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ABSTRACT

The numerical solution of singularly perturbed second order linear
two-point boundary value problems is studied. A method is proposed that
uses a weighted combination of the backward and forward divided difference,
such that the boundary layer behavior is represented accurately. In a
turning point region -with diameter O(s%)— an accurate approximation can
be obtained when a local mesh with h = O(e%) is applied. A maximum prin-
ciple applies to the approximate solution if it does for the exact solu-

tion. In addition,the method is easy to implement.







1. INTRODUCTION

A large number of physical problems give rise to singular perturbation
problems, i.e. differential equations in which the hiéﬁeét derivative is mul-
tiplied by a small parameter. This occurs for initial value problems as well
as for boundary value problems. In both cases the use of standard methods
for solving the differential equations is impossible or highly in-
efficient. For initial value problems this situation led to the development
of methods for the so-called stiff differential equations. For boundary
value problems much work has been done in the field of pure analysis and
often solutions can be computed in the form of an asymptotic expansion in
terms of the small parameter. A large number of interesting phenomena has
been discovered and analysed. In this place we mention the work
of Visik and Lyusternik [1957], Eckhaus and De Jager [1966] and Eckhaus
[1972] on boundary layer problems in more dimensions and the work of
O'™alley [1970] and Ackerberg and O0'Malley [1970] on boundary value prob-—
lems with a turning point in a one—dimensional domain.

In contrast with the large number of publications which appeared on
the numerical solution of stiff differential equations for initial
value problems, only a few papers on the numerical solution of singularly
perturbed boundary value problems are known to the author —although it is
expected that this is a rapidly developing field.

The purpose of this paper is to describe a finite difference method

for solving the two-point boundary value problem of the form
(1.a) ey"(x) + £(x) y' (%) - g(x) y(x) = k(x)
(1.b) y(@) =a, y() =8,

where € is a small positive parameter.

The same problem was considered by Pearson [1968]1, I1'in [1969] and
Miranker and Morreeuw [1973], and a related problem was treated by Dorr
[1970,1971]. Pearson [1968] introduced a variable net, using two-sided
differences. I1'in [1969] multiplied the small parameter ¢ by a factor v,




depending on €, f(x) and the uniform mesh spacing h. This factor vy is
chosen such that the solution of the homogeneous problem is represented
exactly. Dorr [1970] exploits the use of one-sided differences and Miranker
[1973] makes use of the known analytic properties of the solution, in par-
ticular in the neighborhood of a turning point of the differential equa-
tion.

In this paper we introduce a new method that couples most benefits of
the known methods with an utmost simplicity. The method uses the common
three-point difference approximation to y"(xi} and introduces a new three-
point difference approximation to y'(xi), which is a weighted combination
of the backward and forward divided difference. The only disadvantage seems
to be the low order of accuracy; although some may have the opinion that
low order methods are inherent to the efficient solution of this kind of

problems.

2. THE METHOD

The main difficulty in the numerical solution of singular perturbation
problems is to obtain a difference approximation that is asymptotically
correct for € - 0. It is well-known that replacing the first derivative
y'(x) by central differences is not suitable for small e/h when the second

derivative is approximated in the usual way by

_ _ 2
(2) Vg = Uiyt /0%,
Moreover, for fixed h and f(x) #0, and € +~ 0, no resemblance at all exists
between the solution of the differential equation and the solution of the
difference equation.

This difficulty can be dealt with by the use of a directional divided

difference operator [cf. Dorr, 1970]

(v;,,77;2/h if £(x;) >0,
(3) Vo = {
(yi-yi_])/h if £(x;) < 0.



Instead of this discrete choice between the forward and backward divided

difference we introduce the Weighted One~Side Differences (WOSD) method
(4) Y‘}"( = ((l+al) yi+1 - zaiyl - (I“O’ri) Yl_])/(Zh) 5

with a; € [-1,+1].
We notice that this contains the forward, the backward and the
central differences, depending on the value oﬁ the parameter a.
The parameter oy is chosen, depending on ¢, f and h, such that
1) the local maximum principle holds for the solution of the difference
equation whenever it holds for the differential equation [cf. Dorr,
Parter and Shampine, 1973];
2) the boundary layer behavior of the solution of the differential
equation is accurately represented by the solution of the difference

equation.

3. THE MAXIMUM PRINCIPLE

In order to obtain a difference approximation that satisfies the local
maximum principle [cf. Brandt, 1973] we take ay such that the (tridiagonal)

matrix (aij)’ which results from the discretization
(5) "€V ~ fyg t &y = -k, : g =0,

is of positive type [cf. Ciarlet, 1970]. This requires (definition of posi-

. . . <0and -a., .,.,—-a, .—-a, . >0
,1+1 1,i-1 1,1+1 1,1 1,1-1 ’

for all i with a < X < b, where

tive type) —a; <0, -a

. (1+ui) f(xi)

e e
81 ,i+1 2 2h ’
20.f(x.)
_ =2 _ 1 17
(6) ai’i = 2 2h g(Xi) )
h
. _ e _ (]‘Oti) f(xi) .
i,i-1 2 2h

h




In the sequel we will omit the index 1 of o, and we will write f for
f(xi).

Since g =2 0, the requirements read

2¢ + (l+a) fh =2 0
2¢ = (1-a) fh =2 0
or
(‘7) -1 < ._f_}")'_ _1_.

N2
o)

ut 1

1+a

In this way we get bounds for the parameter o depending on the value of fh/e.
We notice that the method of directional divided differences is one

particular choice of a (discontinuous) function a(fh/e) which satisfies the

maximum principle. Other choices for the function o(fh/e), such that the

maximum principle holds for the numerical solution, are e.g.

hf
tanh (-ig)

or

Q
it

2 hf
- arctan(ig).



Respectively, this is verified by

1 1
-_—_— < —
Tia arctanh(a) < =

and

-1 T 1
Tiq <t <195 -

An advantage of this kind of choice of o, as compared with the directional
divided difference of Dorr, is that for fh << e the WOSD-method approaches

the 2nd order accuracy of the central difference approximation.

4. EXPONENTIAL FITTING

The freedom left in the choice of the function o(fh/e) will be ex-
ploited to obtain a good representation of boundary layer behavior. To this
end we recall that the WKB-analysis of the homogeneous equation (1) gives
an asymptotic approximation to the solution for small €. Away from a zero

of f(x) this yields —to first order— two approximate solutions

X
(8) Y, exp{- f g(t)/£(t) dt}

X X

€)) Y, (f(x))_l exp{—-i— J fét) dt + J g(t)/£(t) dt}.

The function yl(x) represents the solution of the reduced equation

f(x) y'(x) - gx) y(x) = 0, and yz(x) describes the boundary layer behavior
(at the left-hand end for £(x) > 0 and at the right-hand end for f£(x) < 0).
For eg << f2 the first term in the exponent of Y, dominates and the bound-

ary layer behavior is approximated by

X
C exp{—% f f(t) dt}.

This suggests to choose a(fh/e) such that the solution of




(10) ey" + fy' =0

is represented exactly.
(Note that the same principle of exponential fitting is well—known in
the numerical solution of stiff initial value problems.)

Hence we take

2¢ = (1-a) fh _ exp (- fh)
2¢ + (1+a) fh P e’’?
i.e.
fhy _ _ 2 th
(11 GCEE =-F ¢t coth(zs).

This function o(z) is easily computed since it allows a Taylor series ex-

pansion around the origin

w
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(12) a(z) =§

It is readily seen that a(z) satisfies

-1 1

1+a(z) =z= 1-a(z)

(13)

and hence this choice of o satisfies the condition for preserving the

maximum principle properties.

5. THE ALGORITHM

The algorithm we propose now follows immediately. A set of nodal
points {xi}§=0, Xy = a, xg =b is chosen in advance and the differential

equation is replaced by the linear system

+a, . y. + a

3,01 Yier T35 Vi 3y g Vi T RO, L2, N

with



+

. _ 2 . f(xi) (1 ai)

i,i+1 (h+k)h 2h ’
a - 2¢ _ f(Xi) (1.—0‘1)

i,i-1 (h+k)k 2k ’

(14) 3,1 T80 Tay Ly Ta s
h+k) f(x.

o. = coth <( ) (Xl) - be

1 b4e (h+k) f(xi) ?
h = X - X and k=x.-x. ..

The discrete maximum principle is also satisfied for the non-uniform net.
However, for a correct representation of the boundary layer, a uniform
mesh is required Zocally; i.e. where the boundary layer is significant,

the small region has to be covered by a (coarse or fine) uniform net.

6. ACCURACY IN THE TURNING POINT REGIONS

It is clear that, for o # 0, the method is only a first order method,
i.e. the discretization error is O(h). From O'Malley [1970] we know that in
the common case of a turning point X, (f(xo) = 0, f'(xo) # 0, —g(xo)/f'(xo)
is not a positive integer) the turning point region is O(ve). In this
region a rapid change of the solutioﬂ may be expected. It is therefore
reasonable that, for approximation of the solution in this region, we take
locally h = 0(Ye) but h small compared with /Ve.

Since f(xo) = 0 and f'(xo) # 0 we also have f(x) = 0(/e). Hence
fh

2¢
method approaches to the method with central differences which is second

= 0(l1) and small as compared with 1. This implies o as%%-and the WOSD-

order. Thus a reasonable good approximation of the solution in the turning

point region can be obtained by using a local mesh 0(ve).



7. NUMERICAL RESULTS

In this last section we characterize the errors, which arise when our

method is applied to a number of model problems. All computations discussed

in this section were performed on a CDC CYBER 73/28 computer.

7.1. Global accuracy

First we give two examples to show that the global accurary of the
method is first order for large hf/e and second order for small hf/e. To
this end we plot the logarithm of the error, e = m?x Iy(xi) - yil, versus
the logarithm of the mesh width h.

We take two examples also given by Miranker and Morreeuw [1973].

Example 1. (see fig. 1)

Differential equation

(15)

ey" + x| ¥y -y = -(l+v2€) cos(mx) - m|x| sin(mx); xe[-1,+11
Exact solution

y = cos(mx).

10“3 T ~log e

10 -+ /

-log h
——t—t—t—

8 16 32 64 128256

Figure 1: Example 1: ¢

N
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10 7. -log (e) versus -log(h).




Example 2. (see fig., 2)

Differential equation

(16) v+ x|y -y = 12ex? + 4|x| x> - x4

Exact solution

y =x.

From fig. 2 it can be seen that the method approaches second order accuracy

for small values of fh/e.

10--3 + -log e J e

e 7,
2
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Figure 2: Example 2: ¢ = 10 , ¢ = 10 ", —log(e) versus -log(h).

7.2. Accuracy in the turning point region

Here we take the following differential equation as an example

(17) ey" + xy' =0, xe[-1,+1].

Exact solution

) xe[-1,+1].




10
y(x) = 1.5 + 0.5 erf(x/v2¢).

For small values of ¢, a coarse mesh ignores the internal boundary layer
at x = 0. This may flatter the results when mfx Iy(xi) - yil is taken as a
measure for the quality of the approximation to y(x). For an accurate des-—
cription of y(x) we need a local refinement of the mesh in the turning
point region. Here, for computational purposes, we take this region

(=47, 4Ve) .

In the experiments we take an (equidistaﬁt) mesh for [-1,-4vVe] and
[4/c,+1] and we take a finer (equidistant)mesh on (-4/e,4/e).

In the tables 1, 2 and 3 we give for resp. € = 109~2,10"4,10—8 the
values of e = mﬁx [y(xi) - yi[ for 2xml mesh intervals outside and m2 mesh
intervals inside the turning point region. In the tables we denote 2.567¢-3
by 2.56(-3).

In figure 3 the logarithm of the mesh width in the turning point re-
gion is plotted versus —1ln(e) for the case € = 19—8. The direction of the

straight line clearly shows the second order accuracy.

~log e .

-log h

) ! ! ] }
T l L{ i

L

1 T
10*1 | 4 8 16 32 6417 nodal points in
turning point region

Figure 3: 10—8 y'+ xy' =0, x € [~1,+41], y(-1) =1, y(1) = 2.
log(e) versus log(h).
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m2 4 8 16 32 64 128
ml
3 1.38(=2) | 1.07(=2) | 2.57(=3) | 6.50(=4) | 1.76(=4) | 5.85(-5)
6 1.37(=2) 2.56(=3) | 6.41(=4) | 1.67(-4) | 4.88(-5)
12 g 6.35(=4) | 1.60(=4) | 4.22(-5)
24 2.56(-3) | 6.32(=4) | 1.58(=4) | 4.01(-5)
48 1.37(-2) | 1.07(-2) | 2.55(-3) | 6.32(=4) | 1.58(=4) | 3.94(-5)
Table 1: max |y(xi) - yil for e = 10-2.
i
m2 4 8 16 32 64 128
ml
3 1.38(=2) | 1.07(=2) | 2.58(=3) | 6.53(=4) | 1.79(-4) | 6.23(-5)
6 E
12 6.23(-5)
24 = Y ’( 6.21(-5)
48 1.38(-2) | 1.07(-2) | 2.57(=3) | 6.50(=4) | 1.76(-4) | 5.85(-5)
Table 2: max Iy(xi) - yil for € = 19-4.
i
m2 4 8 16 32 64 128
ml
3 1.38(-2) | 1.07(-2) | 2.58(=3) | 6.53(~4) | 1.79(=4) | 6.23(~5)
6
12
24
48 1.38(=2) | 1.07(-2) | 2.58(=3) | 6.53(=4) | 1.79(-4) | 6.23(=5)
Table 3: max ]y(xi) - yil for € = 1p-8.
i
m2 4 8 16 32 64 128
ml
3 11 15 23 39 71 135
6 17 21 29 45 77 141
12 29 33 41 57 89 153
24 53 57 65 81 113 177
48 101 105 113 129 161 225

Table 4: The total number of meshpoints (2*ml+m2+1).
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7.3. Some other turning point problems

Here we consider the differential equation

(18) ey" + axy' - by = 0 . x € [~1,+1]1, y(=1) = 1, y(+1) = 2,
with constant coefficients, a =1, b > 0 and 0 < € << 1. It is clear from
theoretical considerations (as it is,in fact, from the numerical experiment),
that the algorithm gives excellent approximation for a = -1. More inter-
esting are examples with a = +1.

We denote by y*(x) the asymptotic solution for € - 0 of equation (18)

with a = +1. Outside the turning point region this solution reads

. lxlb for x < 0
(19) y (x) ={ b
2| x| for x > 0,
in addition
* b/2
(20) y*(0) = 0> ?).

In table 4 we give (for b = 0.5, 1, 1.0001 and 2) the values of

*
e = max (x.) = y.| for different values of ¢; m2 mesh intervals
A 776 = :

were taken inside the turning point region (=4/e,+4Y€) and ml mesh inter-

vals at each side, outside the turning point region.



ml = 64, m2 = 32 ml = 32, m2 = 16
b €
e y(0) e y(0)
.5 1.(-1) 1.04(-2) 7.00(-1) 3.17(-3) 6.91(-1)
1.(-2) 9.18(-3) 3.89(-1) 9.65(-3) 3.85 -1)
1.(-3) 9.86(-3) 2.17(-1) 1.70(-2) 2.13(-1)
1.(-4) 1.76 (-2) 1.18(-1) 3.37(-2) 1.12(-1)
1.(-6) 4.01(-2) 2.68(-2) | 5.74(-2) 2.12(-2)
1.(-8) 2.90(-2) 3.40(-3) 3.87(-2) 2.43(-3)
1. 1.(-1) 2.48(-4) 3.77(-1) 2.46(-4) 3.74(-1)
1.(-2) 2.12(-6) 1.19(-1) 2.06(-6) 1.18(-1)
1.(-3) 5.90(-7) 3.77(-2) 4.00(-7) 3.75(-2)
1.(=4) 5.44(-8) 1.19(-2) 4.22(-9) 1.18(-2)
1.(-6) 4.97(-14) 1.19(-3) 2.84(-14) 1.18(-3)
1.(-8) 4,26(-14) 1.19(-4) 1.42(-14) 1.18(-4)
1.0001 1.(-1) 2.52(-4) 3.77(-1) 2.46(-4) 3.74(-1)
1.(-2) 4.35(-6) 1.19(-1) 4.41(-6) 1.18(-1)
1.(=3) 1.96(-6) 3.77(-2) 2.75(-6) 3.74(-2)
1.(=4) 1.41(-6) 1.19(-2) 2.58(-6) 1.18(-2)
1.(-6) 1.40(-6) 1.19(-3) 2.26(-6) 1.18(-3)
1.(-8) 1.40(-6) 1.19(-4) 2.67(-6) 1.18(-4)
2. 1.(-1) 5.72(-2) 1.40(-1) 8.89(-2) 1.48(-1)
1.(-2) 1.69(-2) 1.50(-2) 1.79(-2) 1.53(-2)
1.(-3) 6.74(-3) 1.57(-3) 1.33(-2) 1.72(-3)
1.(-4) 7.39(-3) 1.93(-4) 1.46(-2) 2.46(-4)
1.(-6) 7.66(-3) 6.84(-6) 1.51(-2) 1.23(-5)
1.(-8) 7.69(-3) 5.60(-7) 1.51(-2) 1.11(~-6)

Table

13
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In figure 4 we show the computed value of -log(y(0)) plotted against
—-log(e). This shows that the asymptotic relation (20) is realized numer-
ically for values € > jp=4. For b = 1 (i.e. the case where the asymptotic
solution outside the turning point region is linear) relation (20) is

satisfied exactly even for g << 10—4. (Data used from table 4.)

1
- Olog y(0)
b = 2.0
7 -4
6 1
5 1
4 + b=1.0
3 4
2 4
ST s
1+ /
.//
/3/, P S S E——
1 2 3 4 5 6 7 8 -lolog €

Figure 4: The computed value .of y(0) as a function of e.
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