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Summary. We first show the idea behind a space-mapping iteration technique for
the efficient solution of optimization problems. Then we show how space-mapping
optimization can be understood in the framework of defect correction. We observe a
difference between the solution of the optimization problem and the computed space-
mapping solutions. We repair this discrepancy by exploiting the correspondence with
defect correction iteration and we construct the manifold-mapping algorithm, which
is as efficient as the space-mapping algorithm but converges to the accurate solution.

1 Introduction

Space mapping (Bandler et al. [1, 2]) is a technique to reduce the computing time
in demanding optimization procedures by means of simple surrogate models. Space
mapping makes use of both accurate (and time-consuming) models and less accurate
(but cheaper) ones.

The original space-mapping procedure corresponds with right-preconditioning
the coarse (inaccurate) model in order to accelerate the iterative procedure for the
optimization of the fine (accurate) one. The iterative procedure used in space map-
ping for optimization can be understood as a defect correction iteration [3] and
the convergence can be analyzed accordingly. We show that, right-preconditioning
is generally insufficient and (also) left-preconditioning is needed. This leads to the
improved space-mapping or ‘manifold-mapping’ procedure. This manifold mapping
is shown in some detail in Section 5

2 Fine and coarse models in optimization

The optimization problem.

The specifications of an optimization problem are denoted by (t, y) ≡ (ti, yi)i=1,...,m.
The independent variable is t ∈ R

m. The dependent variable y ∈ Y ⊂ R
m represents
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the quantities that describe the behavior of the phenomena under study. The set Y
is the set of possible aims.

The variable y does not only depend on t but also on control/design variables, x.
The difference between the measured data yi and the values y(ti,x) may be the result
of, e.g., measurement errors or the imperfection of the mathematical description.

Models that describe reality appear in several degrees of sophistication. Space
mapping exploits the combination of the simplicity of the less sophisticated methods
with the accuracy of the more complex ones. Therefore we distinguish the fine and
the coarse model.

The fine model.

The fine model response is denoted by f(x) ∈ R
m, with x ∈ X ⊂ R

n the fine model

control variable. The set f(X) ⊂ R
m represents the fine model reachable aims. Notice

that, with n < m, f(X) is an n-dimensional manifold in Y ⊂ R
m. The fine model is

assumed to be accurate but expensive to evaluate. For the optimization problem a
fine model cost function ||| f(x) − y||| should be minimized. So we look for

x
∗ = argmin

x∈X

||| f(x) − y||| . (1)

A design problem, characterized by the model f(x), the aim y ∈ Y , and the
space of possible controls X ⊂ R

n, is a reachable design if the equality f(x∗) = y

can be achieved for some x∗ ∈ X.

The coarse model.

The coarse model is denoted by c(z) ∈ R
m, with z ∈ Z ⊂ R

n the coarse model control

variable. This model is assumed to be cheap to evaluate but less accurate than the
fine model. The set c(Z) ⊂ R

m is the set of coarse model reachable aims . For the
coarse model we have the coarse model cost function ||| c(z) − y||| and we denote its
minimizer by z∗,

z
∗ = argmin

z∈Z

||| c(z) − y||| . (2)

The space-mapping function.

The similarity or discrepancy between the responses of two models is expressed by
the misalignment function r(z,x) = ||| c(z) − f(x)||| . For a given x ∈ X it is useful
to know which z ∈ Z yields the smallest discrepancy. Therefore, the space-mapping

function p : X ⊂ R
n → Z ⊂ R

n is introduced,

p(x) = argmin
z∈Z

r(z,x) = argmin
z∈Z

||| c(z) − f(x)||| . (3)

Perfect mapping.

To identify the cases where the accurate solution x∗ is related with the less accurate
solution z∗ by the space mapping function, a space-mapping function p is called a
perfect mapping iff z∗ = p(x∗).

We notice that perfection is not a property of the space-mapping function alone,
but it also depends on the data y considered. A space-mapping function can be
perfect for one data set but imperfect for a different data set, and if a design is
reachable a space mapping is always perfect irrespective of the coarse model used.
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3 Primal and dual space-mapping solutions

In literature many space mapping based algorithms can be found [1, 2], where two
types can be distinguished: the primal and the dual.

The primal space-mapping approach seeks for a solution of the minimization
problem

x
∗
p = argmin

x∈X

‖p(x) − z
∗‖ . (4)

The dual determines
x
∗
d = argmin

x∈X

||| c(p(x)) − y||| , (5)

where we can recognize c(p(x)) as a surrogate model.
Both approaches coincide when z∗ ∈ p(X) and p is injective. If, in addition,

the mapping is perfect both x∗
p and x∗

d are equal to x∗. However, in general the
space-mapping function p will not be perfect, and hence, a space-mapping based
algorithm may not yield the solution of the fine model optimization. The principle
of the approach is summarized in Figure 1.

Fig. 1. The space mapping function p(x) = argmin
z∈Z

||| c(z) − f(x)||| .
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The surrogate model: c(p(x)) ≈ f(x).

4 Defect correction iteration

The efficient solution of a complex problem by the iterative use of a simpler one, is
known since long in computational mathematics as defect correction iteration [3].

To solve a nonlinear operator equation
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F x = y, (6)

where F : D ⊂ E → bD ⊂ bE is a continuous, generally nonlinear operator and E
and bE are Banach spaces, defect correction iteration reads

(
x0 = eG0 y ,

xk+1 = eGk+1

“
eFk xk − F xk + y

”
,

(7)

where eFk is a simpler version of F and eGk is the (simple-to-evaluate) left-inverse of
eFk.

For our optimization problems, where the design may be not reachable, y ∈ bD
but y /∈ F(D), so that no solution for (6) exists. We want to find the solution of (1),
or

x
∗ = argmin

x∈D ‖Fx − y‖ bE
,

which we associate with it a defect correction process for iterative optimization by
taking E = R

n, bE = R
m, D = X, bD = Y and by substitution of the operators:

Fx = y ⇔ f(x) = y ,
x = Gy ⇔ x = argmin

ξ∈E

‖f(ξ) − y‖ bE
,

eFkx = y ⇔ c(pk(x)) = y ,

x = eGky ⇔ x = argmin
ξ∈E

‖c(pk(ξ)) − y‖ bE
.

(8)

Here pk is not the space-mapping function but an arbitrary (easy to compute)
bijection, e.g., the identity if X = Z. Notice that, in principle, also c = ck might be
adapted during the iteration.

With (8) we derive from (7) the defect-correction iteration scheme for optimiza-
tion:

x0 = argmin
x∈X ‖c(p0(x)) − y‖ , (9)

xk+1 = argmin
x∈X ‖c(pk+1(x)) − c(pk(xk)) + f(xk) − y‖ . (10)

In this iteration every minimization involves the surrogate model, c ◦ pk.

Orthogonality and the need for left-preconditioning.

For the stationary points of the above process, limk→∞ xk = x, we can derive [4]:

f(x) − y ∈ c(Z)⊥(z∗) . (11)

Like the space-mapping methods, the above iteration has the disadvantage that,
in general, the fixed point does not coincide with the solution of the fine model
minimization problem. This is due to the fact that the approximate solution x

satisfies (11), whereas the (local) minimum x∗ satisfies

f(x∗) − y ∈ f(X)⊥(x∗) .

Hence, differences between x and x∗ will be larger for larger distances between y and
the sets f(X) and c(Z) and for larger angles between the linear manifolds tangential
at c(Z) and f(X) near the optima.
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By these orthogonality relations we see that it is advantageous, both for the con-
ditioning of the problem and for the minimization of the residual, if the manifolds
f(X) and c(Z) are found parallel in the neighborhood of the solution. However, by
space mapping or by right-preconditioning, the relation between f(X) and c(Z) re-
mains unchanged. This causes that the fixed point of traditional space mapping does,
generally, not correspond with x∗. This, however, can be improved by the introduc-
tion of an additional left-preconditioner. Therefore we consider such a preconditioner
S so that near c(z∗) ∈ Y the manifold c(Z) ⊂ Y is mapped onto f(X) ⊂ Y :

f(x) ≈ S(c(p(x))) .

In the next section we propose our manifold-mapping algorithm, where an affine
operator maps c(Z) onto f(X) in the neighborhood of the solution. More precisely:
it maps c(p(xk)) to f(xk) and it approximately maps one tangential linear manifold
onto the other. This restores the orthogonality relation f(x) − y ∈ f(X)⊥(x). Thus
it improves significantly the traditional space-mapping approach and makes the
solution x∗ a stationary point of the iteration.

5 Manifold Mapping, the improved space mapping

algorithm

We introduce the affine mapping S : Y → Y such that Sc(z) = f(x∗) for a proper
z ∈ Z, and the linear manifold tangential to c(Z) in c(z) maps onto the one tan-
gential to f(X) in f(x∗). Because both f(X) and c(Z) are n-dimensional manifolds
in R

m, the mapping S can be described by

Sv = f(x∗) + S (v − c(z)) ,

where S is an m×m-matrix of rank n. A full rank m×m-matrix S can be constructed,
which has a well-determined part of rank n, while a remaining part of rank m − n
is free to choose. Because of the supposed similarity between the models f and c we
keep the latter part close to the identity. The meaning of the mapping S is illustrated
in Figure 2.

So we propose the following algorithm, where the optional right-preconditioner
p : X → Z is still an arbitrary non-singular operator, which can be adapted to the
problem. Often we will simply take p = I , the identity.

1. Set k = 0, set S0 = I the m × m identity matrix, and compute

x0 = argmin
x∈X ||| c(p(x)) − y||| .

2. Compute f(xk) and c(p(xk)).
3. If k > 0, with ∆ci = c(p(xk−i)) − c(p(xk)) and ∆fi = f(xk−i) − f(xk), i =

1, · · · , min(n, k), we define ∆C and ∆F to be the rectangular m × min(n, k)-
matrices with respectively ∆ci and ∆fi as columns.
The generalized singular value decomposition of these (rectangular) matrices
is ∆C = UcΣcV

T and ∆F = UfΣfV T , with Uc, Uf orthonormal, Σc and Σf

diagonal and V non-singular.



330 Pieter W. Hemker and David Echeverŕıa

4. The next iterant is computed as

xk+1 = argmin
x∈X ||| c(p(x)) − c(p(xk)) + (12)

h
UcΣcΣ

†
fUT

f + (I−UcU
T
c )(I−UfUT

f )
i
(f(xk) − y)||| .

5. Set k := k + 1 and goto 2.

Here, Σ†
f denotes the pseudo-inverse of Σf . It can be shown that (12) is asymtotically

equivalent to
xk+1 = argmin

x∈X |||Sk(c(p(x))) − y||| , (13)

where the approximate affine mapping is

Sk v = f(xk) + Sk(v − c(p(xk)) ,

with Sk = UfΣfΣ†
cUT

c + (I − Uf UT
f ) (I − Uc UT

c ).

If the above iteration converges with fixed point x and mapping S, we have

f(x) − y ∈ S(c(p(X)))⊥(x) = f(X)⊥(x) .

This, and the fact that Sk(c(p(xk))) = f(xk), makes that, under convergence to x,
the fixed point is a (local) optimum of the fine model minimization.

The improved space-mapping scheme

xk+1 = argmin
x

|||Sk(c(pk(x)))) − y||| ,

can also be recognized as defect correction iteration with either eFk = Sk ◦ c ◦ pk

and F = f or with eFk = Sk ◦ c and F = f ◦ p−1

k .

Fig. 2. Manifold Mapping.
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The surrogate model: Sk ◦ c ◦ p ≈ f .
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6 Conclusion

By right preconditioning, manifold mapping improves traditional space mapping
because it delivers the accurate optimum with the same computational efficiency as
the space mapping algorithm.
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4. D. Echeverŕıa and P.W. Hemker. Space mapping and defect correction. Comp.

Methods in Appl. Math., 5(2):107–136, 2005.


