(Q) as u = 3 ;74 w; with w; € Wj. A restriction Rp:X(Q) — Vp
is now determined by

() -

J jsn
By Definition 2.19 we recognize the direct hierarchical surplus

Qn: X (Q) — Ran(Qn) = Whn. (40)
We see that there is no coarsest grid and we can decompose R, as
Rn=) Qk (41
k<n

The four relations (34a)—(34d) imply that also the spaces Wi, are scaled versions of one space W,
flz) € Wp & f(27"x) € Wy, Vn € Z4, (42)
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and, moreover, that they are translation invariant for the discrete translations 2~ "Z¢,
fl@)eWy & flx—k) e Wy, VYneZd (43)
As soon as we find a function ¢(x) with the property that ¢(x — k), k € Z%, is a basis of W,

then by a simple rescaling we see that (2" — k), yields a basis of Wi, . Such a function is the
more-dimensional generalization of a wavelet [3]. Because of (38) the full collection

{wn,k(m) | Ynk(x) = ZP(Z"CB - k)w n,k e Zd}
is a basis of X (R%).

3. Piecewise approximation in d dimensions

In this section, we first describe the approximating function spaces for piecewise constant and
piecewise multilinear approximation. For the spaces V;, and for the pre-wavelet spaces W,, we describe
basis functions. Using these bases, in Sections 3.2 and 3.3 we give proofs for error estimates on regular
and sparse grids. Most of the estimates are essentially also found in [2,13,16], but here the proofs are
more general, simpler and given in a unified treatment.

3.1. Piecewise approximation

3.1.1. Piecewise constant approximation
First, let Q = R? or Q = (0, 1)¢. We approximate u € X(Q) = LY (Q) by uy, € Vk, in the space
of piecewise constant functions on Q,, i.e., in

V. = Span({¢n;}), (44)
with, for some g > 1 or ¢ = oo,

bnj (z) = zlnl/q¢(2nm _ j),

< (45)
o(x) = H Xj0,1)(2;),  with x[o1)(z) the characteristic function on the unit interval.
=1
This clearly describes a basis for a tensor product space, and we may write
d
Vo = Va(Q) = Q) Va, (Q)) (46)
e

the tensor product of spaces V,,(2;). These V,,; are the spaces of piecewise constant functions with
meshwidth h; = 27" on Q; C R. The corresponding grid of cells on the Cartesian product of {Q;},
is denoted by Q,,. The cell centers are denoted by by Q,.
We define the restriction R, as the projection
: X
R,:X—-V,CX, @)
Ut Up = Rpu, With up; = un((i + €/2)h) = 2tin] / u(€) dQ.
Qni



74 PW. Hemker, C. Pflaum / Applied Numerical Mathematics 25 (1997) 55-87

This restriction is of type (30), and R, = R, . », can be decomposed as

Rn = H anejv (48)

J=l

where Ry, e;u(x) is the function, piecewise constant in the jth coordinate direction on a partitioning
., so that

x+(h/2)e;

Rn]'eju(m) =2 / u(ilv s 7§d> dé]
z—(h/2)e;

for all « with (z;2" +1/2) € Z.

In the special case X = L?*(Q), the space X = X () is a Hilbert space, and {¢p; } is an orthogonal
(orthonormal if g = 2) basis in Vj,. In this case R,, is the orthogonal projection LZ(Q) — V. For
Q = RY, the set {V,,} as defined in (44)—(45) is a typical MRA. This is no longer the case if we
consider a bounded domain €, but the decomposition as treated in Section 2 still can be used in the
case of a bounded domain.

It is easily checked that the more-dimensional wavelet ¢(x) € W, corresponding with the piecewise
constant scaling function ¢(z) € V4, from the previous section, is the more-dimensional elementary
checkerboard function given by

0, if ¢ ¢ Qo,

bay={
(—1)' l, if x € QO,O and x € Qe‘k-

(49)

This function is the tensor product of the Haar wavelet.

In wavelet theory the spaces W, are labeled channels, and the distinct channels are linearly in-
dependent. The first decomposition of an arbitrary function from X (Q) consists in writing u(x) =
> n Wn(x), where w, € Wy, with n € 7%, according to (38).

Each subspace Wy, has its natural basis, the standard basis,?

{np(@) | Yni(x) = 2" y(2n 22 — k), k€ 2%}, (50)

of functions with a minimal support. We see that ¢ = 1), € Ve is a function with the unit cube
9,0 as support. The basis function ¢,  is a scaled, elementary checkerboard function, that may be
characterized either by its support, which is a single cell in ,,_., or by the centerpoint of this cell,
Zn—-ek = 2—|n—ei(k + 6/2)'

On the open unit cube Q = (0, 1)¢ we consider the 2/™|-dimensional spaces V;, = ®;l:1 Vn,» the
tensor product of V;, ((0,1)), the spaces of piecewise constant functions with meshwidth h; = 27"
in the jth coordinate direction. For functions defined on Q = (0, 1)¢ we can write relation (38) as

X(Q) = Wa, (51

n=0

Notice that in more dimensions we use the indexing ¥n ek, Whereas in the one-dimensional case one usually writes 9.
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and make a decomposition in channels correspondingly. Each subspace Wy, 1, now with n > 0, has
its standard basis 1n 4 g:

h%ﬂkwﬂwmﬂﬂﬁz2wmwﬂm—kﬁ0<k<2q. (52)

For Q = (0,1)?, the exceptions related with the boundary are found in the spaces W,, with a zero
index (ie., ||| = 0). These W,, have basis functions with different shapes. They are derived from
the corresponding functions for the unbounded case, but their support is restricted to Q. Their corre-
sponding nodal points z,,_, , are found on the boundary 9Q = Q\Q instead of in the interior. For
In|l = 0 we have W,, spanned by a basis

0< kj<2v7! ifn; #0,
Ynp(z) | 7 i 7 j=1,....d%. (53)
kj =0, if n; =0,

Taking such modifications into account, both for Q = (0,1)¢ and for Q = R4, for each u € LF (Q)
we may write a hierarchical expansion (a wavelet expansion) according to (38) or (51), as

u(@) = w, = D Cnktni(x) = D ekt (2 — k), (54)
nez n.k n.k
where 12 is simply
~ sign |lzf|, if max(zy,...,zq) < 1,
Y(z) = _
0, if max(zy,...,zq) > 1,

and ¢pk = 0 for all k with ||k|| even.

3.1.2. Piecewise d-linear approximation
We approximate v € X = C%(Q) by u,, € Vj,, in the space of piecewise d-linear functions on ,,,
ie., in

Vo = Span({d’nj})v (55)

with, for some g > 1 or ¢ = oo,

Pnj(x) = 2IM/1p(2n2 — j),

d
(56)
() = H A(z;), with A(z) = max(0, 1 ~ |z|) the usual hat function.
=1

Clearly this is a basis for a tensor product space as (46), where V,, , are spaces of piecewise linear
functions on a partitioning of Q; with meshwidth hj = 27". The set of nodal points {;2m }jeza in
Q is denoted by Q.

Here we define the restriction R,, as the projection

Rp:X—-V,CX,

(57
Uk Uun = Rpu,  up(x) = u(z) Ve € Q. )
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The restriction is also of type (30) and the operator R, = Ry, ...n, can be decomposed as (48) where
Rnje;u(x) is a function, piecewise linear in the jth coordinate direction, on a partitioning Qn, such
that Ry o, u(z) = u(x) for all @ with z;/h; € Z.

It is clear that there exists a basis- functlon in V,, for each nodal point &, in Q . If and only iff

k|l is even, there exists a ‘parent grid’ Qm with m < n and m # n, for which ., € —Q:; Hence,
in this case each wavelet space W, has its natural basis

{pnk | k € Z% with ||k| odd}. (58)

On the closed cube Q = [0, 1]¢ we consider the H?=1(2”f + 1)-dimensional spaces V,, = Vo (Q) =
®;i | Vi, ([0, 1]). With homogeneous Dirichlet boundary conditions, the dimension of the correspond-
ing space V) C V,, is H ,(2% — 1). It is immediately clear that typical FE-basis functions for Vn

are the d-dimensional hat-functlons functions that vanish on all but one point of Q . Each such FE
basis function of V0 is characterized by an interior point from Q.
We notice that for Q = [0, 1]¢ we have

Vn={0} exceptforn >0, (59)
={0} exceptforn > e. (60)

With W, (or Wg) we denote the subspace of V,, (respectively V,?) of functions that vanish at the
gridpoints of all ﬁ:_ej (respectively Q,t_ej), j=1,...,d. From (55) we see that for £ = R4

Wy, = Span({¢n; | [l odd}) (61)

and for Q = [0, 1]¢ we see that 0 < j < 2™ and

jiodd, 0< j; < 2% ifn; >0,
Wy = Span bnj 1=1,...,d . 62)
Ji=0,1, if n; =0,

Clearly Wy, = W2 = {0}, except for n > 0. If [n|| = 0 we see that V2 = {0} and Wy, is spanned
by FE basis functions that are characterized by boundary points on the unit cube. Thus, the trace of a
function on the boundary is exclusively approximated by elements of Wy, with ||n|| = 0. Further we
see W = W, if n > e. Apparently

= P Wk, and V2= P Wi (63)

0<ksn es<k<n

3.2. Error estimates for regular grids

The decompositions of type (38) allow the approximation of a sufficiently smooth function in X (Q)
by a series with elements in W;. To obtain an impression of the quality of these expansions in the
following sections we derive error estimates.
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3.2.1. Estimates for piecewise constant approximation
As the case where domain boundaries are present, is the more general one, we study the case
Q = (0, 1)%. To quantify the error of approximation on Q, we introduce for v € C*(Q) the seminorm
ju| = max|De (z)| + max max |DPu(z)|. (64)
\

0<p<e £cO\Q
0<|p|<d

Now we derive the following

Theorem 3.1. If we consider an expansion of a C¢(Q)-function, v, in piecewise constant functions
on the grid Qy, for an arbitrary n € Z%, n > 0, and if we write

> wm, (65)

0<m<n
With Wy, € W, 0 < m < n, then, for m # 0 we have
lwm L@ < 274227 ™), (66)

and an estimate for the approximation error

lu — Ruull,q) < (2/3)%(|ha|ul. (67)

Proof. We take {¢,,r} as a basis in W,,, e < m < n. All these functions form an L,(Q)-ortho-
normal set (orthonormal Haar basis) and they are orthogonal to all functions in W,,, n # m.
Thus, we find (65) with wn, = 3"} GmkWPmk, Where

Gk = (16 thym o) = / W e 4 = / Wy 4.
Q

Qo ek

For m > e the point z,,_ e,k lies in the interior of Q and the estimate holds with
|u| = max | Deu(z)|.
€T

Viz., by Taylor expansion around z,,_e k, we have

lamk| =

/ uwm,kdsz|

Qm-—e,k

<[ / |||w—zm_e‘ku||u(¢m,kdsz|
Qm——e,k
da 27
= [ul2!™> e'/zde / & dg;
i=
=lu!2 d/22 3|m]/2. 69)

Form # 0, m ¥ e, i.c., for ¢, with an m-component equal to zero, the point 2, _e  lies on the
boundary and the function ), k is constant in one direction over the whole domain Q, and it is of
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Haar-wavelet type for the non-zero indices (or index). In this case the orthonormal basis functions are
23/2 &, where 3 is the number of zeroes in m. Nevertheless, provided that m = 0, in this situation
the same estimate (68) holds with, e.g., if m; =0 and m; > 1 for j =2,...,d,

e %y (x)
lu| = max eyl
Hence. the estimate (68) holds for m > 0, m # 0, if we use the seminorm (64), and we find
m 2 =D lame? < 3 2727 uf? = 279272y, (69)
K k

50 that ||y, || < 27%?271™/|y|, which leads to (66) and (67) because

d
lu-Rpult= S fumlP <> S 27027 2mup

5 =,
mg>ng I
d
< 2~diu|2 Z Z (1/4)m|+~~~+md
J=1 m20
m;>n;

d
<l (23 R, < fuf 2/3)YRal?. O
j=1

If we have no further a priori knowledge about u, the most efficient approximation will be one with
h, = --- = hq because this equalizes the main terms in the error bound. We see that the truncation
error for u — Rpu is not particularly promising or surprising: the major part of the error is produced
by the largest meshwidth: (max(hi, ..., hg))¥?, whereas the total number of degrees of freedom for
an element in V,, is 2/™,

3.2.2. Estimates for piecewise d-linear approximation

For a function u € C?%(Q) we consider piecewise linear approximation as in Section 3.1.2. We
approximate u by u, € V3, where V,, is the space of piecewise d-linear functions on ,,. We take
Up, such that u, () = u(x) for all z € Q;} and we write

Unp (iB) = Z dnjd)nj (m)a (70)
J

where ¢n,;() is defined by (56).

With up, € V, the piecewise linear approximation on Q,, of the function u € C%(Q), we make the
hierarchical decomposition V,, = @kgn Wi, and write

Un = Z wr, Wi € W, (7

k<n

where

wi(T) = Z CrjiOrj (@), (72)
J
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with ci; = 0 for all § with ||| even.

In practice the coefficients Ckj, |l7ll odd, are computed as hierarchical surplus coefficients, by
taking the difference between the value u(shy) and the interpolant from coarser grids. This is most
conveniently formulated by introducing stencil notation. Therefore, we introduce the difference oper-
ator

Vhu(z) = u(z + h) — u(z), (73)
and the usual central difference approximation for the second derivative by stencil notation, as
[%7 -1, %]hjeju(z) = %V%jeju(z — hje;).

With this notation we write an expression for the hierarchical coefficients in a piecewise linear ap-
proximation. We see that d-linear interpolation leads to the following expression for the hierarchical
surplus coefficient

cij Il =% = TT [-4,1,-4],
j=1ld

u(jhy). (74)

€5

Notice that the factor ||hg|'/? cancels the scaling factor 2/¥!/9 in the definition of ®rj, SO that the
function u(z) is expanded as

u(@) =) crjlibel V16 (25 - 5).
k.j

An expression for the coefficient Ck; is found in the following lemma.

Lemma 3.2. Ler u € Cet™, for 4 given m with 0 < m < e, and let
Lnj(z) =27I"g (2ng — j), (75)
then, for each ¢y € Wy, [n| # 0, I7]l odd, we have

d
Irnll ™" 4lens| =TT (=4, 1,~4],.. ulihn)

=]

= (—1)letmiy—d / DET™u(x) DET™ L, () dQ.
Q

Proof. We see that for |n| # 0, ||j Il odd, each L,,; has a support in the interior of €. Taking
this into account, we give the proof after a coordinate translation with 2™j then we see that for all

i, 0<i<d,
sihi sihy
Z /Deiu(z)dziz Z u(z) = 1, =2, 1]p,e,u(2) |20
0

z;=0

= Z vsihiezu(z)

2=0 s;=—1,1

s;=—1,1 si=-1,1

and hence
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S]h] Sdhd
= (—%)d / . / Déu(z)dz; -- - dzg
s1,-84=—11 7 0
hy hq 4 g
d -n4 n;
= (-%) / / D‘Eu(:l:)l—l1 (2 " a?i/l@ zz)> dzy--- dzg
—hy ~hg =

= (-1)? / Deu(z)2” ™D (2" z) dQ
= (_1)|e+m| 2—d/De+mu(m)De—an0(m) do. 0

Remarks.

(1) For |n]| = 0 (ie., for boundary points), the same formula holds, provided that the formula is
restricted to the lower dimensional boundary manifold (e.g., the face or the edge of the unit
cube).

(2) For an m with 0 < m < e we derive an expression for | D™
follows:

|D™gl? = /H D™ A(z:) [ d = 24 (p + 1) 1=,
Q I3

p» With ¢ given by (56) as

So that
D], = 2%e(p + 1yl a6
(3) In (56) we have ¢n; = 2™/9¢(2"z — j), and hence
“-quﬁnsz — /zlntp/q‘Dm¢(2nw _ J)‘P dQ = 2|n|(P/Q—1)2|mon|PHDm¢Hz
Here,
d d
amen = [2mm =[] ™ = ha™
=1 i=1
so that for arbitrary 3,

|D™6msl|, = a7~ YORZ™ D7, 7

This means that the norm ||¢y;||, is independent of the level n iff we take g = p.
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(4) To obtain error estimates in the approximation Theorem 3.3 we compute an expression for
| D™ Lpj(2)||p, with Ly; as introduced in (75), in particular for p = 1,2, oc.

1D L (@)|[7 = bl B?™ [ D™ 6|12 = [P+ P 22 (p + 1) ~le=m.
So that we may conclude, also considering the special case p = oo,

D™ Lnj ()|, = [hnl?(hn/2)"™,

IP™Las (@), = (2/3)** Rl (Bn/v3) ™™,

HDanj(m)“w = [[hnll(Rn)™™.

Using the above expressions and Lemma 3.2, we can derive the error estimates in the following
theorem.

Theorem 3.3. Let u € C§+m(Q) be given for some m with 0 < m < e, and let u,, € V,, be the
piecewise linear approximation on Qy, of u, such that un () = u(x) for all x € Q. If we make the
hierarchical decomposition V,, = Drcn Wk, and write

Un = Z Wk, Wk € Wk7
k<n
then we have the estimates
lwell2 < [|DEH™ul|, |y P2~ %23 Iml/2p - (e=m)
lwklloo < [[DEF™ul| 1Bkl (Rie/2) (6=,
d
[t = tnll2 < [[ D™ ,27433mI2 §™ pll+ms),

=1
d
[t = tnfloe < [[D=Fmul| 671 5™ pflems),
=1
Proof. Using (74) and Lemma 3.2 we can obtain estimates for the hierarchical coefficients Crj. We
fix k and we derive, writing h = hy,

A1~y =2 [ De+mu<w)xkj<m>ne-mzzk,-<w>dw}

27D g | | D™ L |
<27 D uxs | IR (R/2) 6™,
where X is the characteristic function for the support of Lij(), or similarly

IR~/ ;] = 27 / DE ™) xiy DS~ ™ Ly () dae
Q

<274|| D ™ uxs || DS ™ L
<642 D™ uxe; || IRIP? (R/V3) e,
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We write wy = ) Ckj@kj With ll7]] odd, and we know that these functions {¢g;};, for fixed k have
disjoint supports. Hence, for the hierarchical contribution,

2
= chickj /¢ki¢kj dQ = Zci"»“@ﬂ”%
i.j ;
<RI w3 Y || D%+ ™ uxas 6~ IAIP (R /v3) ™™

)
< mhl"4 2—d”De+mu”§h—2(e—m)3—|m|'

] = }

For the other norm ||wg||« We obtain similarly

Z ChjPkj
j o

<Ih' max 27| D™ w ks | GIRIP (R 2) ~ (=™ | e

llwklloo = < m;f:lecijH%jHoo

<274 Dema| R (h/2)~ (.

For the error, for p =2 or p = oo, we get

D= un| <3 funly

k<n p k€n

<G| D], S R PRy ™
k€n

= Cp]|De+mqu Z hi+m,

kg€n

flu~ un”P

with Cy = 274/23°ImI/2 or . = 2-d2le=m| This yields the above mentioned estimates, by taking
into account that

Z he+m Zhe+m Z he+m

kgn k<n

= [l TLu- o)

1=1]

N

[N

S

—

Wit

N—
—
.’:l -

-2 (1+"1)(1+mz))} = 3~Im| h1+mz
i=1 ;

For m = e this simply reads 2kgn IPl> <37 R, |2. O

Corollary 3.4. As a direct corollary we find

l = unlls <S4R D2uBal, flu = unlloo <674 D%u||_|{Rnl?,
and, for p =2 or p = oo, and 0 < m < e,
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llwkllp < C|[D=F™ | hgT™, (78)

d
lu = unllp < CHDe_‘-mUHp thjmi’ [ = unllp < C”Dzeu“p“hnHZ- (79

i=1
From (78) also follows a bound by a Wy “ norm. We immediately see that, for 0 < ¢ < d,

el < Cllullyg.e min RE™ < Cllulyecllful 4 (50)

We gave the proof of Theorem 3.3 for functions that vanish at the boundary of Q. Taking into
account the remark following Lemma 3.2, it is clear that similar estimates (with different constants
and with terms including derivatives of u that are restricted to the boundary planes as in (64)) also
hold for functions with non-homogeneous boundary conditions.

3.3. Error estimates for sparse grids

3.3.1. Estimates for piecewise constant approximation

For piecewise constant approximation we use a sparse (box) grid Q,, = Ulklgn Qp N Q. A sparse
grid approximation is obtained by interpolation on this grid by means of the space spanned by all W},
with |k| < n.

Theorem 3.5. Ler ﬁ,nu be the piecewise constant approximation of a function u € L, (Q) on a sparse
grid on level n:

Ryu= Z Wk, Wg € Wh, (81)
[k|<n

then, with ||h|| = 27", the volume of the finest cells, we have the estimate

s — B

L@ S ClullR] log@=""2 . (82)

Proof. To prove the theorem for the L,(€)-norm, we use (69), and the orthogonality of the hierarchical
basis functions, to obtain

e = Bnll i) < D7 ol < 30 274 W = 2dup 37 272K, (83)
|k|>n [k[>n |k|>n
We know
3 o2 (l Zd_l 1) = 2-20n) <Z+ f)F(L L +n+d2+n;1/4) = G(n,d). (84)
I>n

Here F is the hypergeometric function. It follows that
nd—12—2n

for n — oo,
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where the asymptotic value is reached soon for small values of d. Hence

I+d-1 _ n
o 2 p—dy, 2 ~2 < 2—d)y2 < 0-djy2
lu = Ryull” < 27%u| bZnZ ( d—1 ) <27%ul*G(n,d) < 27%u| C’nd—-—————3(d_ Ik

d—1~—2n
2 (85)

where C,,4 is a constant that tends to one for large n (Cpng < d for n > 4). So, we conclude that
lu— Roull 1) < Cluln@=D/227",

which is equivalent with (82). O

To guarantee a small error on a regular grid, in (67) all cell edges A; need to be small, but in (82)
for the sparse grid only the volume ||| has to be small. Further, in the two-dimensional case, the
estimate (82) is of a similar order of accuracy as (67), except for a logarithmic small factor. However,
the number of degrees of freedom for the approximation (82) is 51gn1ﬁcantly less. Namely, in the

unit cube, for Rpu the number of degrees of freedom is 2™, whereas for R,u it is O(n?=127), viz.
212" + 1 in the 2D-case, and in the 3D-case, e.g., (n? + n + 2)2" — 1. Because significantly less
degrees of freedom are involved in the approximation R,u than in the approximation of R, » n)u,
i.e., less coefficients a; , and less gridpoints z; x, in analogy to [7], we call the approximation ﬁ,nu
the sparse grid approximation and

Q:L = {Zj,k ‘ Zjk c Zn, Inl < TL}

is the sparse (box) grid for this approximation on level n.

3.3.2. Estimates for piecewise linear approximation
For piecewise linear approximation we use a sparse (vertex) grid Q. Ul k|<n Q N €. A sparse

grid approximation is obtained by interpolation on this grid by means of the space spanned by all Wy,
with |k| < n.

Theorem 3.6. Let R,u be the piecewise d-linear approximation of a function u € CET™(Q), with
0 < m < e on a sparse grid on level n:

ﬁnu = Z Wg, Wk € Wk, (86)

|k|<n

then, with ||h|| = 27", the volume of the finest cells, we have for p = 2, 00, with m = e the estimates

[u = Roull, < C||[D*ul JIR]* log™" [IR] 7", 87
and with |m| < d the estimates

lu = Roul, < C|[D**™ul| Ihf log?™ "™ fR] (88)
and with 0 < ¢ <d

lu = Roul|, < Cllul\w;velllh\lll”/d log”~ ! R~ (89)

Proof. Using the estimates for ||wg||, from Theorem 3.3, we prove, more generally, for some m with
0 <m < e, and for p=2 or p = o0,
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Ju= Bl , < S ffwgll,

|k|>n

< Z C“De+mu|lph2+m
|k|>n

=C|Ip*rmal, 3 g
|k|>n
< C’i|D'3+mu||pZ‘"(63’12‘“115""“l + Cznd‘lml‘l), (90)
with C = 0 if [m| =0, and C, = 0 if |m| = d. Hence, for m # e we have
lu = Buul|, < €| D™ | IRk 1ogt1tm! a1,
Moreover, (90) yields, for m = e,
lu ~ Rul|,, < C||D?*u]|, 1) 1og? R]~".

Further, using the estimate (80) we obtain, similar to the proof for Theorem 3.5,

= Roll, < 37 flwnlly D7 Cllullpecllfe] +¢

|k|>n |k|>n
= Cllul| e Z 2~ Ikl (1+£/d)
! k| >n

d
= Cllull e <Zj 1>F(1, 141+ d;2 + n; 27 (1H/d) g —n(146/d)

< Cllullyeclbl ™+ log™ " o). O (29)

Theorem 3.7. Let R,u be the piecewise d-linear approximation of a function u € Cj ’I(Q) on a
sparse grid on level n, as in Theorem 3.6, then, with ||h| = 27", the volume of the finest cells, we
have, for p =2, p = 0o, the estimates

[ = B,y < Cllml 10g™" HRY~ ullpe.r. ©92)

If, moreover, we know u € C?¢, then
Ju - ﬁnuum < Clh|l|| D>l (93)

Proof. Let u be sufficiently differentiable and let 0 < m < e and |rn| > 1, then:
Part 1:

d
||mek“p = HDm H(Rk — Ri_e;)u

j=1

P

d
D™ ] he, D%

Jj=1

<c?

p
< CYhll| D™ Do, (94)
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Z D™y,

[0~ R, <

|k|>n p
m nd—lg—n__
< Cd”_D +eu’lpmG(n, d)
<Cl[D™*eul| IRl log*" |h]. (95)
Part 2:
|07~ R, < | 3 D
|k|>n P
<O D] 27 (Cr27mnd M=t 4 Opplmi=1y, (96)
with C; = 0 if [m| =d, and C; =0 if [m| = 0.

Because

1/p
l|v||w,',=<“1’||£+ ) ||Dmvns) |

[m|=1,0<m<e
we consider the case |m| = 1 and we find
= By, < Cl[0%ul] In.

Together with the result of Theorem 3.6 this proves the theorem. O
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