SPACE MAPPING AND DEFECT CORRECTION

D. ECHEVERRÍA AND P.W. HEMKER

CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: P.W.Hemker@cwi.nl

Space mapping, [1][2], is a technique to efficiently solve a difficult optimization problem

\[ x^* = \arg\min_{x \in X} \| f(x) - y \|, \]

with \( f : X \subset \mathbb{R}^n \to \mathbb{R}^m; y \in \mathbb{R}^m; m \geq n \), by means of the iterative use of a similar but simpler optimization problem with \( c : Z \subset \mathbb{R}^n \to \mathbb{R}^m \),

\[ z^* = \arg\min_{z \in Z} \| c(z) - y \|. \]

We show that space-mapping optimization can be understood in the framework of defect correction [3]. Then, space-mapping algorithms can be seen as special cases of defect correction iteration. In order to analyze properties of space mapping we introduce the concept of flexibility of the underlying models. The best space-mapping results are obtained for so-called equally flexible models.

By introducing an affine operator \( S : c(Z) \to f(X) \), two models can be made equally flexible, at least in the neighborhood of a solution. This motivates the following improved space-mapping (or manifold-mapping) algorithm (with \( \mathbf{P} : X \to Z \) an arbitrary bijection):
1. Set \( k = 0 \), set \( S_0 = I \) the \( m \times m \) identity matrix, and compute \( x_0 = \arg\min_{x \in X} \| c(\mathbf{P}(x)) - y \| \).
2. Compute \( f(x_k) \) and \( c(\mathbf{P}(x_k)) \).
3. If \( k > 0 \), with \( \Delta c_i = c(\mathbf{P}(x_{k-i})) - c(\mathbf{P}(x_k)) \) and \( \Delta f_i = f(x_{k-i}) - f(x_k) \), \( i = 1, \ldots, \min(n, k) \), we define \( \Delta C \) and \( \Delta F \) to be the rectangular \( m \times \min(n, k) \)-matrices with respectively \( \Delta c_i \) and \( \Delta f_i \) as columns. Their singular value decompositions are respectively \( \Delta C = U_c \Sigma_c V_c^T \) and \( \Delta F = U_f \Sigma_f V_f^T \).

Now, \( S_k = \Delta F \Delta C^+ + (I - U_f U_f^T)(I - U_c U_c^T) \) and the approximate affine mapping is \( S_k \nu = f(x_k) + S_k(\nu - c(\mathbf{P}(x_k))) \), \( \forall \nu \in Y \), which, for \( l > 0 \) and \( l = k - 1, \ldots, \max(0, k-n) \), satisfies \( S_k(c(\mathbf{P}(x_l)) - c(\mathbf{P}(x_k))) = f(x_l) - f(x_k) \).
4. The next iterand is computed as

\[ x_{k+1} = \arg\min_{x \in X} \| c(\mathbf{P}(x)) - c(\mathbf{P}(x_k)) + [\Delta C \Delta F^\dagger + I - U_c U_c^T] (f(x_k) - y) \|, \]

where \( \dagger \) denotes the pseudo-inverse, \( \Delta F^\dagger = V_f \Sigma_f^{-1} U_f^T \).

By a few simple examples we illustrate some phenomena analyzed.

REFERENCES