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Abstract

The first boundary value problem for a singularly perturbed parabolic equation of convection-diffusion
type on an interval is studied. For the approximation of the boundary value problem we use earlier
developed finite difference schemes, ¢-uniformly of a high order of accuracy with respect to time, based
on defect correction. New in this paper is the introduction of a partitioning of the domain for these
e-uniform schemes. We determine the conditions under which the difference schemes, applied inde-
pendently on subdomains may accelerate (s-uniformly) the solution of the boundary value problem
without losing the accuracy of the original schemes. Hence, the simultaneous solution on subdomains
can in principle be used for parallelization of the computational method.
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1. Introduction

Special e-uniformly convergent difference schemes for singularly perturbed
boundary value problems for elliptic and parabolic equations are well developed,
see, e.g., [1-9]. If the problem data are sufficiently smooth, for the parabolic
equations with convection terms, then the order of ¢-uniform convergence for the
scheme studied in [9] is /(N ~'In N + N, '), where N and N, denote, respectively,
the number of intervals in the space and time discretization. For this scheme the
amount of computational work is primarily determined by the time discretization,
which is of first order accuracy only. For reaction-diffusion problems in [5, 6] we
have developed an algorithm based on the defect correction principle, which
achieves a high order of time-accuracy and preserves e-uniform accuracy in space.

To improve the effectivity of the algorithm, we also need efficient methods for
solving the discretized problems. The paper [10] introduced parallel computa-
tional methods that allow us to accelerate the numerical solution of singularly
perturbed boundary value problems for parabolic reaction-diffusion equations.

*This research was supported in part by the Netherlands Organization for Scientific
Research NWO, dossiernr. 047.008.007, and by the Russian Foundation for Basic
Research under Grant N 98-01-00362.
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Note that the method in [10] has only first order of accuracy with respect to the
time variable. The direct use of the parallel method from [10] for the defect
correction scheme does not allow to achieve the order of time accuracy higher
than one.

In the present paper we develop new defect correction schemes for singularly
perturbed convection-diffusion problems. In this way, we achieve a high order of
accuracy for the time variable, maintaining ¢-uniform convergence and first-order
accuracy in space. For such schemes, as well as for the base schemes, we construct
new schemes based on a domain decomposition method which allow both
sequential and parallel computations. Thus, the present algorithm is a further
efficient improvement over what was previously developed in [6] for the reaction-
diffusion case. It should be noted that this parallel method is not iterative within a
time step.

2. Problem Formulation

On the domain G, where G = (0,1) x (0, 7], with the boundary S = G\G we
consider the following singularly perturbed parabolic equation with Dirichlet
boundary conditions:

l

Loyulx.r) = {m(.\'. 1) -(%—5 + b(x.1) o c(x,t) — p(x,1) %}u(x, 1)
=f(x.1), (x.1) €G, (2.1a)

ulx.t) = @x.0), (x,1)€S. (2.1b)

For §=5,US" we distinguish the lateral boundary St = {(x,£) :x=0 or
x=1.0<r<T} and the initial boundary Sy = {(x,#):x€[0,1], t=0}. In
(2.1) alx.o). b(x.1). c(x.0). plx,0), f(x,1), (x,1) € G, and ¢(x,7), (x,1) €S are
sufficiently smooth and bounded functions which satisfy

0 <ag<alv.r). 0<by<blx.r), 0<py<p(x,t), clx,t) >0, (x,8) € G.

The real parameter ¢ may take any small positive value, say ¢ € (0, 1].

When the parameter ¢ tends to zero in (2.1a), the solution exhibits a boundary
layer in the neighbourhood of the set S5 = {(x.1) :x =10, 0 << T}, i.e., near the
left side of the lateral boundary (or the outlow boundary). Such layers are
described by an ordinary differential equation (regular boundary layers).

For problem (2.1) we construct a numerical method that has a higher order of

accuracy with respect to the time and, in addition, allows for parallel solution of
the difference equations.
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3. Difference Scheme

To solve problem (2.1) we first consider a classical finite difference method. On the
set G we introduce the rectangular grid

G;,:a’)xa“)o, (31)

where @ is a (possibly) non-uniform grid of nodal points, ¥, in [0, 1], @& is a
uniform grid on the interval [0, 7]; N and N, are the numbers of intervals in the
grids @ and @, respectively. We define ©= T/Ny, #' =x"*!' —x', h = max; A,
h < M/N.

Here and below we denote by M (or m) sufficiently large (or small) positive
constants which do not depend on the value of parameter ¢ or on the difference
operators.

For problem (2.1) we use the difference scheme [11]

A(}AZ)Z(X, t) =f(x,t), (X, t) S Gh, (328.)

z(x, 1) = @(x,1), (x,t) € Sp. (3.2b)

Here G, =GN Gh, Sp=8nN Gh, A(3.2) = 8a(x, t)()}'\-. + b(x,t)(‘i_v — c(x, t) —p(x,t)ég,
dyz(x,t) is the forward difference operator, while d;z(x,¢) and J;z(x,t) are the
backward difference operators, and the difference derivative dyz(x,?) is an ap-

proximation of the derivative £xu(x,) on the non-uniform mesh:

Seez(x 1) = 2( Y + B N Ou2(x 1) — Byz(x, 1)].

The difference scheme (3.2), (3.1) is monotone [11]. By the maximum principle and
taking into account a-priori estimates of the derivatives (see Theorem 9.1 in the
Appendix), we find the error estimate

lu(e,t) —z(x, )| S M(eN"" 4+ 1), (x.1) € Gy (3.3)

The proof of (3.3) follows the lines of the classical convergence proof for
monotone difference schemes [11, 9]. This results in the following theorem.

Theorem 3.1. Let estimate (9.2), where n = 0, hold for the solution of problem (2.1).
Then, for a fixed value of the parameter ¢, the solution of scheme (3.2), (3.1)
converges to the solution of problem (2.1) with an error bound given by (3.3).

4. The g-Uniformly Convergent Method

In this section we discuss an e-uniformly convergent method for (2.1) by taking a
special mesh, condensed in the neighbourhood of boundary layers. The location
of the nodes is derived from a-priori estimates of the solution and its derivatives.
The way to construct the mesh for problem (2.1) is the same as in [5, 7, 12, 13, 9].
More specifically, we take
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G, = &"(0) x @y, (4.1)
where @ is the uniform mesh with step-size ©=T/N,, i.e. @y = @g;). and
@* = @*(0) is a special piecewise uniform mesh depending on the parameter
o € R, which depends on ¢ and N. We take ¢ = 6(41)(¢,N) = min[1/2,m 'eIn N],
where m = m, is an arbitrary positive number from the interval (0,my),
my = mingla~"(x,)b(x,t)]. The mesh @ (o) is constructed as follows. The interval
[0,1] is divided in two parts [0,0], [0,1], 0 < 0 < 1/2. In each part we use a
uniform grid, with N/2 subintervals in each interval [0,0] and [o, 1].

Theorem 4.1. If the solution of problem (2.1) satisfies the hypotheses of Theorem
9.1 (Appendix), where n =0, then the solution of scheme (3.2), (4.1) converges
e-uniformly to the solution of (2.1) and the following estimate holds:

lu(x,1) —z(x,0)| S M(N"'InN + 1), (x,1) € G]. (4.2)
The proof of this theorem can be found in [9].
Remark 1. Under the conditions of Theorem 4.1, where # = K >0, for the

derivatives (9% /0" )u(x,t) and the divided differences J;z(x,¢), the following
estimates hold:

()/\'n (ko) ~
—A(J—;—k(—lu(xv[) S M(4_3)’ (x7 t) E G7 kO S K + 27 (43)
Orz(e )| <MYy, (1) € Gyanys £ 211 IS K+ 1 (4.4)

Here we denote by d;z(x,t) the backward difference of order /:

Opz(x,t) = (Op—yiz(x, £) — dp—ypz(x, t — 1)) /1, 1 > 1,

doiz(x, £) = z(x, 1), (x,1) € Gy, t>1t, 1>0.

5. Schwarz Overlapping Method for Parabolic Equations

We give the modified Schwarz method for boundary value problem (2.1), and for
the solutions obtained we give the necessary and sufficient conditions of e-uniform
convergence.

5.1. We first describe Schwarz’ classical method for problem (2.1). Let the set of
open subdomains

D, k=1,....K (5.1a)

with piecewise smooth boundaries [*, I = I'(D*) = DF\D*, cover the domain D:
D= U{_D*, and let
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G'=Dx(0,T], k=1,....K. (5.1b)
We denote by D¥! the union of the subdomains D', ..., D* which does not include
the set DX
K .
D= |J D, k=1,..K (5.1¢)
i=1 itk

Note that the sets D¥ N DKl £ () for all k= 1,...,K. For simplicity, we assume
that D\D["] £0, k=1,...,K. We denote the minimal overlap of the sets D* and
D by & and & denote the least value of &*, k= 1,...,K, i.e.

min p(x',x*) =9, x'eDf ¥ ¢ lel,xl,xzﬁ{D"'ﬂD["]}, k=1,....K, (52)

kol x?

where p(x!,x?) is the distance between the points x!, x* € D. In general, the value
o may depend on the parameter & d = d(s52)(&).

Let

Wix,r), (x,1)€G (5.3a)

be given an arbitrary function satisfying the condition (2.1b). We are to find the
sequence of the functions i/ (x,), (x,t) € G, r=1,2,.... Let the function ' (x,?)
be known. The function #*'(x,¢) is determined as follows. First we find the
functions u"*%(x, ¢), that is the solution of the following problems

Lisay (K (x,1) =0, (x,1) € G, (5.3b)

kL

() = u (), () € G\GH k=1.... K.

The required function is defined by the relation
W) =0 R (), F=0,1,2,.. (5.3¢)
In the case of boundary value problem (2.1) the operator Ls 4y in (5.3b) is defined
Lisay(u(x,0) = Loyyulx,0) = f(x,1),  (x0) €. (5.4)

Each function u"*%(x, t),(x,t) € G, is the solution of the Dirichlet problem on the

= . . . . k1 = . . .
set G* and coincides with the function «+% (x, ) on the set G\G*. This process is a
natural generalization of the classical Schwarz ‘alternating’ method.

In principle, we could give the conditions under which process (5.3), (5.4), (5.1)
converges to the solution of boundary value problem (2.1) as » — oo, where r is
the number of iterations. However, in this paper we are interested in a non-
iterative variant solver based on the modified Schwarz method.
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5.2. Now we describe the modified Schwarz method. Let
[N (5.58.)

be a uniform grid, just like @3 1), on [0,T] with stepsize t. By G(¢;) we denote the
strip

Gt)={(x,8): (x,1) €G, 1 <t <t +1}, 1,11 + T € dy.
Let S(#) = G(1)\G(t;) be the boundary of G(t;) and let v(x,) = v(x,t;¢,) be
defined on S(z;). We denote an extension of the function v(x, ) onto the whole set
G(t)) by o(x.t; ;). The function o(x,t;¢,) is assumed to satisfy a Lipschitz con-
dition with respect to r. We subdivide the strip G(t;) into sections G*(f)) =
Gk N G(n), S(1) = GH(1)\G ().

Suppose the function u(x,?), (x,t) € G, for " € @y, t<t"< T, n=0,1,...,
Ny — 1, has already been constructed. Now we construct the function u(x, ) for
t < "1 ie., we find the function u(x,t) on the strip G(¢"). This is done in the
following way. First we find the functions /% (x, 1) on the sections G* ("), solving
the boundary value problems

Lisa (i (x,0)) =0, (x.1) € G(e").
) it f"), k=1, for (x,7) € GH(¢"),
k) =q . (xr) € SH(M
ur (x,t), k>2
k=1,....K; 1" € @y, n <Ny—1. (5.5b)
Here having u"/[f(x, 1) on G*(1"), we extend these functions for each value k onto
the whole strip G(¢) in the following way
wk(x, 1), (x,1) € GH(t"),
(x.0) = { ulx,0"), k=1, ) B for (x,t) € G(¢"),
N L (n) € GENG ()
Ut (x,8), k>2
k=1,....K, "€ @ (5.5¢)

Having u*/X(x, 1), for k = K we define the function u(x, ) on the whole strip G(#")
by

ule,t) = uk(x,1), (x,t) € G("), ' € . (5.5d)

Thereby we have the function u(x, ) on the domain G for ¢ € [0, ¢*"!].

In the relations (5.5b), (5.5¢) the function u(x,#;¢") is constructed on the base of
the function o(x, ;")
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a(x, ;") = o(x, "), (x,¢) € G(I"). (5.5¢)

Using v(x, #;#") which is defined on the boundary S(#') in (5.5g), we find the
function

o(x, 51", (x,1) € G(t"), (5.51)
supposing b(x, ;1) = v(x,;1") for (x,t) € S(¢")
and o(x, ;") = v(x,1";1")  for (x,1) € G(").
Here

ox, 1), (x,t) €S(t), " ="=0,

oix, ") =4 ox,1), (xt) €S(E)NS, t>1,
u(x,t), (x,) € S("\S, 1 ="

n=0,1,...,Ny — 1. (5.5g)

}, " >0, (x,t) €S\,

Thus, the function #(x, ;") on G(¢*) has been constructed.

The function ut(x,7) on each strip G(#') is the solution of the Dirichlet
problem on the section G*(¢"), whereas on the set G(")\G*(s") it coincides with
the function u(x,f;¢") (x,¢t) € G(¢") for k=1, and with the function
WT(x,1), (x,1) € G(") for k > 2. We thus find the function u(x,?), (x,7) € G, the
solution of process (5.5), (5.4), (5.1), which we call the modified Schwarz
method.

Note that the modified Schwarz method is not an iterative process in the strict
sense. The boundary value problems in (5.5), (5.4), (5.1) are solved only once at
those points of G which do not belong to the intersection of the subdomains. The
boundary value problem is solved twice only on the intersection of the subdo-
mains.

In the continuous domain decomposition method (5.5), (5.4), (5.1) the interme-
diate problems on the subsets D’(‘m, k=1,...,K are solved sequentially.

Using the comparison theorems [14, 15], we come to the estimate

u(x,t) — uss)(x, 1) < O, 0)N; ', (x,2) € G,

where w5 5)(x,t) is the solution of the process (5.5), (5.4), (5.1), d = ds0(¢), i.c.,
the function u(ss)(x,t) converges, as Ny — oo, to the solution of boundary value
problem (2.1) for each fixed value of the parameter & Note that, generally
speaking, the function u(ss(x,t) for § = 0 does not converge to the solution of
boundary value problem (2.1) as Ny — oc. Under the condition (see [16], Chapter
10 of [7])
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3 =3;52(¢) >0, semu,%wywﬂmﬂ>o (5.6)
£€ (0,

which is equivalent to the condition d = d(s,)(e) = mse)e, € € (0, 1], the function
u(s.5)(x,t) converges s-uniformly as Ny — oc:

[u(x,t)—u(s_s)(x,tﬂ SMN(;Ia (x,t) € G.
If condition (5.6) is violated and the value ¢ satisfies the condition

5:@ﬁﬂ@>o,se(mu,éwmyw@n@n=o, (5.7)

the function u(s 5)(x, ) does not converge ¢-uniformly.

5.3. Here we describe the continuous variant of the modified Schwarz method that
admits parallel computations on P > | processors.

Let D*. k = 1,... K be the subdomains from (5.1a) and let each D* be partioned
in P disjoint (possibly empty) parts

k5o
D= D, k=1...K (5.8a)
p=
where DF N D’,‘ =0, i%# j. We set
Gh=Dix (0.7, p=1..P k=1, K (5.8b)

We find the function u(x, f) by solving problems (5.9) similar to (5.5), but now on
the set Gi(1") instead of G* (")

'A’ Y n
Lisay(up(x.1) =0, (x,2) € Gy(t"), (5.9a)

. (xn) e S['j(t”), p=1... P

<
S

=

=

]
——
- =
£ =
s
~
=~
I
——

for (X,f)e Gk(l‘"), k=1,.... K, t" €@y, n <Ny — 1;

& _
up(x,1),  (x,0) € Gy(t"), p=1,... P,

() = alene), k=1, o
. (k1) € GEM\ U Gh()
uft (x,f), k>2 p=l

for (x,1) € G({"), k=1,... K, " € wy; (5.9b)

u(x,t) = Uk (x, 1), (x,0) € G("), "€ . (5.9¢)
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The function #(x,s1") = o(x,551"), (x,1) € G(t"), " €. The function
o(x, "), (x,t) € G(¢") is determined like that in (5.5f).
Stepwise, for n =1,2,..., we find the function usy)(x,), (x,) € G, i.e., the so-

lution of process (5.9), (5 8). We call this the modified continuous Schwarz
method for P “*processors’.

The scheme (5.9) on the decomposition (5.8) can be written in the ““operator’ form
Ou(x, t);wo, f(),@(),¥() =0, (x¢)€C. (5.94)

Here the function y(x,5¢"), (x,f) € G(¢") defines the prolonged function
alx, ;")
~ v(x,t;0"),  (x,t) € S(t"), _
) = , 1) € G(t"), 59
e {v<x,z";f'>+w<x,r:r"), wneg WO (35

so that in the case of the conditions (5.5¢), (5.5f), simply, ¥(x, ") =0. The
problem (5.9), (5.8) for P = 1 is identical with problem (5.5), (5.1).

In the continuous domain decomposition method (5.9), (5.8) the intermediate
problems on the subsets Df sy, p=1,...,P, k=1,...,K can be solved inde-
pendently of each other, for all p = 1,...,P. For this construction the following
theorem [10] is useful.

Theorem 5.1. The condition (5.6) is necessary and sufficient for the e-uniform
convergence (as Ny — o0) of us.gp)(x, 1) i.e., the solution of process (5.9), (5.8) with
P> 1, to u(x,t), i.e., the solution of boundary value problem (2.1).

6. Difference Schemes Based on the Schwarz Method

6.1. Here we construct a difference scheme based on the process (5.5), (5.1) and
give the necessary and sufficient conditions for e-uniform convergence of this
scheme. We introduce the rectangular grids on each set G* and Gf;:

Gy =G NGys1y Gy =GN G, (6.1)

or
Gy =G"NGiu, Gr=GNGyy,) (6.2)
where G"h = G,h We assume that the boundaries of G* and G/‘ pass through the

nodes of the gr1d Gy, and G, respectively.

Now we introduce the discrete function v(x, ) = v(x, t; t;) defined on the boundary
of the discrete strip Sy(¢) = S(¢t;) N Gy, t| € @y. By #(x,1;11) we denote the ex-
tension of this function v(x, #) to the discrete set G,(f;) = G(¢,) N Gy. The function
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o(x,t:t;) is considered to satisfy the Lipschitz condition with respect to . The
“strip™ Gy(f)) consists only of two time levels

Git))={o xt=n]}U{ax [t=1+1]},

where @ was introduced in (3.1).

Now we find the discrete solutions z&(x, ) by a procedure similar to (5.5). As-
suming that z(x,t), t+ <", has been computed, we solve on the strip G,(") the
problems

A6, 0) =0, (x,1) € G,

A Zx.0"), k=1, ) for (x,1) € GK(1"),
ZK(x, 1) = » s () e Sp()
z8 (x,t), k>2
k=1,..., K, "€my, n<Ny—1; (6.3a)
*(x, 1), (x,1) € GE("),
A =4 Zx, 6", k=1, ) y for (x,t) € Gu(t").
. (60 € G\ GR(
z8 (x, 1), k>2
k=1,....K, " € ay. (6.3b)

The required function z(x,¢) on the strip G, (¢") is defined by the relation
2x0) =), (x,0) € Gy, " € oy, (6.3¢)
In the relations (6.3a), (6.3b)
Zx, 0" = 0(x, 658", (x,1) € Gy("), 1" € . (6.3d)

The function B(x, ;") (x,) € Gy(£") is found from v(x, £; "), (x,1) € S,("),

v(x, 11", (x,t) € Sp(e"), _
e, 6 17) = { E ,':;,')g, (<x,),)€e /G<h( ,)n> } (v,1) € Ga(t"), (6.3¢)
where
o(x,1), (x,0)€Su(t™), =1 =0,
o(x, 51" =< oxt), (1) €SN Sy, t =1, ,

, >0 (6.3f)
z(x,8),  (x,0) € SH(t"N\Sp, t=1"

(x,0) € Sy(¢"), n=0,1,... ,Ng— 1.
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On each strip Gy (¢") the function z%(x, t) is the solution of the discrete Dirichlet
problem on the set G’,;(t"). On the remaining part G, (¢")\G}("). it coincides for
k = 1 with the function z(x,#; "), (x,1) € G,(¢") and for k > 2 with the function
27 (x,1), (x,1) € Gy(¢"). We define the operator A63) by the relation

A3y (z(x,0) = Apayz(x, 1) = f(x, 1), (x,1) € Gy (6.4)

It is required to find the function z(3)(x, 1), (x,7) € G, i.e., the solution of dif-
ference scheme (6.3) either on the mesh (4.1) or on the mesh (3.1). The difference
scheme (6.3) can symbolically be written in the operator form

0636, 1) f(),0() ¥ () =0, (x,t) € Gh. (6.3g)
Similar to (5.9¢), here the function y(x,; "), (x,2) € Gu(¢") defines the function
Z(x, 150"):

v oy - Jul 6", (x,1) € Sp(1"), =
) = {050 g, o o o e Gl (63

In the above case of conditions (6.3d), (6.3¢) we have Y (x,t;1") = 0.

In the discrete domain decomposition method (6.3), the intermediate problems on
the subsets D} :D?'S.” N Dy are solved sequentially. Thus, to solve boundary
value problem (2.1), here we used difference scheme (6.3), (3.1), which is the
discrete equivalent of (5.5), (5.1). In the following section we extend this to the
“parallel” case (5.9).

6.2. To describe the difference scheme that approximates process (5.9), (5.8) with
P parallel processes, assume that z(x,7) is known for + <", then we solve the
problems

Aen(E0n0) =0, (r1) € G4 (), (6.5)
L Ew, "), k=1, i
K(x, 1) = £l \ . (x,t)ES[,,,(t),p-—-l,...,P
for (x,1) € Ghy ("), k=1,....K, ' €, n < Ny — |;

% R n
2 (x, 1), (r,1) € Gylt"), p=1.....P,
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on the strip G,(#") by the relation
(x,1), (x,1) € Gy(£"), 1" € . (6.5b)

We define the function z(5)(x.?)

2o (x.1) = 2
In (6.5a) Z(x, ;") = i(x,1:¢"). (x,1) € Gu(¢"). The function &(x, t; "), (x,t) € Gu(t")
can be found from v(x, ;1"), (x,1) € Sy(¢"), which is determined by relation (6.3e).

The difference scheme (6.5) can be written in the operator form
065 (265 1 f (), () ¥ () = 0, (x,1) € Gy, (6.5¢)

with Y (x, ;") = 0.

In the discrete domain decomposmon method (6.5), (3.1) the intermediate
problems on the subsets D ,,7 D/‘ %) N Dy are solved independent of each other
(“in parallel””) for all p= 1 . For P =1 the difference scheme (6.5), (3.1)
turns into (6.3), (3.1).

Under condition (5.6), using a standard technique of the comparison theorems
(see, e.g., [11, 9]), we get the estimate

2.0y (3, ) = 265 (6, 8)| S MN', (x.1) € Gy, (6.6)
where z(33)(x,#) and z(g5)(x,7) are the solutions of the difference schemes (3.2),
(3.1) and (6.5), (3.1), respegtlvely

6.3. A technique similar to the one explained in [5, 6] gives us errors bounds for
the discrete solutions that are obtained by the difference schemes described above.
Under condition (5.6), if we use the difference schemes (6.5), (3.1) and (6.5), (4.1),
we obtain the following error estimates

lu(x, 1) = zo5 (6, 0)| S M(ENT"+ 1), (x,0) € Gy, (6.7a)

lu(x, 1) = z(o5y (0, )] S M(N"'InN + 1), (x.1) € G- (6.7b)

The above formulation allows us to briefly summarize a result obtained in [10].

Theorem 6.1. Let the hypotheses of Theorem 4.1 hold for the data of boundary value
problem (2.1) and its solution. Then, under condition (5.6) and for N, Ny — oc, the
solution of the difference scheme (6.5), (4.1) (or scheme (6.5), (3.1)) converges to the
solution of (2.1) e-uniformly (for a fixed value of ¢). The estimates (6.6), (6.7) hold
Jfor the solutions of these difference schemes.

Remark 1. If the condition n = 0 in Theorem 4.1 is replaced by n = K, K > —1,
the following estimate holds

1011(203.2) (%, ) = Z(6.5) (%, 1) t<MM(j§' Ny () eGy, >0t I<K+1.
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Remark 2. Note that the estimates (6.7a) and (6.7b) are similar to the estimates
(3.3) and (4.2). It means that the domain decomposition preserves the accuracy of
the base schemes.

7. Improved Time-Accuracy
7.1. A Scheme Based on Defect Correction

The technique used in this paper to improve time-accuracy is based on the one in
[S]. For the difference scheme (3.2), (4.1) the error in the approximation of the
partial derivative (0/0¢t)u(x,t) is caused by the divided difference d;z(x, t) and is
associated with the truncation error given by the relation
92 3

“lr

j, u(x,t) —6 ggu(xt ), (7.1)

0 . -
oy 10 1) = duuulx, 1) =
where ¥ € [0, t]. Therefore we now use for the approximation of (8/df)u(x,t) the
expression dzu(x, 1) + td;u(x,1)/2, where d;u(x,t) = du(x,t — 1), dqu(x,¢) is the
second central divided difference. We can evaluate a better approximation than
(3.2a) by defect correction

2

Ao e, 1) = £ 0) +2 ploe, D)7 ozl ), (7.2)

with x € @ and ¢ € &, where @ and @q are as in (3.1); 7 is step-size of the grid @y;
z“(x, 1) is the “corrected” solution. Instead of (82/8t3)u(x, t) we shall use J;;z(x, 1),
where z(x,t), (x,1) € Gy, is the solution of the difference scheme (3.2), (4.1). The
new solution z¢(x,) has a consistency error ('(1>).

7.2. The Defect Correction Schemes of Second-Order Accuracy in Time

Constructing the difference scheme in (7.2), instead of (0°/0¢*)u(x,t) we use
dxz(x,t), the second divided difference of the solution to the discrete problem
(3.2), (4.1). On G, we write the finite difference scheme (3.2) as
Az, 6) = (x, 1), (x,1) € Gy,
oz () = flx1),  (x1) h (73)
200, 1) = o(x, 1), (x,1) €S8},

where z(!)(x, ) is the uncorrected solution. For the corrected solution z(*) (x, ) we
solve the problem for (x,t) € G,

27t S u(x,0), =1,
A2 0) = £y + 4 P02 T s0)  (wDeGh
p(x, )27 1822V (x, 1), > 21 (7.4)

2, t) = o(x,1), (x,1) €Sp.

Here the derivative Tu(x,O) is obtained from (2.14).
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k(). (x0) € GE(),
k() =4 2V, k=1

SR ),k 2 2
for (x.1) € Gy(r"

i
e
~
g

D, t) = 2% 0),  (x,1) € Gulr). ' € .

Here

00 ) = 8 (0,507 = G (.6 1), (1.1) € Gy("), 1" € .

Now we find z¥%(x, 1) for (x,r) € G,(¢"), solving the corrected problem

Aun () =0, (v0) € Ghe),

ey =4 . (et) e Sk

for (x.1) € Gi("), k= 1,....K, " € ay;

AR (), (x1) € GE(EY,

) ={ P nt), k=1, ) »
. (6, 0) € GLt"N\GH(Y)
), k>2

for (x,t) € Gy(t"), k=1,....K, " € @y.
The function z?(x, ) on the strip G(¢") is defined by the relation

:(2)()(7 )= z(l‘%(x, 0, (x,t) € Gp(t"), " € @y.

Here

D)y = (e nr),  (x1) € G,
0 (15 8") = 0 (o, 157,20 (1)
=o(x, ") + 20, ) = 2D ), (1) € Gulr),

v(x, G 1Y) = veapn e tt”),  (x ) € Sp(f");

(8.2b)

(8.3a)

(8.3b)
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A(8.3)(Z(2)(X~ f)) = Aoy 0 = [P0, (xv1) € G, (8.3¢)
FP) = P 5200)) = flx1)
__l 2
x,t su(x,0), t=r1, .
+ plx.1) I= ) . (v, 0) € G

(e, )27 002 (x, 1), 1> 21

We call the function zg_)3)(x, t) the solution of the domain decomposition — defect

correction scheme. The difference scheme (8.3), (4.1) can be briefly written in the
operator form

Qee. 2)(2(”()‘ 0: V) @) () =0, (x.1) € G
Q((’} (Y I f(‘? ( ) () l//(z)(')) = O» (.X',f) € G/h (83d)

where

SOy = £l f U =.f'(239(.>(xﬂt;z<”(->>ﬂ w“’t”'f”)EOv

Y ) = P 20 () = 2 ) = 2 ),
(x,t) € Gy(t"), t = """

For the solutions of difference scheme (8.3), (4.1) the estimate (7.6) remains valid
(under assumption that condition (5.6) and the hypotheses of Theorem 7.1 are
fulfilled).

8.1.2. In the case of P > 1 we discretise the process (5.9), (5.8). In the grid con-
structions (8.2a) and (8.3a), when we solve the finite difference boundary prob-
lems on G, the functions =Mk (x,r) and =% (x,¢) are replaced by the functions

z) (x, 1) and zp )“(v t), and the set Gj is replaced by the set G},
(i) 1
Ay (@) =0, e Gl (8.4a)
m Ax ), k=1, .
EA A wn, k=2 | (x.0) €Sy ("), p=1,...,P
ZVE (x, f =
for (x.1) € Gy ("), k=1... K. "€y, i= 12

(il% o
Zl’ll\(x',t)a ( )E [,/,( ), p= l,...,P,

2 ) = ), k=1,
o (x t) EGh(”)\U ph( )
AT (xr), k>2

for (x,t) € Gy(f"), k=1,....K, t" € @y, i=1,2;
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2 (x. ) = 2% (x,h),  (x0) €G!, e dy, i=1,2.

Here

8"y =0V (x,50%),  (x,t) € Gu("),

ety = 80 (x, 152", ()
~ {v(x,t M+, (xn1) € Gh(t”)a}
o), (n1) € S

o(x, 51") = v ("), (x,1) € Sp("),
(2 1
P ) = 0, Y2 (60" = Wi (e 62,2 (),

(x,1) € Gy(£"), t = 1"t

>~

i) _ (i) ; «
AY, (",,"‘(r z)): oK, 6) = fO (6, 0), (k1) € Gy,

FU0) = flx0), [P = 87 (o1 “28)4)( ).

We rewrite the difference scheme (8.4), (6.2) in the operator form

Q6521 (e, 1) /M), () W () =0, (x.1) € Gy,

Q(GAS)(Z(?') (x, t);f(z)(')v q)()v W(z)()) =0, (X, t) € Gln

where

) = 0, Y (") = Wi (et 2y ()

, (x,0) € Gu(t");

(8.4b)

Following the arguments given in [5, 6, 10] the following theorem can be derived.

Theorem 8.1. Let the boundary value problem (2.1) and its solution satisfy the
assumptions of Theorem 7.1. Then, under condition (5.6), the solutions of the dif-
ference schemes (8.3), (4.1) and (8.4), (4.1) converge, as N, Ny — oc, to the solution
of the bounduary value problem e-uniformly (the solutions of schemes (8.3), (3.1) and
(8.4), (3.1) converge for a fixed value of the parameter ¢). For the solutions of the

difference schemes on the mesh (4.1) the estimate (7.6) holds.
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8.2. The Difference Schemes of Third-Order Accuracy in t

8.2.1. We approximate the boundary value problem by the alternating scheme
with one processor

Al ( b(x, t)) =0, (u1) € G, (8.5)

for (x.f) € GX(!"). k=1,....K, " € @y, i=1.2.3;

AR (x, 1), (x.0) € GF, (")
)= s, k=1,

}, (x,2) € Gu(f"\G} (")

(1), k=2
for (x,t) € Gy(¢"), k=1....K, " € @y, i =1,2,3;

20(x, 1) = 2R (x.1), (x,0) € Gu(t"), " € @, i=1,2,3.

Here

/\

CHT u(x,0) + Cjat? ‘mu(x 0)) =T,

=flx,0) + ( u(x,0) + Cnt* & m u(x,0) ),

P( X, )(C.HTOZI'"— N(x,0) + Caw?832V(x,1)), 1231
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(x, f) S GZ, C,'j = C,-j(7_7).

8.2.2. In the case of P > | processors we use the scheme

i i) o
Als (35 0) =0, (r0) € Gy, (8.6)
. 2,6, k=1
A ~ 3% ) 9 "
:y)k(x’[)z{mm—-'(x 0, k>2 [ (1) €8y (), p=1.....P
for (x,1) € Gy ("), k=1,....K, " € @y, i=1,2,3;
ik ~k o
z}))k(x,f), (x’[)EG;I;/;(t’), p=1,...,P,
M) =4 e nm), k=1, ) P
}, (x,1) € Gy(t")\ U Gh, (")
%), k>2 =1

for (x,1) € Gy(¢"), k=1,...,K, " €@y, i =1,2,3:

1) =2 (x,1), (x.0) € Gul"), I € @y, i = 1,2, 3.
Here

260" = By (e 6 W), (n0) € Gy,
[ 7 i V. / ) . .
W) = g (e 07) = g g (627,20 (), 0 < < ),

F(x0) =f((;l)5) (x, t; z((g).é)(v), 0<j< i).

Theorem 8.2. Let the boundary value problem (2.1) and its solution satisfy the
assumptions of Theorem 1.2. Then, under condition (5.6), the solutions of the dif-
ference schemes (8.5), (4.1) and (8.6), (4.1) converge, as N, Ny — oc, to the solution
of the boundary value problem e-uniformly (the solutions of difference schemes (8.5),
(3.1) and (8.6). (3.1) converge for a fixed value of the parameter ¢). For the solutions
of the difference schemes the estimate (7.9) holds.

The proof of Theorems 8.1, 8.2 can be done by using the technique from [5, 6, 10].

In a similar way one can construct parallel schemes with an arbitrary high order
of time-accuracy ¢ (N~'InN + <), > 3.
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Conclusion

In order to efficiently solve a singularly perturbed parabolic PDE by an
e-uniform discretisation procedure, 1st order accurate in space and high-order in
time, we have studied a defect correction procedure. To possibly reduce the
computation time, we have splitted the procedure in P independent processes,
preserving e-uniform convergence. The requirements are precisely described
under which the splitting does not affect the accuracy of the method. Note that
such a technique to construct high-order time-accurate parallel methods can be
naturally extended to multidimensional convection-dominated problems without
affecting the accuracy.

Appendix: Estimates of the Solution and its Derivatives

Here we rely on the a-priori estimates for the solution of problem (2.1) and its
derivatives as derived for elliptic and parabolic equations in [9].

We denote by H®(G) = H**>(G) the Holder space, where o is an arbitrary
positive number [15]. We suppose that the functions f(x,7) and ¢(x,¢) satisfy
compatibility conditions at the corner points so that the solution of the boundary
value problem is smooth for every fixed value of the parameter &.

For simplicity, the following conditions are assumed to hold at the corner points
So N St

o bl
az@(x,t):—a—t,\fo(p(x,t)=0, k +2ky < [o] + 2n, (9.1)

£W+%
Wf(x,f) =0, k+2ko <[o]+2n-2,

where [o] is the integer part of a number o, o > 0, n > 0 is an integer number. We
also suppose that [o] +2n > 4.

Using interior a-priori estimates and estimates up to the boundary for the regular
function (&, n), see [15), where (&, n) = u(x(&),t), & =x/e, n =t/e, we obtain

ak +ko

—k—ko ¢ s
mu < Mg N (X,I)EG, k+ 2ky < 2n+4, n>0. (92)

(x,7)

This estimate holds, for example, for

ue HPH(G), v>0, (9.3)

where v is some small number. For example, (9.3) is guaranteed for the solution of

problem (2.1) if a. b, ¢, p, f € H&2(G), p € H*¥)(G), « >4, n >0 and
condition (9.1) is fulfilled.
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In fact we need a more accurate estimate than (9.2). Therefore, we decompose the
solution of problem (2.1) into a regular component U(x,¢) and a singular com-
ponent W(x,t)

u(x,t) = Ux,t) + W(x, 1), (x.t) €G, (9.4)

where W (x,t) represents the regular boundary layer. The function U(x,?) is the
smooth solution of (2.1a) satisfying condition (2.1b) on S\S;. For example,
under suitable assumptions for the data of the problem, we can consider the
solution of the Dirichlet boundary value problem for (2.1a) smoothly extended
to the domain G* (G* is a sufficiently large neighbourhood of G on the left
of the set Sé). On the domain G the coefficients and the initial value of the
extended problem are the same as for (2.1). Then the function Uf(x,t) is
the restriction (on G) of the solution to the extended problem, and
U e H#(G), v>0. The function W(x,f) is the solution of Dirichlet’s
problem for the parabolic equation

LonWx,t)=0, (x0)&G, W(xit) =ulxt)—Uxt), (x1)€S.

If (9.3) is true then U, W € H4+2+(G).

We suppose that a, b, ¢, p, f € HPH4(G), o € HET*#49(G), o > 4, n > 0. Now,
for the functions U(x,t) and W(x, ) we derive the estimates

a/d%n )
lﬂ Ath“U(xf < M1 4 gtnhho) (9.5)
(‘)}\’Jr/\‘() 5
mW(xt <M1+ &7 e exp(—mg e~ x), (9.6)

(x,t) € G, k+2k <2n+4,

where m(%) is an arbitrary number from the interval (0,mqg), my =
mingla™ (r 1)b(x,t)]. The estimates (9 5) and (9.6) hold, for example, when a, b, ¢,
p. f c H! (2+2+dn) (G) pE H! (2+a+4n) ( ) and

U W e H#29(G), v > 0. 9.7)

The inclusions (9.7) are guaranteed if a, b, ¢, p, f € H**"=2(G), o € H*2)(G),
o >4, n >0 and condition (9.3) is fulfilled. We summarize these results in the
following theorem.

Theorem 9.1. Assume in (2.1) that a, b, ¢, p, f € H**%(G), ¢ € HEH4#)(G),
o >4, n>0 and let condition (9.3) be fulfilled. Then, for the solution u(x,t) of
problem (2.1), and for its components in representation (9.4), it follows that u, U,
W e HS (G and that the estimates (9.2), (9.5), (9.6) hold.
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