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Abstract

In this paper we discuss different possibilities of using partially ordered sets
of grids in multigrid algorithms. Because, for a classical sequence of regular grids
the number of degrees of freedom grows much faster with the refinement level for
3D than for 2D, it is more difficult to find sufficiently effective relaxation proce-
dures. Therefore, we study the possibility of using different families of (regular
rectangular) grids.

Semi-coarsening is one technique in which a partially ordered set of grids is
used. In this case still a unique fine-grid discrete problem is solved. On the other
hand, sparse grid techniques are more efficient if we compare the accuracy obtained
with the number of degrees of freedom used. However, in the latter case it is not
always feasible to identify an appropriate discrete equation that should be solved.
The different approaches are compared.

The relation between the different approaches is described by looking at hi-
erarchical bases and by considering full approximation (FAS). We show that in
some cases the 3D situation is essentially more difficult than the 2D case. We also
describe different multigrid strategies. Numerical results are given for a transonic
Euler-flow over the ONERA M6-wing.

Note: In essence, this paper will be published in the Proceedings of the Fifth
European Multigrid Conference, Birkhauser, Basel.

1 Introduction

Classical multigrid algorithms are based on a sequence of grids, and a sequence of finite
dimensional function spaces is associated with it. There is a natural ordering. On the
finest grid a discretisation is given and on the coarser grids less accurate discretisations of
the same problem accelerate the solution process for the finest problem. This approach
is used in two as well as in three dimensions (d = 2, 3). For illustrative purposes it can
also be used in one dimension (d = 1).

In the most common approach the sequence of approximating function spaces is
nested. Often the coarsest grid consists of a small number of coarse rectangular blocks.
A next finer level is obtained by dividing each block in equal parts in each of the coordi-
nate directions, so that for all blocks 29 new blocks are created. For higher dimensional
problems, the disadvantage is clear: for each next finer level the number of blocks multi-
plies by 2¢. This implies that only a small portion of the possible error modes on a grid
can be represented on the coarser grids.



The result is that in 3D problems the classical MG method may appear less effective
than in 2 dimensions. Particular problems arise for strongly anisotropic and convection
dominated problems, where the so-called “wash board frequencies” (frequencies that are
rapidly varying in one and slowly in another direction) may be difficult to control.

The classical cure against these difficulties is the choice of powerful relaxation al-
gorithms, e.g., line or plane relaxations. However, not only the more complex imple-
mentation of these smoothers, but also the large number of possible line and plane
combinations makes it a hard job to develop methods that are robust and efficient for
general equations.

Another disadvantage of dividing a cube into 8 smaller cubes are the very large
systems of linear equations that are found already for a relatively small number of levels.
It is the “curse of 3D” that n3 is already large -for computer resources- when n is still
modest.

Another approach that can be used is semi-coarsening. Here, grids are refined by
halving (or doubling) the mesh size in one direction only [13, 14, 16]. Now the grids
do not make an ordered sequence. The family of grids is only partially ordered. In
a semi-coarsening algorithm there is a finest grid for which the solution is eventnallv
found. Again, discrete problems on the family of coarser grids are solved to accelerare
the solution process. In this way the coarse-grid-correction in the MG algorithm becomes
more complex, but simpler relaxation procedures can be used.

Another approach that makes use of a similar family of partially ordered grids 1s
Zenger's combination technique [3]. Here, essentially a number of independent discrete
problems is solved on a subset chosen from the partially ordered set of grids. By extrap-
olation these discrete solutions are combined to a discrete approximation of the solution
on the finest grid (for which no discrete system has to be solved).

Zenger and his co-workers showed that under conditions such an approximation mav
result in an approximation error which is O(27%n-!), whereas the solution is repro-
sented by O(n4'2%) degrees of freedom only. This result makes this sparse grid vopre-
sentation of the approximate solution most efficient.

In the present paper we show that in some respects the sparse grid representation 1=
more cumbersome and may give rise to particular difficulties in the 3D case. We show
how some of these can be relieved by taking a representation with O(n?4™) degrees of
freedom. For a larger number of levels this representation is still much more efficient
than the usual O(8™) methods.

In Section 2 we show an essential difference between the 2D and the 3D case for the
linear elliptic second order equation, and in Section 3, as an example of a system of
non-linear equations, we show some results for multiple semi-coarsened and sparse-grid
multigrid algorithms for the 3D Euler equations.

2 Linear elliptic problems
Let 2 = (0,1)? € R be the d-dimensional unit cube with boundary T'. To identify a
prid on 2 we use a multi-integer notation, k = (ky,.... kg), with k; € IN{ fori = 1.....d.

For n. k € (INJ ) multi-integers we define,

k <n< (k?[ __<_ ng A o A /i),[ < 7'),,,5).



a. Full coarsening. b. Multiple semi-coarsening.

Figure 1: Two types of 3D coarsenings.

In a similar way we define k £ n,k = n, k # n, etc. Notice that k # n means that oll
elements are unequal. The maximum of two multi-integers is defined as

max(k, n) = (max{(ky,ny), -+, max(ky,ng)).
Further, we introduce the relation k = n, and similarly k S n, by
k=n= (/‘\71 =n V -V kdznd).

We define a regular mesh ) on €, with mesh sizes hy = 27% = (275 .., 27%¢) in the
different coordinate directions. The volume of a grid cell Q; € Oy, 0 < j < 2K is denoted
by ||| = hk, .., and k| = ky 4+ ... + Ky is called the level of grid Q. The coarsest
grid is Q,, with o = (0, ..., 0) and therefore the coarsest level is zero. The vertices of the
grid € are denoted by Q, and Ot denotes the i-th vertex on grid O, with o <1 < 2%,

2.1 Bases and spaces

A function u € C(Q) is approximated on € by

U R U = Z U Pkj -
i

Here ¢y is the usual piecewise d-linear basis function with supp (i) = [(J1— D275 (i +
1275 x v x [(jg — 1)27%, (g + 1)27%4] of tensor product type. The standard finite
clement basis By is defined as
: ¢ k
By = {pk; | 0 < j<2°),
and the corresponding space of piecewise d-linear functions is,
Vi = Span(By).
The intersection of the support of two functions iy € By and ¢y € By, is defined by

Int{@xj, @ni) = supp(pi;) N supp(@ai)-
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The spaces {Vi} form a partially ordered set [9], for which we can define the hierarchical
space
g odd, 0<j; <2k if k>0
Wy =Span | { §xj = 5| Ji =0,1 if k=0
i=1,..,d

Here @y is a hierarchical basis function, i.e. the same function as the usual standard b-fwis
function, but only defined for j, for which Qlﬁ] does not appear in any of the coarser grids.
In the following we will denote these hierarchical points with “j odd”, although strictly
spoken this is not true for the grids with Jk|] = 0. The hierarchical basis functions,
specific for grid Qi, are defined by

B = {@wjl@x; € Wi}
The hierarchical basis for Vi, which can be decomposed as Vi = @o<n<kWhn, reads
Be= | B
o<n<k
Using this basis we are able to approximate a function u on 2 by

UR U= D, Y TniPnjs

odn<k  jEfln

whore 7ip; are the hierarchical coefficients. Note that Span(By) = Span(By) = Vi. It
has been shown [9] that, for any m, o < m < e = (1,1,1), the hierarchical coefficients
for piecewise linear functions can be estimated by

fisgle < 1D ™uly 2?2371/ By (e

We see that this bound depends essentially on the volume ||hy|| of the grid cells. There-
fore it seems reasonable to select approximating function spaces Wy, and therefore the
grids () such that those with the smallest volume [|hy|| are omitted. In this way we
obtain the sparse grid [18]. The hierarchical basis for this sparse grid on level £ is denoted

by
U B

0<ini<e

and the corresponding function space by V; = Span(By).

B,

i

2.2 The problem

We consider the following linear elliptic problem

-V (aVu) = f on Q,
aaVu) n+fpu = v on r. (1)

Here the data and the coefficients are functions on §2. For the FEM discretisation we

consider its variational form: find w € H'(Q), such that a(u, v) = f(v) forallw € H'(Q).
with

oo, v) = /Q(V'U)TaVu dS) + / Auv /e dT (2)
:

and
flo) = [S v de /l vy /e dT. (3)

A standard FEM on grid €y is obtained by selecting trial and test functions in Span(By).

This vields the discre ations S, . Hps = f : .
1 ¥ Is t I discrete equations 205 U@k Pri) Ui = flixj), which system is also do-
noted in matrix-form by Ay = fi.



2.3 Discretisation of the hierarchical system
To discretise equation (1) on the sparse grid, we use B, as the basis for test and trial

functions:
we= Y Y UniPuj.
o<|n|<t 5 odd

Substitution in (2) and (3) yields the equations

Z Z 99!1J3(Pk1 UnJ (f‘Pkl) (4)

0<[n|<e

This system is called the hierarchical system and is denoted by
Agtg = fr. (5)

The matrix A, consists of blocks (Ank)0<lnl [k|<¢ Where A,y consists of coefficients (a{@Enj» Dxi))-
The blocks Ay on the diagonal of Ag are diagonal blocks, because Int(@y;, Pri) = 0 ex-
cept for i = j. In general, the functions ¢n; and Py can live on completely independent
grids 2, and Q and there is no obvious and efficient technique to calculate these matrix
entries as is the case for standard finite elements. Especially, if we consider equations
with variable coefficient a, the efficient computation of these integrals is not straightfor-
ward. To avoid the problem of explicit caleulation of a(@nj, Pxi) we want to derive the
discrete equations from the usual FEM stiffness matrices Ayy.

For k < m let Rym : Vin — Vi be the restriction defined by interpolation at nodal
points i, then every function @ € Bl is represented on grid Qm by

Pki = Z ka,ip(pomp-
P

Now, the left-hand side in (5) reads, with m = max(k, n),

Z Z a’(@kiv (fbnj)“'nj

0<|nl<r
= Z Z a Z Rym ip¥Pmp, Z an,mtpmq)“n‘)
0<|n|<e
= Z Z ka.ipan,qumm,pq“nj
n jp.q
= Z (kaAmman)“n
o<ini <t
= Atk + Z + Z (kaAmman)“'n- (G)

.
n_;k.lm|§ﬂ n>k,|mf>f

Thus we express the residual computation for the equations (5) in terms of the nsnal
FEM stiffness matrices Axk. The efficient calculation of (6) is our immediate concern.
Below we restrict ourselves to the constant coeflicient case.

2.4 Semi-orthogonality

If for the Poisson equation a(@yn;, ki) vanishes, the fanctions @yy and @y are called
semi-orthogonal [15]. For the efficient computation of the hierarchical system this is a
useful property, because each semi-orthogonality relation contributes with a zero entrv in




the hierarchical stiffness matrix. In (2] it is shown that this semi-orthogonality property
holds for many functions ¢y € f?f and @y € B{:’ . Below we will discuss this property for
the two- and three-dimensional case separately, because there is a significant difference
between both cases.

Two-dimensional case. For the Poisson equation, in the two-dimensional case [2] we
have, a(@nj, Pxi) = 0 if n # k, because, considering a single derivative from a(Pnj, Pxi)s

O¢n; Ofici . e
_/Q (aﬂip 5’;})‘) d) # 0 & (77,,, = kp) A (]p2 P= 4,2 )

Hence functions on grids £, and x with n # k are semi-orthogonal.

For the functions @p; and @y with k = n we introduce m = max(k, n), then, becanse
d = 2, either m = n or m = k. Therefore, the bilinear form can be calculated by (6)
and, because |m| < ¢ is always ensured, this means that the third term in equation ()
can be dropped. Below, we will see that this is not true in the three-dimensional casc.

What remains is the efficient matrix vector multiplication. With precalculated values
of Axk, k| € £, we use (6) for a residual computation of (5). One can readily verify that
for the constant coefficient case the total number of operations for the matrix vector
multiplication (5) is proportional to O (£22%) for O(£2!) standard basis points. Therefore
the method is suboptimal.

Three-dimensional case. Also in the 3D case we have semi-orthogonality for func-
tions ¢n; and @i with n # k. The nonzero contributions in the stiffness matrix originate
only from functions @n; and @y with n = k. This corresponds with grids £, and €
in the same coordinate plane in the grid of grids (see Figure 2). For ¢y; (k fixed) a
non-semi-orthogonal function ¢n; can live on any grid 2, in one of the indicated plancs.

Figure 2: Planes with non-semi-orthogonal functions

. ‘ . [ ] g ‘ .
Planes, in the space of grids, for which k = n, for fixed n = (n,n,n). The diagonal
plane corresponds with the grids k| = n.

In (6) we showed how we can calculate the contributions of a(@ng, Pia) via the maxi-
mum grid. In the 3D case one can verify that, different from 2D, with [n| < ¢, k| < ¢,
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the relations a(Pn;j, Pri) # 0 and m = max(k, n) do notimply |m| < Z. Le. the maximum
grid £y, is not always part. of the sparse grid of grids. In fact, we see that in the 3D case
we have |m| < 2¢. This implies that application of (6) requires the evaluation of FEM
stiffness matrices on level 2¢. We call the approach of using the grids up to level 2¢ the
semi-sparse technique. Here we need the evaluation of O(¢?) stiffness matrices of order
O(2%%). This is well between the sparse grid technique with O(¢?) stiffness matrices of
order @(2°) and the full grid technique with one O(3%) stiffness matrix. In Section 3
we will see that a similar combination of grids can be useful for the solution of more
complex non-linear systems.

At first sight it seems an alternative not to compute the residual of equation (6)
exactly, but to introduce an approximation of the matrix A by taking the expression (6)
in which the terms with |m| > ¢ are omitted. One can verify that all discarded entries
from the matrix A, are of relatively small size. In this way we obtain an approzimated
stiffness matriz, denoted as A;. One might expect that this 4, could still be some
sufficiently accurate approximation of the discrete Laplacian. However, it can be shown
that this approximate stiffness matrix Aq is not useful for [urther computations becanse
it is not positive definite. In Table 1 we show the extreme eigenvalues of Ay and A,
for various £. The smallest eigenvalue of A; becomes negative, which ruins one of the
essential properties of Ag.

T=4] (=5] =6
Moe | 2.2843 | 3.3808 | 4.7756
Moin 106323 [ 0.1803 | 0.0582

Ar | Amax | 2.1498 [ 31085 | 4.3162
Menin | 05168 | —0.0251 | —0.1283

Table 1: Extreme eigenvalues for A, and A,.

Following the semi-sparse-grid approach, one can verify that in the constant coefficient
case we can perform a residual computation with order O(4%) operations for O(f?2")
sparse grid points. Of course the additional work and also the extra storage is a disad-
vantage of this method. As a compromise between the sparse and the semi-sparse-grid
approach one might consider discretisations which are obtained by not using all grids up
to level 2¢, but only a limited number of extra levels. Again we obtain an approximate
stiffness matrix /ip, with a lower accuracy as flp, but the operation count will be smaller.
However one should be very careful with this approach, since the possibility exists that
fi(f becomes indefinite if an insufficient number of additional levels is taken into acconnt.

3 The Euler equations for 3D CFD

In this section we consider the multigrid solution of the steady, 3D Euler equations of
gas dynamics. The equations are discretised in their integral form. The computational
domain €2 is divided, in a regular manner, in cell-centered finite volumes. These finite
volumes are arbitrarily shaped hexahedra. Following the Godunov approach, along each
cell face the flux vector is assumed to be constant and determined by a uniformly constarnt
left and right state. To solve the resulting 1D Riemann problem over the cell face for
a non-isenthalpic perfect-gas flow, we apply the 3D extension of the 2D P-variant [7]
of Osher’s approximate Riemann solver. For the left and right cell-face states, we take

~I



the first-order accurate approximations. At a later stage, these approximations will he
replaced by higher-order accurate ones, in which case also limiters are introduced. We
emphasize that the major challenge is to know how to solve first-order accurate discrete,
steady 3D Euler equations at efficient, grid-independent convergence rates. Once this is
known, solving higher-order accurate discrete, steady 3D Euler equations can be done
by a standard procedure, e.g. by a defect correction method as outer and the efficient
multigrid method as inner iteration [10].
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b. At far-field houndary.

Geometry of the mesh around the ONERA-M16 half-wing.
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c. At symmetry boundary.
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d. At upper part downstream boundary.

Figure 3: Views at 128 x 32 x 32 C-O-type grid ONERA-M6 half-wing.



3.1 Standard multigrid
3.1.1 The method

First we briefly describe the standard 3D multigrid algorithm on which our method is
built. We use the 3D generalization of the optimal 2D multigrid approach, that was de-
scribed in [7, 6]. As the smoothing technique for the first-order discrete Euler equations,
we apply collective symmetric point Gauss-Seidel relaxation. The four different symmet-
ric relaxation sweeps that are possible on a regular 3D grid, are performed alternatingly.
At each volume visited during a relaxation sweep, the system of five nonlinear equations
is solved by Newton iteration.

As the standard multigrid method we apply the nonlinear version (FAS, [1]), preceded
by nested iteration (FMG, [1]). For this we construct a nested set of grids such that each
finite volume on a coarse grid is the union of 2 x 2 x 2 volumes on the next finer grid.
Let 0,1, ..., Q.. be the sequence of such nested grids !, with €y the coarsest and
§2e,.., the finest grid. Then, nested iteration is applied to obtain a good initial sohition
on Q, .., whereas nonlinear multigrid is applied to converge to the solution on the finest
grid, ge,.... The first iterate for the nonlinear multigrid cycling is the solution obtained
by nested iteration. We proceed discussing both stages in more detail.

Nested iteration. The nested iteration starts with a user-defined initial estimate for
qu, the solution on the coarsest grid. To obtain an initial solution on a finer grid $,,
fivst the solution on the coarser grid € is improved by a single nonlinear multigrid cvele.
Hereafter, this solution is interpolated to the finer grid Q1. These steps are repeated
until the highest level (finest grid €, ) has been reached.

Nonlinear multigrid iteration. Let Ny(gs) = 0 denote the nonlinear system of first-
order accurate discretised equations on {2, then a single nonlinear multigrid cycle is
recursively defined by the following steps:

1. Improve on € the latest obtained solution ¢, by application of np., relaxation
sweeps.

]

. Compute on the next coarser grid ,_; the right-hand side rp_y = Np_ (qo~)) —
Re_1¢Ne(qe), where Ry_y ¢ is a restriction operator for right-hand sides.

3. Approximate the solution of Ne-1(qe-1) = 7o~y by the application of nprg nonlinear
multigrid cycles. Denote the approximation obtained by Go—1.

5 P ) SRS N 1 . —_— y H
4. Correct t.l.u, current. solution by: ¢, = ¢, -+ LPro-i (Ge=1 — qo—y), where Pro_y is a
prolongation operator for solutions,

" \ ' ication of i
5. Improve g, by application of Npost. Telaxations.
" . ‘ “1 . ¥ ¥ * A ‘\. + gy, s M 1 3
Sf‘c ps (2),‘("3) and (4) form the coarse-grid correction. The restriction Ry_i ¢ and the
prolongation P, are the usual operators that are consistent with the piecewise constant
approximation (for more details see [11]).
N()tif(‘.t]',. i [ lassical se ‘e 18 b i " 1

a ]l hat ,QF in the (,l.asm "(11 sequan‘(.o 18 denoted as e in the context of partially

ordered grids. The approximating function spaces for the discrete Euler equations are

Tyias NP H i
Using the more complex notation of Section 2, the sequence is denoted as Q.. Q Q
AR AS gy gy ..y iy

e=(L11) with

max €1
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piecewise constant functions on (p. Approximating properties for these functions have
been studied in [9]. Since the MG method applies the prolongations and restrictions that
are consistent with the approximation used, the corresponding function spaces Vi form
a partially ordered set of tensor product type as treated in [9].

3.1.2 Numerical results

In this section we present convergence results obtained when solving discrete, steady
perfect-gas Euler equations for a standard 3D transonic test case, the ONERA M6 half-
wing at My, = 0.84, o = 3.06°. A C-O-type grid is used, for which we give some views
on the 128 x 32 x 32 version in the Figures 3a — 3d.
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a. Single-grid. h. Standard multigrid.

Figure 4: Convergence behaviors of two solution methods, ONERA-M6 half-wing at
My =084, o =3.06°, Qp = (8 x2x2) x 2mprid, . = 1,2,3.
The slower convergence is for finer meshes.

In Figure 4 convergence results are given for single grid relaxation and for the standard
multigrid method described above. In both graphs, the residual ratio is defined as
IR\, /||RY|L,, where R* is the mass defect of the discrete Euler equations and where
7 refers to the status after the i-th iteration. For the standard multigrid convergence
results shown in Figure 4b, we took npe = 0, npese = 1, Le. we applied sawtooth-
cycles. Though -of course- to a lesser extent than the single-grid convergence results
(Figure 4a), the standard multigrid method’s convergence results (Figure 4b) appear to
be rather grid-dependent. We see that the convergence behaviour of the standard 3D
algorithm is disappointing when compared to the same multigrid method’s convergence
rates for a 2D transonic test case [7]. An improvement to this might be found in deriving
a more powerful smoother, keeping the other components of the numerical method the
same. For reasons explained above, a more natural cure is not to apply standard full
coarsening, but to use a multiple semi-coarsening or a sparse-grid algorithm instead.
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3.2 Multiple semi-coarsened multigrid
3.2.1 The method

In this method, to solve the discrete problem on Q4 .., we use the full family of grids
{4} with 0 <k < {yare. For each 4, k > o, three semi-coarsened grids are available.
Figures 1a and 1b show 3D standard coarsening and multiple semi-coarsening, respec-
tively. Though multigrid with multiple semi-coarsening is expected to be most fruitful for
3D problems, as far as we know, applications have only been published for 2D. Pioneer-
ing work has been done by Mulder [13], who has introduced multiple semi-coarsening to
overcome the poor convergence results observed in computing nearly grid-aligned flows
governed by the steady, 2D Euler equations. In [16], Radespiel and Swanson continue
research on Mulder’s approach for the steady, 2D Euler equations. In the present pa-
per we apply semi-coarsened multigrid to the steady, 3D Euler equations, and we pay
particular attention to the different prolongation operators that can be used.

Also in the case of the semi-coarsened multigrid method we use FAS as the hasic
multigrid algorithm, and on each grid we apply collective symmetric point Gauss-Seidel
relaxation as the smoothing technique. In the semi-coarsened multigrid method, however,
we replace the sequentially ordered set of grids {0}, ¢ = 0,...,fnax, by a partially
ordered set of grids {2,}, 0 € n < Lyay, with £, the coarsest and (. the finest grid.
Now |n| is the level of grid ,. The nesting and the semi-coarsening relation between
these grids is described in [9]. The implementation is described in detail in [8, 11].

Nested iteration. Also in the semi-coarsening algorithm nested iteration (FMG) is
applied to obtain a good initial solution on the finest grid. We proceed discussing the
present nested iteration and nonlinear multigrid iteration procedures in more detail. The
nested iteration starts with a user-defined initial estimate on the coarsest grid, 4, which
is improved by relaxation. Next, the following two options can be used to continue the
nested iteration:

o Grid-wise nested iteration. The approximate solution g, is interpolated to all grids
Q4 with o < k < e, with the 3D prolongation according to formula (29) in [5]. (Sce
[11] for the implementation in the present 3D Euler context.) Next, the solution
e is improved by a single nonlinear multigrid cycle and prolongated to all grids
Qi with k < 2e. Then, the above process can be repeated up to and including

level dfnax. Notice that approximate solutions are only computed at the grids
Qo, ey ey - o

o Level-by-level nested iteration. The approximate solution ¢, is interpolated to the
three grids € 0,0, $20,1,0 and 0,1 on the next level, with the same 3D prolongation
mentioned above. Next, the three approximate solutions g, |k| = 1 are first
improved by a single nonlincar multigrid cycle and then interpolated to all six
grids ., [k| = 2, on the next level. This process is repeated up to and including
level dl.. Here, in contrast with to the previons strategy, solution improvements
are made on all grids, level-hy-level.

Nonlinear multigrid iteration. A single noulincar multigrid cycle on level £ is re-
cursively defined by the following steps:



1. For all grids € at the next coarser level [k| = € — 1, that satisfy k < faxe,
compute the same right-hand sides as in standard multigrid, but use as restriction
operator the one described in [11].

2. Improve the approximate solutions on the coarser level £ — 1 by the application of
a single nonlinear multigrid cycle.

3. Correct the current solutions on level ¢ by one of two possible correction prolonga-
tions. The first prolongation (defect dependent weights) is an extension to 3D and
to systems of equations, of the prolongation introduced by Naik and Van Rosendale
[14]. It uses prolongation weights that are proportional to the absolute values of the
restricted defect components. The second correction prolongation (fized weights)

is the one proposed in [5, eq.(36)], it has a-priori known prolongation weights +1
or —1.

4. Improve the solutions on level £ by the application of n,. relaxation sweeps.

3.2.2 Numerical results for different prolongations.

As a test problem we consider again the ONERA-MG6 half-wing at the transonic condi-
tions My, = 0.84, o = 3.06°. We first compare the two prolongations mentioned above:
the one with defect-dependent weights and the one with fixed weights. Convergence
resiults obtained are given in Figure 5. In the two graphs, the residual ratio is defined

[=] o

=

—~ —_r \
o | - o ! ~.
S \ 3
o ~. g
S

T‘: T" - \._\\ ; T 1 .
3 e 7 3 N
4 . ke
o | . = o
[/ 0
& 2
= AN e
2 [ \\ 2 1] \\

2 \ 2

| T T T T | T T T T T

0 2 4 6 8 10 0 2 4 6 8 10
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a. With defect-dependent prolon- b. With fixed prolongation
gation weights. weights.

Figure 5: Convergence behaviors of two semi-coarséned miltigrid methods, ONERA-M6
half-wing at My, = 0.84, @ = 3.06°, (U, .o immmcimae = (8 X 20mnx) 5 (2 3¢ 2Mmax) 5 (2 x 2Mmax ).
grid, lnax = Mmax = Pmax = 1,2, 3.

as ||[R7s||1, /IR ||L,, where R¥As ig the first component (i.e. the mass component) of
the residnal Ny, o(q:%3,), and where ipzg refers to the status after the 4-th FAS-cvcle.
Similar as for the standard multigrid convergence results (Figure 4b), here 'we also nused
sawtooth cycles (nyee = 0, Nyose = 1). The improvement of both semi-coarsened multi-
grid methods with respect to the standard multigrid method is significant. Of hoth
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methods, the one with the fixed prolongation weights (Figure 5b) performs more than
the one with defect-dependent prolongation weights (Figure 5a).

The convergence results may still be further improved. In Figure 6 we present results
for the same solution strategy as that of Figure 5b, but now with V-cycles (npre = Npos. =
1) and with the level-by-level nested iteration described in Section 3.2.1.

[«]

-4 -2

-6

log(residual ratio)

-8

—10

=
o
-

6 8 10
FAS—-cycles

Figure 6: Convergence behaviour of semi-coarsened multigrid method with fixed prolon-
gation weights, V-cycles and level-by-level nested iteration, for ONERA-M6 half-wing
at My = 0.84, @ = 3.06°, Q... .muas, = (8 x 2lmmx) x (2 x 2Mmax) x (2 x 2Pmax)-prid,

Ilmax = Mmax = Mmax = 1,2, 3.

Mmax

max

P !

l/ \m Iy \m
a. Full. b. Sparse. c¢. Semi-sparse.

Figure 7: Grids of grids.

3.3 Sparse- and semi-sparse-grid multigrid
3.3.1 The methods

The above multiple semi-coarsening methods for the Euler equations are methods for the
solution for one system of discrete equations, defined in the ‘finest’ grid ., (we call it
a full grid-of-grids semi-coarsening method), where all grids Qx, 0 < k < 1iax contribute
to the solution process. A disadvantage of a full grid-of-grids semi-coarsening is that
many grid cells are needed in total. With N? the total number of cells on the finest
grid, in 3D, asymptotically standard multigrid nses %N"’ grid cells versus 8 N3 points for
the full-grid-of-grids approach. An efficiency improvement can be achieved by thinning
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out, the grid-of-grids. Then, if no ‘finest grid’ is available, accurate approximations
can be constructed either by extrapolation (e.g. by Zenger’s combination technique) or
by the use of hierarchical bases. Most ambitious in this respect is the sparse grid-of-
grids approach, where only grids Qy, |k| < £n., contribute (see [5, 4] and the further
references there in). With the full grid-of-grids represented as a cube in Figure 7a, the
sparse grid-of-grids is the subset given in Figure 7h.

The reduction in the numbers of grid-cells is enormous. The computational com-
plexity of the sparse grid-of-grids approach is @(Nlog®N). Theoretically, the sparse
grid-of-grids approach has the best ratio of discrete accuracy over number of grid points
used [4]. In the ideal case the full grid-of-grids should be completely replaced by a sparse
grid-of-grids. In practice, although very fast, the accuracy of the sparse grid approxima-
tions is slightly disappointing, and it appears that better accurate approximations are
obtained not by only increasing the number of levels, but also by dropping the cells with
extreme aspect ratios. ;

A compromise is the use of a semi-sparse grid-of-grids. This uses the family of grids
Qu, k| < 2lpax, max; |kl < o, (see Figure 7c¢), which (asymptotically) still has
a computational complexity which is much smaller than that of the full-grid-of-grids
approach, viz. @(N?log?N). Hence, though to a lesser extent than the genuine sparse-
grid approach, it still is a cure to the ‘curse of 3D’.

3.3.2 Numerical results for sparse and semi-sparse multigrid.

The numerical ingredients of both approaches are identical to those in the multiple semi-
coarsened multigrid method applied for obtaining Figure 6. Exactly the same level-by-
level method is applied, with as the only difference that in the sparse-grid case the
multi-level semi-coarsening solver stops its work at level £,,.,. From there the solution
is extrapolated, by the combination technique as described e.g. in [17], to the very
finest grid, 2¢,,..e, &t level 3lmax. In the semi-sparse-grid approach the semi-coarsencd
multi-level algorithm is stopped at level 2/, and from there, by the same combination
technique, the finest-grid solution at 34y, is computed. A particular advantage of
the semi-sparse-grid approach as compared to the sparse-grid approach, is that the 3D
extrapolation rule as proposed in [17] can be applied for all remaining grids, including
the grids along the boundaries of the grid-of-grids. In the sparse-grid approach this is not
possible. There, for all boundary grids, i.e. Q, for which ||nf| = n; - ny - na = 0, one has
to introduce an additional extrapolation rule, e.g. by applying a 1D or a 2D combination
extrapolation, which will inevitably result in some additional loss of accuracy. In the
Figures 8a~c we give an impression of the accuracy of the numerical solutions obtained
by the different approaches for the ONERA wing problem. A reference solution is the
fully converged O(h) finest grid solution Figure 8c. This solution is the target for hoth
solutions presented in Figures 8a-b. Of course, the semi-sparse grid solution (Fignre

sparse O(N log” N) "1 CPU time unit.
semi-sparse = O(N? 105_1;2‘1\7)' - 35 OPU time units
full O(N?) 150 CPU time units-

Table 2: Computing times for the solutions of the ONERA half-wing,.

8h) comes closer to the reference solution. The sparse-grid solution (Figure 8a) is far



Mach number, sparse grid of grids

2.0

a) sparse grid-of-grids

[

b) semi-sparse grid-of-grids

c) full grid-of-grids T

Figure 8: Mach number distribution on upper half-wing surface for different types of
grid combinations.
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off, but it has been obtained at extremely low computational cost as compared to both
the semi-sparse-grid approach and the full grid-of-grids approach. In Table 2 we give an
impression of the relative computing times used.
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