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SOLUTION OF 3D ELLIPTIC SYSTEMS BY
SEMI-REFINEMENT

P. W. Hemker

Abstract

To numerically solve elliptic partial differential equations in three
space dimensions, these equations are discretised and huge systems of
(linear or nonlinear) equations arise. To solve these equations, multigrid
methods are the most efficient technique and they solve the systems with
O(N) arithmetic operations, where N is the number of degrees of free-
dom in the discretisation. In a previous paper we have shown how semi-
refinement can be used to construct multigrid methods for 3 dimensions.
Adaptive approximation techniques, based on semi-refinement, can be
used to minimise the number N for a given accuracy. For smooth solu-
tions, such techniques automatically lead to sparse grids over the domain
of definition.

After a general introduction, in this paper we analyse the accuracy
of low order piecewise polynomial approximation on regular or sparse
grids, in different norms.

1 Introduction

The basic model problem to demonstrate the value of numerical methods for
general elliptic boundary value problems has always been

-Au=fin Q=(0,1)) u=0 on 9. (1)

If a uniform n X n-mesh is placed over (1, i.e. that n + 1 equidistant mesh-lines
are drawn in the horizontal, and the same number in the vertical direction,
the distance between the mesh-lines is called the mesh-width, h = 1/n. The
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grid points are x;;, where 0 < i,7 < n. If we want to approximate the solution
of (1) numerically, discretisation is applied to get a set of linear equations:

AU = F, (2)

where, typically, F(;_1)(nt1)+; = h*f(zi;), and A is a matrix with a special
structure. The system has N = (n + 1)? equations and the same number of
unknowns.

The element Ug;_1)(n41)4; Of the solution vector U in the system of equa-
tions (2) represents the approximate solution of equation (1) at the point z;;,
i.e. Uic1)(n+1)+5 = u(zi;). The accuracy of this approximation depends on
the type of discretisation and on h, the width of the mesh applied. This means
that the approximation becomes more accurate if more mesh-lines are intro-
duced. Typically, for a simple discretisation method, the error in the solution,
|U(i—1)(n+1)+; — u(zi;)], is proportional to h?.If higher accuracies are required,
smaller values of h are needed, i.e. a large number of mesh-points are neces-
sary. Such large numbers of mesh-points give rise to very large systems (2),
and the techniques used to solve such systems of moderate size (e.g., Gauss
elimination) cannot be applied because the number of arithmetic operations
(the number of additions and multiplications) to compute the solution by these
methods is proportional to N3.

For large systems of type (2), Gauss elimination would take too much time,
even on present day’s fastest computers, and different methods are used, that
take advantage of the special properties of such equations. All these special
methods to solve discretised PDEs are iterative methods, where a first guess of
the solution is improved step by step in an iteration process. Until the sixties,
simple relaxation methods were very popular. Here, all separate equations in
(2) are scanned one by one, and each time when an equation is visited, the
corresponding unknown is updated, based on the present information about
the other unknowns.

Later, in the seventies, more efficient iterative methods, based on the con-
struction of Krylov spaces, appeared, such as the preconditioned conjugate
gradient method, GMRES or, a more recent development, BiCGStab. Nowa-
days, these methods are the most popular ones to solve the very large systems.
One reason is that these methods are relatively easy to implement in a com-
puter program.

However, to restrict the amount of work to O(N), we have to resort to
multigrid (MG) methods. These methods have a more complex structure. In-
vented in the sixties, they got the full attention of the numerical community
not before 1980. A pioneering paper in the late seventies [1] started the inter-
est, and at present the multigrid method is well-accepted and it is successfully
applied [3] in many fields.
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Multigrid and semi-coarsening

The principle behind the MG technique is the fact that simple relaxation
techniques only efficiently reduce the high-frequency errors on a mesh, and
that the low-frequency errors can better be reduced by a discrete equation on
a related coarser mesh which contains essentially less mesh points. Now the
MG method uses this principle recursively to solve the problem on the coarser
meshes (see Figure (1}. All computational work together (on the coarse and
the fine meshes) 1o solve the differential problem as accurate as is possible on
the finest mesh (with N mesh points) is still O(N).
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—

Figure 1: A classical sequence of grids in two dimensions.

It is well known how multigrid methods can be used for two-dimensional
(2D) problems, and that the same techniques can be used for three-dimensional
(3D) problems as well. One may even point to the fact that the total amount
of work on the coarse grids is relatively smaller in the 3D-case than in the
2D-case. However, the reverse side is that only a relatively small amount of
error components can be annihilated by these coarse grid corrections. The
consequence is that in the 3D-case powerful relaxation methods are required
to reduce the total error with a sufficient efficiency.

E.g., one such relaxation procedure is alternating plane-relaxation, in which
all planes in the cube are visited by different orderings, and where for each
plane a 2D sub-problem is solved (by a 2D MG method). This procedure is
not very attractive, because there are many possibilities to order the planes
in the cube, and a choice has to be made by what ordering the planes have to
be visited. For a general problem such a choice is artificial, and the one choice
may be better for the one problem while another choice can be advantageous in
another situation. Such 3D-methods are also hard to vectorise or to parallelise
so that we may have little advantage of new computer architectures.

However, there exists an alternative [2]. Already for 2D fluid flow problems
it has become clear that it is sometimes better to generate coarser grids, not
by taking together a 2 x 2 set of four small cells to form one bigger cell, but to
take together only 2 cells, so that a coarser mesh is obtained with a different
mesh-size ratio. This is the principle of semi-coarsening. Here also we have
the argument that the semi-coarsening is direction-dependent, and that there
are more ways to assemble pairs of cells to form the coarse grids. But in the
general, problem-independent case we may apply both semi-coarsenings at the
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same time. In that case the fine grid has two corresponding coarse grids. Now
we have to study how the corrections from hoth coarse grids can cooperate to
vield a good coarse grid correction for the solution on the finer grid.

We can approach the same technique from the other side. We may start
with a coarse grid and make finer and finer grids, each time by halving grid
cells into two finer cells (see Figure 2). This principle of refinement can also
be applied in three dimensions. In this case the number of possible grid re-
finements is even larger (see Figure 4).

This approach of semi-refinement can be very powerful when combined
with adaptive meshing, i.e., in all meshes only those cells are created that
really contribute best to the reduction of the total error. Here the idea of
hierarchical basis plays an important role, in order to combine the function
approximations on the different grids into a single, unique representation.

In the following section we first introduce the notational framework to
aliow a technical discussion of the problems involved. We introduce the mul-
tidimensional multiresolution analysis, and more-dimensional wavelet spaces,
which are the right tools to introduce hierarchical bases for regular and sparse
grid approximations. In the next section we describe piecewise constant and
piecewise linear approximation in more dimensions, and we give errorbounds
for these approximations on regular and on sparse grids.
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Figure 2: A family of semi-refined grids in two dimensions.
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the 2 ~'.dimensional subspace in ¥, of functions vanishing at the nodes of the
V,1-mesh. The corresponding spaces of functions that satisfy homogeneous
Dirichlet boundary conditions are denoted by V.0 C V,, and W2 € W,,. Notice
that in the one-dimensional case W2 = W,.

V0 v; W
‘ vy vV W,
' v o

Figure 3: Basis functions on the interval [0,1] in the spaces V.9, V,, and W,,.

For @ = R a similar sequence {Va}n=0,1,2,.. can be constructed, with

h, = 27", and this sequence can be completed in the natural way with
{Vitn=—1,-2,... Now we have formed for L?(R) a multiresolution analysis
{V"}nEZ’

By R; we denote a projection R; : X(Q) — Vj, such that for ueX(Q) N
c(Q)
RjueV; and (Rju)(z:) = u(z;) Vz:€Qf.
For a given function feX(Q), the “difference information” between two suc-
cessive approximations R;feV; and R;_;feV;_; is given by the projection
Q;f of f onto the complement W; of V;_; in Vj,

Viei @ W; =V,
Viey N W; = {0},
Qif =Rif =R\ f.

The four requirements (3.1) to (3.4) imply that the spaces W; are also scaled
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Figure 4: Semi-refinement of the cube.
Grids on levels 0, 1, 2 en 3.

versions of one space Wy,
f(@)eW; ¢ f(277x)elVy, (9)
that they are translation invariant for the discrete translations 2772,
f(@)eW; & flz — 277 k)eW,, (10)

and that {W;} are mutually linearly independent spaces, generating all of
X(Q), cf. (7). For @ = [0,1] and homogeneous boundary conditions, we know
Ve = {0} and hence
n
Ve =pw;.
j=1

As soon as we find a function ¥(z) with the property that {#(z —k)},c7
is a basis of Wy, then by a simple rescaling we see that {(2z — k)}j,kEZ’ is
a basis of W;. Since X(Q) is the direct sum of these W;, the full collection
{v(2'z - k)}; rez s a hierarchical basis for xX(Q).
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The first approximation of an arbitrary function from L*(K) consists in
writing f(z) = 3 f;(z), where each f; belongs to the corresponding channel
W, Typically, we write for n > m.

V=V W O W @ @ W

In this way we obtain a decomposition of the function f in channels, and, by
taking more spaces W,,, we get a larger sequence of hierarchical approzimations
of f.

In the one-dimensional case, both for Q = [0,1] and for Q = R, each W
has its natural basis, the standard basis {w{c} consisting of basis functions
ui with minimal support. These piecewise linear basis functions 1,-"1{ may be
characterised either by their support 2! 7J[k, k + 1] or by their center points
Ii = 21"j(k -+ ‘1-2)

In fact, the family of piecewise linear basis functions {w{c Yo<k<2i 0<j<ny OF
{.’*"“kez,jmz {for Q == (0.1, or Q© = R respectively) forms a hierarchical basis
for fel, . and with

r if zef0,1],
viry=< 2-zr if zre{l,2],
0 otherwise,

we have

N

flri =~ Zajkui(.r) = Z Zujku('.)j.r — k. (11)
ik

Pw linear approximation in d dimensions

We approximate ue X = C%(€2) by un€Vn. in the space of piecewise d-linear
functions on Qp, i.e.

¥n = Span {d)nj}, (12)

with, for some ¢ > 1 or ¢ = 0,

Pnj(x) = 2T/96(27 2 - 5),
o() =TT, Az;), (13)
with A(z) = max(0,1 — |z|), the usual hat function .

We define the projection

Rpn: X>VhpcCcX
U= un = Rn’u, (14)
un(z) =u(z) VzeQ}.
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We notice thatn the operator Iy, == H,, . can be decomposed as

d
B =[] She,. with e by o (2770 o2y, (15)
J=1

where S} . u(e) is a function, piecewise linear in the j-th coordinate direction,
273
such that SéJe,-'u('m) = u(x) for all & with z;/heZ.

Pw constant approximation in d dimensions

We approximare ue X = LLOC(Q) by un €1y, iu the space of piecewise constant
functions on Qq. e
Vi, = Span {c:,nj} , (16)
with, for some ¢ > 1 or ¢ = oo,
G et e 2T 12Ty — g
ol .
ofey = 11T xorle)) (17

4

with o0 the characteristie funciion on the unit interval.
We define the projection

B X =Vn X

U Uy o7 Rn,ll with (18)
Uy ;- unl{i —e/2)h) = 2T 'J.“nz' u(€) dQ .

We notice thar the operator Ry = R, . ,, can be decomposed as
d
- o0 I i (O n g--n
Rn o= [ She,, with b = hp = (277, 27™) (19)
=
where S;})e_u(m) is a function, plecewise constant in the j-th coordinate di-
rection, such that

1 [THR/IE,
S'SEju(m) = —’;/ U(.T],“',.rd)de
Z--(h/2)€,
for all x with (z;/h £ 1/2)eZ.

If we take p = 2, then X = L?(Q)) is a Hilbert space, and {¢nj} is an
orthonormal basis in V. Moreover, Ry, is the orthogonal projection L2(2) —
Vin.

For 1 = R?, the set {Vn} as defined in (16)-(17) is a typical multiresolution
analysis. This is no longer the case if we consider a bounded domain .
Nevertheless much of the decomposition procedures still can be used.
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Sparse grid approximation

As shown above, with the spaces Vi we can associate the wavelet spaces W
and a hierarchical basis {yp, J} to approximate functions in X (). We shall
see in the next section that the contribution of the V. j-compouent to the
error reduction is

2-4Ju| |1 = 27%}u] [support (i ;)P

To optimally reduce the error for the least number of degrees of freedom,
we should add degrees of freedom (§, k) with the magnitude of the quantity

b 0 “ - o 4

Jul ]support(wk»j}l) as criterion. E.g., for an equally distributed 5%3‘%;, to
obtain an optimal efficiency we should construct the discrete space as

sp;m{uk'j} support(uk‘j) < C}.
This leads to the sparse grid as introduced by Zenger [4].
Definition 3.1 A sparse grid approrimation space is the space

L) =lge P wala)

;1L§<11;TL§’0

The center points of the supports of the natural basis functions in V, form the
sparse grid (1},

Definition 3.2 We define the sparse grid approrimation operator, R, as fol-
lows: R,u is the interpolant of u on the sparse grid Q, in V7, i.e.

RoueVy: (Rou)(zy) = u(z) Vel

4 Error estimates

We approximate ueC' 11 (Q) by un€Vn, where 1y, denotes the space of piece-
wise constant functions on Q. We can write

un(z) = Y dpjon i), (20)
J
where, for some ¢ > 1 or g = oc ,
Ppjlx) = 2M99(2"x - 5),
o) = ITizy xpo.0(%3), (21)

with xjp,11(z) the characteristic function on the unit interval.
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Thus, with un€Vy, the piecewise constant approximation on {1, of the func-
tion ueCh'1(Q), we make the hierarchical decomposition of the form Vi =
EBk<'n, Wk’ and write

Up = Z wy, wipeWg, (22)
k<n
where
wy(z) = ch,ju’)k,j(z), (23)
J

with cp, = 0 for all j with [[7] even. In practice these coefficients c, j are
computed as hierarchical surplus, by taking the difference between the value

u(ghy) and the interpolant from coarser grids. Some error bounds are found
in [2].

Estimates for pw linear approximation
We approximate ueC%%2%() by un€Vn, where Vpn, denotes the space of piece-
wise d-linear functions on {dn. We take un such that un(z) = u(z) for all
zeQf,. We can write

J
where, for some ¢ > 1 or ¢ = o

bpj(@) = 2™ (2" — 5),
d(x) = Alz)) - Alzg), with A(z) = max(0,1 —|z|), (25)
is the d-linear finite element type basis function.

With uneVn the piecewise linear approximation on Qpn of the function u €
C**2(Q)), we make a hierarchical decomposition Vn = @pcqy Wi, Of the
form (22) and (23). N

The hierarchical surplus is most conveniently formulated by introducing
stencil notation. Therefore, we introduce the difference operator

Apu(z) = u(z + h) —u(z), (26)

and the usual central difference approximation for the second derivative by
stencil notation, as

1 1 1
[_2'1 —1’ Q}hjej U(Z) = § Aijej U(Z - hJeJ) .



Sonumion o A7y ¢ LIFTIC SYSTEME BY SEMI-REFINFMENT 75

With this notation we conveniently write an expression for the hierarchical
coefficients in a plecewise linear approximation. We see that d-linear interpo-
lation leads to the fullowing expression for the hierarchical surplus:

1 1] .
l“kj = ﬁhk‘uq H 1:'—5 1, 2j u(ghk)

J=t4d ke,

Notice thdt the factor JhpJ'/¢ cancels the scaling factor 2%19 in the definition
of ¢p g An expression for this coefficient ¢p, J is found in the following lemma.

Lemma 4.1
With [;(r) = min(0. —(27 = |2]}/2) = min(0, =(h; - |2]}/2). we introduce

Lptx) =[] Ly (27
Now

o D ey L2 d = ]2, (*% )RR As.n-e-) u(0)
= H?; -i 1'_%]h‘6’1 u(0).

Proof: The proof follows by straightforward computation. O
¢ ) IS p

We derive an expression for [loflp. with @ given by (25):

bty = foTLIA@IPaQ =TT, ([}, (1= le)? da.)
d
ML () =T GE) = (h)

2 d/p
li9lip = (;:i) . (28)

So that we have

Further, in (25) we have bnj = 2m/9p(2% 2 — §), and

lonjli = [12™/2¢2"%z - j)|PdO
= 9inip/g o™z ~ 5)P d(2mig) 2-m
= 9!1i(p/q-1) liglP,

So that
g jllp = 207371/ o)) (29)
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This means that the norm Hq&njﬁp is independent of the level n iff we take

q=p.
Now we compute an expression for || Ly, (z)|[p, in particular for p = 1, 2, 0.

- hi
ILp@f =TI, kP de =222 T, [ (b - 2:)” da
pP+! d(1-p)
— 2d(1- p)]:“[z 15,;1 _2+]) ||h‘l Pl

So that we may conclude, also considering the special case p = oo,

d
Ly ()11 = H (z:)|| =27¢n?, (30)
; 1
Lp ()2 = H = (2/3)* |n]*"? (31)
=1 2
1 d '
1L, (@)l gH i =274 |} (32)

Using these expressions and Lemma 4.1, we can derive the error estimates
in the following theorem.

Theorem 4.2 Let uneVn be the plecewise linear approximation on (I, of a

function ueC?%2(Q) such that un(z) = u(x) for all zeQ};. If we make the
hierarchical decomposition Vn = @O ., W}, and write

Umn, = Zwk, ’wkEVV y

k<n
then we have the estimates
okl S ID22uly [l (2/3)%,
gl <ID222ully [rpl224
llu = unlls < |ID*>*2ull, 2d( YR i?

lu—unle < 1D%*%ufe (2 inlR.

Proof: Using Lemma 4.1 we can obtain estimates for the hierarchical coef-
ficients ¢y, i We fix k and we derive, writing h := hy.,

IRl ek 51 = Jo D***ule) xp j(x) Ly ~ jh) de
< 1% lloo 2RI,
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where xp, ; is the characteristic function for the support of Ly, (x — jh), or
similarly

IRl ey jl = fo D¥**u(z) xg ; Lp(x — jh)dx
< IDPPuxg e (2/3)24RIP2 .

We write wy, = Zj Ck,j Pk j with ||7]] odd, and we know that these func-
tions {¢g j} i for fixed k, have disjoint supports. Hence, for the hierarchical
contribution

lwgls = BRIT 1125 ek ¢k 5153

< BRI T LR IR D22 g, 513 ok 512
< IR TR D2 2uxg ;13 Inl 20 (2/3)
< It (@/3) D2l

For the other norm

it

llwgllo = 11225 ¢k, Pk 511
max ; [[D***u x5l

[ D22l 24 R

IN

ILplh [re Jrp=1/e -1

For the error, for p = 2 or p = o0,

e —unllp= [ ewr ~ Lken Wil
pS Zkgn llwgllp
< Cp “DQ’Z'QUHP Zkﬁn Ilhk||2 )

A

with Cy = (2/3)%? and Cy = 2~¢. This yields the last two estimates, by
taking into account that

Ykgn Il = Tk gl = Teen Ihgl? =
= H;‘i=1 Sk 47 - Hj-l:l Pohy<n; 47

L) T/

L () In2.

IA
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Approximation on sparse grids

Theorem 4.3 Let f(u u be the precewise constant approximation of a function
ueCH11(Q) on a sparse grid on level n:

.f{.nu = Z W, wkeWk S (33)
tki<n

then we have the estimate

[lu = Roull, < CIDY | )lh) log? ! ] . (34)

Proof:

[l — f?.nu}%l,

IA

Lok gl
oo et (R = g g uly

< C‘I!D”'lullp Z|k|>n IR}

o, ooy [ l+d-=1
= CHDI'HUHP Zl>n2 l( _:1_1 >
< ClD" My, G(2,n,d)

< C {.l)1~"'u|§pC1nd%’%%~

< CIIDY )l |RY log® " R] -

Where the constants (/y,,y are reasonably small numbers™ that tend to one for
n —oc. O

Theorem 4.4 Let R, u be the piecewise d-linear approximation of a function
ueC?22(Q) on a sparse grid on level n, as in Theorem 4.3, then, for p = 2 or
p = 00, we have the estimates

llu = Raullp < CIID***ul, [R]* log*" JR] " . (35)

*The value of the constant Cy,y = (d - 1)!n' =927 G(2, 7, d)

ne=l n=2 n=3 n=4 n=5 | n=oc
d=1 I ] 1 1 1 ]
d=2 4 5/2 2 7/4 8/5 !
d=3 | 22 8 44/9  29/8  74/25 !
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Proof:

I

= Relly = 1Sk k ~ 5 percn wklo
I Zik;')n wk”g N ‘
ikisn Co 1D 2ully R 2

Cp HD‘Z’Q’ZUHD Zl)n |Ihk||2 Eﬂgi:g 1
o _ l+d-—-1
Cp ||D2"“2qu Zl>n2 ¥ ( d—1 ) :

I IA

o l+d-1 ~ l+d
Using Z|k{=11 = ( d1 ) and leisl 1= ( d ) we know

» l+d-1
2:l>n.2 u( d—-1 )

2—2<"+1>-( n+d ) SR (L 1+ n+d), 2+ 0], 1/4)

i

d-1
= G(4,n,d)

where » F is the generalised hypergeomerric function, also known as Barnes’s
extended hypergeometric function. It follows that

”_4! --1-2—-21:

G(-’i, 71,(1) ~ 3((1”:]3‘, fO!' n— 0C,

where the asymptotic value is reached soon for small values of d. Hence!

llu = Rnull, Cy ID* ), G(4,n,d)

 1igy2.2.2 d-1y-2n
Cy iD*2ully Cona™;

d-13i

<
<

where C)4 18 a constant that tends to one. So, we conclude that
, - 2\ ¢
—~ R u < Dz,z,z I < d-14—-n
=Rl <050l (3) oS ntan,
c
3(d-1)!

where C' is a constant that approaches unity for larger values of n. With
IR] = 277, this proves the theorem. O

||U_Rnu||w S ”D‘z,'_’.'.luli.wz—d ,’,11(1-14—-117

"The value of the constant Cyg = 3(d — 1} n! =422 GQ(4, n, d)

n=1 n=2 n=3 n=4 n=5 | n=oc ]
d=1 1 1 1 1 1 1 i
d=2 10/3  13/6 16/9 19/12 22/15 1 i
d=3 | 134/9 53/9 308/81 211/71 554/235 1 “J
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Theorem 4.5 Let K, u be the plecewise d-linear approximation of a function
ueC* N CY2I N CHL(G)) on a sparse grid on level n. as in Theorem 4.3,
then, for p = 2 and p = o0, we have the estimates

ju = Ryull, < ClI(D*! + DV & DY Yl Bh log R . 36
P r )

Proof: We prove, more generally, for some m = (m;,---,my) with 1 <
my, s, mg <2

lu=Roully € X gyanllwgls
= Z!kbn iiﬂj:](Rk - Rk--e,)“fi'v
< Tiksn (IMiz A7) CLD™ (37)
< CID™ully Ty n IR X e o, [T1, 253
< C||D™Muylj, p2d-1-imig-n

Hence, for e < m < 2e we have
llu = Ryulp < CIID™ul, frf log™ ' 1™ qnyt.
Moreover, (37} vields, for m = 2e,
llu= Rpul, < CUD* 2y ntt 4on

and hence A
llu = Ruullp < C}{DQ‘Q'zuigp i) log? ! 1)

O
Theorem 4.6 Let R,u be the piecewise d-linear approximation of a function

ueCHLI N OV N CHL2(Q) on a sparse grid on level n, as in Theorem 4.3,
then we have the estimates

llu = Roullw; < C(D>M + DV 4 DUL2yy| ] logh ™ JRE™ . (38)
If, moreover, we know ue(C?%2 then

flu— Rr:““w; < CliDZ'Z.zuzirf iri- (39)

Proof: Part 1:

1

Dyl DT By, = Bie_o dully

CUh i DD g,

IA
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1D%u = Rty < & ko CF Mgl 1IDD"
S CJ}iDQDLLI“”PZ}an Ihka
S CdﬂDnDl,l.lu”pnd-—12~—n
< CH DDVl fh) log ! BA]
T " - IRl el B L,
S - - i )
\ \\ SE S e
N 3: o .
oA O HR R AN )
SR SN T
3 N N
{ \ .
Cell centers Cell vertices

Figure 5: A sparse grid, level n = 6.

Part 2
D%~ Bnw)lly < 3 kyon C BrgBP R 1D> 2 ulip

{ (Z] De’) (u- f{nu”;x: s HD2'2'2u“p Zlk|>" Ihkﬁz Zj h;l

< |ID**ull, D(d,n),

where we see that D(d,n) is a number depending on n and on the dimension
d. A simple computation shows

D(l,n) = 277,
D@2,n) = 42 ™-2/347",
D(3,n) = 122" —13/34™"—pn 4",

So it follows that

lu =~ Ruuliy; < CUID*>ully R -
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Cell centers Cell vertices

Figure 6: An adaptive grid,
f(z,y,2) = cos(wz /2)® sin(my)®z; e= 0.01.
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