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Steady Euler Equations
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In this paper we describe 1st and 2nd order finite volume schemes for the solution of the steady
Euler equations for inviscid flow. The solution for the first order scheme can be efficiently computed
by a FAS multigrid procedure. Second order accurate approximations are obtained by linear interpo-
lation in the flux- or the state space. The corresponding discrete system is solved (up to truncation
error) by defect correction iteration. An initial estimate for the 2nd order solution is computed by
Richardson extrapolation. Examples of computed approximations are given, with emphasis on the
effect for the different possible discontinuities in the solution.
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1. INTRODUCTION

As soon as viscosity and heat conduction are neglected, the flow of a gas is described by the Euler
equations. In two dimensions these equations are given by

9 3 3 ) =
ot e /@t 5 8@ =0, (1.1

with

o g pv
= |PU = |pu TP = pyu 1, .
q pv ’ f puv ’ g pvzl_.;P (1 2)
pe puH pv.

where p , u , v, e and p respectively represent density, velocity in x- and y- direction, specific energy
and pressure; H=e+p /p is the specific enthalpy. The pressure is obtained from the equation of
state, which - for a perfect gas - reads

1
p=G—Dple—5w?+v?),
v is the ratio of specific heats. ¢(z,x,y) describes the state of the gas as a function of time and space

and f and g are the flux in the x- and y- direction. We denote the open domain of definition of (1.1)
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by Q" .

It is well known that solutions of the nonlinear equations (1.1) may develop discontin.uit_ies,.even if
the initial flow (r=1,) is smooth. To allow discontinuous solutions, (1.1) is rewritten in its integral
form

%j[qa¢y+ [(fne +gn)ds = 0, for all QCQ" ; (1.3)
Q 1]

9Q is the boundary of @ and (n,,n,) is the outward normal vector at the boundary 0%2. .
The form (1.3) of equation (1.1) shows clearly the character of the system of conservation laws: the
increase of g in © can be caused only by the inflow of g over Q. In symbolic form we write (1.1) as

g9 + N(g) =0 (1.4)

In the numerical computations we are only interested in the solution of the steady state Euler equa-
tions

N(g) =0 (1.5)

The solution of the weak form (1.3) of (1.1) is known to be non-unique and a physically realistic
solution (which is the limit of a flow with vanishing viscosity) is known to satisfy the additional
entropy condition (cf. [15,16]). Further, the equation (1.1) is hyperbolic, i.e. written in the form

8 . Of B3¢ , 8g Bg _
ot dg ox dg dy
the matrix

of 4

has real eigenvalues for all (k,k5).
These eigenvalues are (k,u+k,v)=c and (k,u+k;,v) (a double eigenvalue); ¢ = Vyp /p is the
local speed of sound. The sign of the eigenvalues determines the direction in which the information
about the solution is carried along the line (k;,k;) as time develops (the direction of the characteris-

tics). It locates the domain of dependence. The entropy condition implies that characteristics do not
emerge at a discontinuity in the flow.

2. THE BASIC DISCRETIZATION

In order to discretize eq. (1.1) on a domain with an irregular grid, there are two ways to proceed.
First, a mapping can be defined from the physical domain to a computational domain, so that the
irregular grid in the physical domain corresponds to a regular grid in the computational domain. By
means of this transformation the equation and the boundary conditions are reformulated for the com-
putational domain, where they will contain metric information about the mapping. Now an (arbi-
trarily accurate) discretization of the transformed equations can be used on the regular grid to solve
the original problem.

A second approach (a finite volume technique) is to divide the domain of definition in the physical
space into a number of disjunct cells (£,} and to require the equation (1.3) to hold on each |, .
In this way the essential global property of the flow -the conservation character- is easily preserved as
long as we take care that for any two neighboring cells £, and Qg with [',p = 9, |_J 32 , the same
approximation is used for the flow quantities f f-ne + gn, ds, both for the outflow of §, and for the

r
inflow of g . In that case (1.3) will hold for :ny 2 which is the union of an arbitrary subset of {,}.
In this approach there is no need to transform the equations (1.1) or the boundary conditions.
We found it most convenient to use this finite volume technique and to divide the domain " in
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quadrilateral cells £; in a way that is topologically equivalent with a regular division in squares (i.e.
§;+1,j+1 are the only possible neighbors of £;; ).

In order to define subsequent refinements of the irregular mesh and to define a meaningful order of
accuracy for our schemes on these non-uniform grids, we introduce a mapping from a ”computational
domain” divided into regular squares, to the physical domain ©°. We assume this mapping to be
non-singular (i.e. with a non-vanishing Jacobian J on 2) and sufficiently smooth (bounded partial
derivatives of J).

The discrete approximation q(t x,y) to q(t,x,y) is represented by the values g;; for each Q;;, where
g;; represents the mean value of g over Q;

J faxy) ax dy
Qy
s . 2.1
% meas(£;;) @D
The space discretization method is now completely determined by the way of approximating
f (fne +gm)ds, k = 12,34, 22)

at the four walls of the quadrilateral cell £;;. The wall T;; may be either a common boundary with
another cell £;; or a part of the boundary 082". In the first case we have to take into account the
requirement of conservation of g. To satisfy this requirement we compute the approximation of (2.2)
as .

F*(gk.qfx) - meas(Ty), (2.3)

ie. we approximate fn, + &y by a constant value at I';j;, which depends only on q,,, a uniform (con-
stant) approximation to g(t,x,y) in Q; at the wall T, and on q,Jk, a similar approximation to
q(t,x,y) in Q,jk at I'j. (Notice that q(, x,y) is not assumed to be continuous over I'jz ) |
The semi-discretization of the equations (1.4) is now

> f4(gF.q5) meas(Tix)

9 - _ o k=1234 ,
31 G |i,j = Ni(gn) ll,j : meas(ﬂ,-j) 2.4)
and the steady discrete equations Ny(g;) = O are equivalent with
S fA(ghqhk) - meas(Ty) = 0, for all Q; CQ". @2.5)
k=1,2,3,4

The approximate flux function f*(q,l,q,Jk) depends on the direction (nx,n" ), of the side I';;. How-
ever, by the rotation invariance of the Euler equations, we may relate f¥(.’, . ) to a local coordinate
system (rotated such that it is aligned with I';;). Hence, only a single function fC.,.), the numeri-
cal flux function, is needed to approximate the flux between two cells (cf.[9,10]):

)=, i rk=1,n=0. (2.6)

In this way the freedom i m the apprommanon of (2.3) is in the choice of a numerical flux function
and in the computation of g% ;j and q% ik from {g;;|Q; CQ"}. We shall first consider two elementarz pos-
sibilities for the choice of a numerical flux function. Then we describe the computation of {g;;} for
the first order scheme. In the next section we shall consider second order schemes, generated by
other computations of {¢5} or f* .

For consistency of the resulting scheme, f(.,.) should satisfy f(q,9) = f(g), cf. [7]. A usual
representation of f( . , . ) is given by

f(qoq1) = %f(qo) + %f(ql) - {" d(q0,91), 2.7
with d(g0,91) = O(| |91 — qo | |)-
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The central difference flux is defined by d(ge,q1) = 0 . For an upwind numerical flux functions we
have ([7]),

(g1 —q0) + o(l1q1 — g0l ) 2.8)

9 ot ¢y
d(qo.q1) = o [L‘——

dg 2

For reasons explained in [10], we prefer to use a slight modification of a numerical flux function that
was proposed by Osher [19,21]. We take

q
d(qo.q1) = | |§§ |(w) dw , (2.9)
Q0

where the integration path in the state space follows three sub-paths along the eigenspaces of 3f / 9g.
These sub-paths correspond to the eigenvalues \; = u —¢, A= A3= u, and Ay = u +c respectively.

In the case that I;; C3Q’ , interpolation from the interior of Q" yields a value gl which
corresponds to the mean value of g; at T in &

[at,x,y) ds

N o Tw
vk meas(rijk)

For well posed boundary conditions B(g) = 0 at I , a value g3f7 can be determined such that

F@G%.qlD = @, (2.10a)
and
B(g¥T)=0 (2.10b)

is satisfied at a point on [y . In [10] we showed how g7 is connected with g} with respect to the
outgoing characteristics; the incoming characteristic information is taken from the boundary condi-
tions. This corresponds with the use of Riemann invariants to derive non-reflecting numerical boun-
dary conditions.

In our first order scheme we use a piecewise constant numerical approximation for g:

g(x,y) = gy for (x,y)ey;. (2.11a)
This uniform state in {;; is assumed for all (i,j), and hence
Fahal) = f(qiqin) - (2.11b)

The flux at I';; now corresponds with the flux at a discontinuity between two uniform states. Such a
flux can be computed by solving the Riemann problem of gasdynamics. However, this is a nontrivial
nonlinear computation, and we approximate it by (2.7) , (2.9), cf.[10], which is a slight variant of
Osher’s “approximate Riemann solver”.

The order of accuracy of the resulting schemes on the nonuniform mesh is not immediate. It can
be proved that in general (at most) second order accuracy can be obtained when qf},qf&k are computed
properly. We shall give here the principles along which these accuracy results are derived. For the
detailed proof see [23].

The relation between equation (1.1) and (2.4) can be described by the following diagram



R, R,
Ny
X > Y,

where X (X3) and Y (Y,) are the continuous (discrete) spaces of state and change-of-state respec-
tively: geX, g,€X, N(Q)eY, Ny(qgr)€Y, . _

To compute the order of consistency, we introduce the restrictions R, and Rj, as well as the
parametrization & — 0 for the mesh refinement.
For a given parameter value 2 >0, and an arbitrary ge X we define

§+hn+h
(2h)2 ) f f‘](x(g,"l),}’(f,’n)) d§ dn - (212)
E~hn—h

Here x (§,n) and y(§,m) describe the mapping between the computational (£,m)-domain and the physi-
cal (x,y)-domain, such that

( x(2hi==h,2hj=h) , y(2hi==h,2hj=h)) (2.13)

denote the vertices of the cell {; in the physical space. We consider the order of consistency for the
discretization on the irregular grid, assuming that the mesh refines corresponding to & —0 in (2.13),
and that the mapping (§,7)—(x,y) is independent of h. Moreover, we require the Jacobian
J(&mn) = xgyy — X4y¢ DOt to vanish and to be smooth enough, i.e. [J(¢n)| = C,>0, and

[

A mean value of q in {; is now given by g(2hi, 2hj). In this way a restriction operator R,: g — gy, is
defined.
Notice that the assumptions on the Jacobian imply

q¢n) =

m

JEM | < C2UEM-

[[a ax &

= Gk, 2h) (1 + &) @2.14)
f j dx dy
Q;

The restriction R;,: Y— 7, is simply defined by

— 1

Ryr),; = — - dxdy . 2.15

( hr):,j (2}1)2 fﬂ{f Xdy ( )

Now the truncation error for g X is defined as

Ny (Rwq) — Ry N(q) = 74(q), (2.16)

and for a smooth function ¢ we can determine the order of consistency. It can be shown that the
order of consistency is 1 if eq.(2.11) holds. We denote this first order semi-discretization (2.4) - (2.11)
in symbolic form by

(gn) + Ni(gn) = 0. (2.17)

Note: In the actual computations each discrete equation at the h-level is multiplied by a factor (2h ).
This can be seen as discretization of the integral form (1.3) rather than of the differential form (1.1).
The advantage is a simpler implementation.



3. SECOND ORDER SCHEMES

The first order discretization discussed in section 2 has a numaber of advantages: it is conservative,
satisfies an entropy condition, is monotonous and gives a sharp representation of discontinuities
(shocks and contact discontinuities), as long as these are aligned with the mesh. Further it allows an
efficient solution of the discrete equations by a multigrid method [9]. Disadvantages are: the low
order of accuracy (many points are required to find an accurate representation of a smooth solution)
and the fact that it is highly diffusive for oblique discontinuities (the discontinuities are smeared out
over a large number of cells). For a first order (upwind) scheme these are well known facts (cf. e.g.
[8]) and it leads to the search for higher order methods.

A key property of the discretization, that we want to maintain in a 2nd order scheme, is the conser-
vation of g, because it allows discontinuities to be captured as weak solutions of (1.1) and avoids the
necessity of a shock fitting technique. Therefore, we consider only schemes that are still based on
(2.4), and we select f*(g¥,q}%) that yield a better approximation to (2.2) than (2.11b).

The higher order schemes can be obtained in two different ways. Higher order interpolation (or
extrapolation) is used either for the states (i.e. in Xj) or for the fluxes (i.e. in Yj,). The first approach
is used e.g. in [1,4,28], the second in [20,24]. In the first case, in (2.5) qf‘- and qf}k are obtained by
some interpolation from ¢, = {g;}. In the latter, _f"(qf},q,-jk) is obtained from
(a0} U/ @)

From the point of view of finite volume discretization, a straightforward way to form a more accu-
rate approximation is to replace the 1st order approximation (2.11) by a 2nd order one. Instead of
the piecewise constant g(x,y), we may consider a piecewise bilinear function g(x,y) on a set of 2X2
cells (a ”superbox”). Such a superbox on the h-level corresponds with a single cell at the 2h-level.
Over the boundaries of the superbox g(x,y) can be discontinuous; in the superbox g(x,y) is deter-
mined by g, gi+1,j, ¢ij+1 and gi+1,+1 as defined by (2.1). Using such a bilinear function, we see
that the central difference approximation is used for flux computations inside the superboxes; at
superbox boundaries interpolation is made from the left and the right and the approximate Riemann
solver is used to compute the flux. We denote the corresponding discrete operator by Nj. It is easily
shown that this superbox scheme is 2nd order accurate in the sense that

R (NS (Rug) — RyN(q)) = O(h?) .

Instead of the finite volume superbox scheme, we can also adopt a finite difference approach. In
the case of interpolation of states, interpolation from the left (right) can be used to obtain a value q{;k
( qf;-k ) at the left (right) side of all walls Tijk- In the case of interpolation of fluxes, it may be neces-
sary to split flux-differences in positive and negative (right- and left- going) parts.

In both cases the simplest 2nd order schemes are central differencing schemes. Here the interpola-
tion is done irrespective of a particular characteristic direction. Central differencing in the Xj-space
yields f(q0,91) = f (g0 + lql) /2) fO{ the numerical flux function (2.6). By central differencing in
Y, we obtain f(q0,91) = 5f(q0) + 5f(q1)- In contrast with the first order schemes, the central

difference schemes are under-diffusive, which may lead to instabilities. An uncoupling of odd and
even points may occur and spurious oscillations may appear in the solution. When these schemes are
used alone, an artificial additional diffusion (dissipation) term is added to stabilize the solution
[11,22].

To improve the stability behavior, both for the Xj- and for the Y,-interpolation, it is better to take
into account the domain of dependence of the solution (the direction of the characteristics) and to
distinguish between interpolation from the left and from the right of a cell wall. For simplicity of
notation we shall exemplify this only for the 1-D case. Generalization to 2-D is straightforward.

In 1-D, eq.(2.4) reduces to

Jiet — fi-+
Nulgh = ——V—> G

i+ T O Xi-1



where f;11 = flgFs + R L)

Interpolation in X,
At a cell wall x;1,,, we distinguish between the interpolated values from the left, ¢, 5, and

from the right, qﬁ. 172- We define Ag; 4, /2 = gi+1 — ¢; and find the 2nd order upwind interpolated
values

1
givt =g+ 5 Ag-L, (3.2)
1
qﬁ% =gi+1 — 7 Agiiz.

The stability properties of these one-sided approximations are better than for central approxima-
tions, but monotonicity is not preserved (see section 5). The usual way to force the monotonicity is to
introduce a limiting function ¢, 0<¢<<2 and to interpolate by

1

givt =g+ 7ol Ag 1 (3.3)
1

gt =g — 7L Agyl,

where ¢ and ¢ are chosen depending on {Agi=L} such that gf_; /, lies between ¢;_; and g;, and
ng-{-l/Z between qi and gi+1 (Cf [1,26]).

Van Leer [28] also introduces a linear combination of the one-sided and central interpolation.
Parametrized by x we obtain

1
ghet =g+ % [A-08g_1 + (14004 ], (34)
1
gL =g — 7 [(I—K)A4i+§ + (1+K)Aq.~-%].
This formula contains: (k = —1) the one-sided 2nd order scheme, (x = %) a "3rd order” upwind

biased scheme, and (k = 1) the central difference scheme. (Notice that the ”3rd order” scheme is 3rd
order consistent in a 1-D situation; in 2-D the scheme is still 2nd order accurate.) We use (2.4) -
(3.4) for the construction of a 2nd order discretization of (1.4)

(@) + Ni(gs) = 0. (3.5)

In 1-D the superbox scheme corresponds to the use of k= +1 for odd i, and k= —1 for even i.

The interpolation (3.4) is well defined in the interior cells of the domain. In the cells near the
boundary 32, one of the values Ag,+, /, is not defined, by the absence of a value g; corresponding to
a point outside 2". Here a different approximation should be used. In our computations we set
Ag; + 1,2 = Ag; — 1 /2 at the cell & near the boundary. This corresponds with the ”superbox”
approximation for these cells. For the superbox scheme and for the scheme (3.4), with different
values of k, we show some results in section 5.

Interpolation in Y,

To take into account the domain of dependence (the direction of the characteristics), we here distin-

guish between flux differences in the positive and in the negative direction. We define

Affi L = —f(@gigi+1) + f(Gi+1) (3.6)
Afiv+ = +/@Gngi+1) — flg)

It is easily seen that
f@iv) — flg) = AL + AfieL

and



f@ngivr) = flgi-1,9) = Af-1 + Afir .

Further, the numerical flux has been constructed such that
Aﬁ+—;— / Bgil =0, (3.7
Afivt / Bgisl <O

For vectors f and ¢ we mean by (3.7) that the matrices of partial derivatives have real non-negative
(non-positive) eigenvalues. Hence, Aﬁ}% (or Afiy+L ) corresponds to information going to the right

(left).

A 2nd order upwind scheme is now constructed as

1 1
ﬂ"+% = g gie1) T 7 Afit% — Z4fiv2 (3.3
Notice that with this notation central differencing is written as
1 1
ﬂ"+% = fAgingi+1) + 7 Aﬁ+% - 2Afiv L. (3.9)

Also here a linear combination of (3.8) and (3.9) is easily realized and flux limiting functions can be
introduced to maintain monotonicity of the solution as for (3.3) [20].

4. DEFECT CORRECTION ITERATION

The 2nd order space discretization of the timedependent equations (1.4) yields a semi-discretization
(3.5). The usual way to find the solution of the steady state equations

Ni(gn) =0, 4.1

is to take an initial guess and to solve (3.5) for r—o0, i.e. to compute ¢,(r) until initial disturbances
have sufficiently died out. The advantage is that, starting with a physically meaningful situation, we
may expect that a meaningful steady state will be reached, even when unicity of the steady equations
is not guaranteed. The drawback is that many timesteps may be necessary before the solution has
sufficiently converged. For the acceleration of the convergence, many devices have been developed
such as local time stepping, residual smoothing, implicit residual averaging or enthalpy damping [22].

Multigrid is also used as an acceleration device [14,18,22]. Here discretizations (3.5) are given on a
sequence of grids. The coarse grids are used to move low frequency disturbances rapidly out of the
domain Q" by large timesteps, whereas high frequency disturbances should be locally damped on the
fine grids, e.g. by a sufficiently dissipative timestepping procedure.

We take another approach [9,10,12,13,17], and consider directly the steady state equations. By the
stability of the first order discretization, a relatively simple relaxation method (Collective Symmetric
Gauss Seidel iteration, i.e. a SGS relaxation where the 4 variables corresponding to a single cell Q;;
are relaxed collectively) is able to reduce the high frequency error components efficiently, and
-therefore- a FAS-algorithm with this relaxation is well suited to solve the discrete first order equa-
tions.

Although no explicit artificial viscosity is added to the scheme, a suitable amount of “numerical
diffusivity” is automatically introduced by the upwind discretization. As h—0, this “artificial
diffusion” vanishes and the sequence of discretizations converges to the Euler equations as the limit of
an equation with vanishing viscosity.

Another advantage of the introduction of this “artificial viscosity” just by the use of the upwind
scheme is that the coarser discretizations, including their larger amount of “numerical viscosity”, are
now Galerkin approximations to the corresponding finer grid discretizations. Hence coarse and fine
discretizations are relatively consistent. (For a discussion of related problems when multigrid is
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applied to the convection diffusion equation and various amounts of artificial viscosity are used on
the different grids cf [30].)

When we try to solve the 2nd order discretization (4.1) in the same manner as we do the first order
equations, we may expect difficulties for two reasons. First, the set of 4 equations to be solved at
each cell &; in the Collective SGS relaxation is much more complex . The set up of these equations
would increase the amount of computational work considerably. Secondly, the nonlinear equations
(4.1) are less stable. The 2nd order discretizations are less diffusive, and in the case of central
differences clearly ”anti-diffusive”. This may lead not only to non-monotonous solutions, but it also
can cause a Gauss Seidel relaxation not to reduce sufficiently the rapidly varying error components.

A local mode analysis of smoothing properties of GS for 1st and 2nd order upwind Euler discreti-
zations can be found in [12]. There, the flux splitting upwind scheme of Steger and Warming[25] is
analyzed, whereas we apply Osher’s scheme [19,21]. Numerical evidence that convergence for the
relaxation process of a 2nd order upwind procedure is slower than for a Ist order scheme, is also
found in [17,29]. Here van Leer’s flux splitting scheme [27] was used.

To obtain 2nd order accurate solutions, we do not try to solve the system N7(g,) = O as such. We
use the first order operator Nj to find the higher order accurate approximation in a defect correction
iteration:

Nigi) =0, (4.22)
N *D) = Ni(g) — NH(gi). (4.2b)

For an introduction to the defect correction principle see [2]. It is well known [6] that -if the problem
is smooth enough- the accuracy of gf? is of order 2 for i=>2. If the solution is not smooth (higher
order derivatives are dominating) there is no clear reason to expect the solution of (4.1) to be more
accurate than the solution of (4.2a). Nevertheless, in section 5 evidence is given that a few defect
correction steps may improve the solution considerably.

In fact we may use gf *V — gf) as an error indicator. In the smooth parts of the solution
g — gt = oh), g — gD = &(h?); where these differences are larger, e.g. O(1), the solution
is not smooth (relative to the the grid used). Then grid adaptation is to be considered rather than the
choice of a higher order method, if a more accurate solution is wanted.

In a multigrid environment, where solutions on more grids are available, we should -of course- also
consider other approaches to compute higher order solutions, such as
(1) Richardson extrapolation,

(2) T-extrapolation, or
(3) Brandt’s double discretization.

The two extrapolation methods can be well used to find a more accurate solution if the solution is
smooth indeed. Then no additional difference scheme (4.1) is required . A drawback is that these
methods rely on the existence of an asymptotic expansion of the (truncation) error for A—0, and
-globally- no a-priori information about the validity of this assumption is available. Another disad-
vantage is that the accurate solution (for Richardson extrapolation) or the estimate for the truncation
error (T-extrapolation) is obtained at the one-but-finest level and no high resolution of local
phenomena is obtained. Whereas we want not only a high order of accuracy, but also an accurate
representation of possible discontinuities, we use Richardson extrapolation (only) as a possibility to
find a higher order initial estimate for the iteration process (4.2b).

Since the evaluation of N}(gy) is hardly more expensive than the evaluation of N}(gy), the costs to
compute the defect in (4.2b) is of the same order as the evaluation of the relative truncation error
Tun(qn) = Nop(Ropnqn) — RopuN}(gy). This makes us to prefer (4.2b) to m-extrapolation.

Having both a 1st and a 2nd order discrete operator at our disposal, Brandt’s double discretization
[3] seems another efficient way to find a 2nd order accurate solution. However, we have bad experi-
ence in applying it to the Euler equations. In particular when solving (contact) discontinuities. Using
the Collective SGS relaxation and a 2nd order scheme based on (3.4), we experienced serious prob-
lems in the computation of the numerical fluxes (2.11b), caused by virtual cavitation of the flow. Our
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explanation is the following. In Brandt’s double dlscretlzatmn each iteration cycle consists of a
smoothing steg towards the solution of N,,(q,,) = r}, and a coarse grid correction step towards the
solution of N#(gy) = r#. If a discontinuity in the solution is present, the differences between the
results after the first and the second half-step may be con51derable In our case these differences
resulted in such large differences in values for q{j and q,,k, that the numerical flux j*(q,j,z,,k) could
not properly be evaluated. (The solution of the Riemann problem with the two states gj and gl
shows cavitation.) The responsibility for this problem lies in part on the type of relaxation used: for
the non-elliptic Euler equations CSGS-relaxation is not a pure local smoothing procedure. However,
we did not succeed in finding a local smoothing procedure that was satisfactory for the Euler equa-
tions. E.g. experimentation with a damped collective Jacobi relaxation was not successful.

The Full Multi Grid algorithm

We aim at the approximate solution g, of the Euler equations for a given mesh and we assume that
also L coarser meshes exist. We denote the level of refinement by m and the approximate solution at
level m by g¢ny = qy¢-m,. The coarser grids, m <<L, are not only used for the realization of FAS-
iteration steps as described in [9,10], but also for the construction of the initial estimate for the itera-
tion process. The algorithm used to obtain the initial estimate and further iterands in the defect
correction process is as follows:

) start with an approximation for g q,;

(1 form:=0(1)L—1do

@ begin

(1.2) fori:=1 (1) K 40 FAS (N{m) g(my = 0 );
(L.b) Gon+1y = Pl im Gomys

8] end;

) m:= L;

0)) fori:= 1(1) k; do FAS (N(,,,) gm = 0);

3) gmy = Q(m) + PS ot (R 1 m Gmy = Gm—1));
“) ford := 1 (1) deps do

8] begin

(4.2) Pemy 2= Nl (Gemy) — N (m)(q(m))

4.b) fori:= 1(1) kd do FAS (N(m) gomy = F'em) )
© end;

Step (1) is an FMG process to obtain a Ist order accurate initial estimate at level L. The prolonga-
tion P,,,H m 1S a linear interpolation procedure and, hence, accurate enough to retain the 1st order
accuracy on the finer mesh. Asymptotically, the discretization error for g,y is bounded by
Chimy = 0L ~™h) for hy=h—0. Now a snnEle analysis shows that, for a fixed k, = k at all
levels, the iteration error at level m is = Chyys" /(1 — 25%), where s is an upper bound for the
FAS-convergence factor. Therefore, to obtain a Ist order accurate solution, for iteration (1.a) it is not
necessary to reduce the iteration error in g, by a factor much smaller than s¥ &~ 1 /3. This means
that a single FAS step as described in [9,10] may be sufficient. Not being sure about the validity of
the asymptotlc assumption, we set k, =2, m=12,...L. Step (2) is the FAS-iteration to obtain the
solution to Nj(gx) = O up to truncation error accuracy.

Step (3) is a Richardson extrapolanon step to find a 2nd order initial estimate for g,. The prolonga-
tion P,,,,,l , and the restriction RY, _ ,m are piecewise bilinear mterpolatlon over superboxes and
averagmg over cells, respectively, so that RS, _ 1mPom—1 = I,_, is the identity, and P3, ,, _; R, —Lm
1s a projection operator. With the asymptotic expansion for the error in g as

gy = Ryqg + hPRye + OhP Ty, (4.3)
where g is the exact solution, we obtain for p=1 the 2nd order extrapolation

thé =2 RZh,hqh ~ 4 + @(hz) (44)
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We find the extrapolated value of ¢, in (3) as the sum of (44) and
(In — Pom—1R%—1.m)qn € Ker(Ry). We notice that formally the approximation of g after stage
(3) is still O(k), unless g¢ -1y is an (k%) approximation, and stage (2) can reduce the (smooth) error
component Rye by a factor O(h). Nevertheless, we see in practice that already for small values of
kn, m=1,2,...,L, the Richardson extrapolation can reduce the error significantly.

Step (4) is the defect correction iteration (4.2b). If the defect correction iteration starts with a lIst
order initial approximation, for 2nd order accuracy it is sufficient to take dcps=1. This necessitates
an improvement of the error by a factor O(h) in the iteration (4.b), i.e. we need kd = O(log(h)).
However, since the FAS iteration step is the expensive part of the computation in (4), for most pur-
poses we take kd=1 and a sufficiently large number for dcps.

5. NUMERICAL RESULTS

To see the effect of the various different 2nd order schemes and their combination with (a few
steps) in the defect correction iteration (4.2), we consider three model problems. We take (1) a
smooth subsonic flow through a channel with a curved wall, (2) an oblique shock, and (3) an oblique
contact discontinuity. The three problems are all defined on a rectangular domain. The first problem
may clearly show the 2nd order accuracy. The other two problems contain the two kinds of discon-
tinuities that may appear in Eulerian flow. In the shock, the characteristics converge and there is a
natural mechanism to steepen a smeared shock [5]. In the contact discontinuity the characteristics are
parallel and no such mechanism exists. This kind of discontinuity is more like discontinuities that
may appear in the solution of the linear convection diffusion equation [8].

We first give a precise description of the 3 problems and then comment on the various numerical
results obtained.

Problem 1 The smooth problem.

The domain @ is (-1,1)X(0,1); the coarsest mesh (m=0) contains 4 X2 square cells. y = —1 is the
inflow boundary, with boundary conditions p = 1.0, ¥ = 0.75, v = 0.0; y = 1 is the outflow boun-
dary: p = 1/v; x = 0 and x = 1 are solid walls: at x = | we take v = 0, and at x = 0 we use a
slender body approximation for a curved boundary: v /u = 0.02-sin(mx).

The initial approximation is uniform flow in " with p = 1.0,u = 0.75,v = 0.0 andp = 1.0.
Problem 2 The oblique shock

The domain Q" is (0,4)X(0,1); the coarsest mesh contains 6X2 cells. The exact solution has 3

subregions with uniform states as given in figure 5.1.

- E
2
N 1 ) ’ 3 S
29° 23°
l \
W
Figure 5.1

The states are resp.:

state 1 14w = 29,v =00,c = 1.0,p = 1.0;

state2 : u = 2.6,v = —05,¢ = 1.1,p = 2.1;

state 3:u = 2.4,v = 0.0,c = 1.2, p = 40.

The boundary conditions are: at N supersonic inflow, at W a solid wall, and at E and S the boun-
dary conditions are overspecified (i.e. for all variables Dirichlet boundary conditions are given, but
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these are partly neglected by the difference scheme).
Problem 3 The contact discontinuity

Here Q" = (0,1)X(0,1), the coarsest mesh is 2X2 cells. The exact solution of the problem has a
discontinuity at x +y = 1. In both parts of the domain the solution has a uniform state: for
x+y<lwetakep = 1.0, u = 03,v = —0.3 and ¢ = 0.6; for x +y>1 we have p = 1.0, u = 0.6,
y = —0.6 and ¢ = 1.0. At the outflow boundaries p = 1.0 is given and at the inflow boundaries we
give the correct values for u, v and the entropy. The initial estimate has a uniform state over all @*
which has mean values between the two uniform states that define the exact solution.

In the figures 5.2 we show for problem 1 the pressure at the curved wall y = 0. The results are
obtained by the algorithm (0)(4) described in section 4. In figure 5.2.a the 1st order solution (i.. the
solution after stage (2)) is given for L = 3,4,5 and in figure 5.2.b-c we show the second order solu-
tions (at stage (4)) obtained from scheme (3.4) with x = —1, after d = 0 and 4 = 1 defect correc-
tion steps (k, = k; = 4,kd = 1). Le. fig. 5.2.b shows the solution before and fig. 5.2.c the solution
after the first defect correction step. More defect correction steps (d>1), or the use of k = 1 /3 or
the ”superbox” scheme all yield very similar pressure profiles.

In figure 5.2.a we see clearly 1st order convergence for the Ist order scheme; 5.2.b and 5.2.c show
more accurate solutions. Under assumption of the asymptotic expansion

@(xy) = q(xp) + KPe(xy) + &P TY),

the order of convergence p is derived from the solutions for L = 3,4,5, computed as described above.
The same computations were made for k = —1, « = 1 /3 and for the ”superbox” scheme, both with
and without the Richardson extrapolation (i.e. stage (3) of the FMG algorithm). The results are

shown in Table 5.1. They seem to confirm the hypothesis of the validity of the asymptotic expansion
(43) withp = 1.

with without

Richardson Richardson

extrapolation extrapolation

k= —1 k=1/3 SB k= —1 k=1/3 SB
d=0 2.08 2.08 2.08 1.00 1.00 1.00
d=1 220 1.88 2.23 1.64 1.78 1.50
d=2 2.11 1.93 1.81 2.18 1.83 1.50
d=3 1.88 2.01 1.96 1.88 2.13 2.02
d=4 2.15 1.93 1.96 2.10 1.99 1.95
d=>5 1.92 1.92 1.92 1.98 1.93 1.92

Table 5.1. The measured (mean) order of convergence (at cell corners, boundaries excluded). The
second order schemes are (3.4) with k = —1 and k = 1 /3, and (SB) the "superbox” scheme.

For problem 2 we show results in the figures 5.3. For the level L = 4 we show the 1st order solu-
tion, the solution obtained after Richardson extrapolation and the solution after 1 and 3 defect
correction steps.

In the figures 5.4 we show the same results for problem 3. For the problems 2 and 3 results are
shown only for the scheme (3.4) with k = —1. From the figures 5.3 and 5.4 it is clear that not only a
higher order of accuracy is obtained; we also find a better resolution of skew discontinuities.
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Figure 5.2.a Problem 1. The st order solution. Figure 5.2.b Problem 1.
The 2nd order solution [(3.4) with k = —1], dcps = 0.

PRESSURE

0.73
)

0.72
i

0.71
1

0.70
i

0.68
"

o
@
a

~

Figure 5.2.c Problem 1. The 2nd order solution [(3.4) with k = —1], dcps = 1.
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The 2nd order solution after Richardson extrapolatio:
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5.4.a Problem 3. The Ist order solution. Figure 5.4.b Problem 3.
The 2nd order solution after Richardson extrapolation.
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