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SUMMARY

In this paper we study the convergence of a multigrid method for the solution of a linear second-
order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed
analysis of the convergence for di�erent block-relaxation strategies. To complement an earlier paper
where higher-order methods were studied, here we restrict ourselves to methods using piecewise linear
approximations. It is well known that these methods are unstable if no additional interior penalty is
applied.
As for the higher-order methods, we �nd that point-wise block-relaxations give much better re-

sults than the classical cell-wise relaxations. Both for the Baumann–Oden and for the symmetric DG
method, with a su�cient interior penalty, the block-relaxation methods studied (Jacobi, Gauss–Seidel
and symmetric Gauss–Seidel) all make excellent smoothing procedures in a classical multigrid setting.
Independent of the mesh size, simple MG cycles give convergence factors 0.2–0.4 per iteration sweep
for the di�erent discretizations studied. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: discontinuous Galerkin method; multigrid iteration; two-level Fourier analysis; point-
wise block-relaxation

1. INTRODUCTION

Recently renewed interest arose in discontinuous Galerkin (DG) discretizations for partial
di�erential equations of convection di�usion type [1–3]. An important reason is the new
insight in the use of these methods for elliptic equations [4–6] and their applicability in
hp-self-adaptive algorithms [7, 8].
However, thus far relatively little attention has been paid to optimally e�cient solution

methods for the algebraic systems arising from the discretization of the stationary problems.
Therefore, we study the possible use of a multigrid algorithm for this purpose. We concen-
trate on the Baumann DG, the symmetric DG methods [4, 9]. It is well known [10–12] that
these methods are not stable for the lowest order of approximation (p=1), if no additional
stabilization is applied by means of an interior penalty (IP) parameter. All these methods can
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be described by the same formulas [4, 9], where the distinction between the various methods
is made by two parameters: �, the sign (�=+1 for Baumann and �=−1 for symmetric DG),
and �= �=h, the IP parameter.
Whereas in an earlier paper [9] we studied the convergence of a multigrid method for the

solution of the systems arising from higher-order methods (p¿3), in the present paper we
focus on the convergence of the multigrid method for the case p=1, because this case may
be used to accelerate the solution for p¿1 in the p-hierarchical structure of the hp-adaptive
approximation process.
For the higher-order methods we showed that excellent convergence was obtained when

block-wise relaxation (Jacobi or Gauss–Seidel) is applied as a smoother, if the blocks are
formed by the degrees of freedom (d.o.f’s) associated with cell-vertices [9]. This motivates us
to study the smoothing abilities for the IP-DG method with a well-chosen penalty parameter �.
The outline of the paper is as follows. In Section 2 we give a uni�ed description of the DG

discretizations so that the symmetric form, Baumann’s variant and the IP variants follow from
the values of speci�c parameters (� and �) in the formulation. For the linear trial functions
that we restrict ourselves to, we give a description of the resulting discrete operator in the
form of a stencil that de�nes the resulting block-Toeplitz matrix.
In Section 3 we apply Fourier analysis to this discrete operator in order to study its stability

properties. We observe that both the symmetric DG and Baumann’s variant have a double zero
eigenvalue, one of which has an eigenfunction that is not constant (the spurious eigenvalue
responsible for the instability of the methods). If a large enough penalty parameter is chosen,
then it is seen that the instability disappears. However, for too large a value of the penalty
parameter we see that the discrete system becomes ill-conditioned.
In Section 4 we give a smoothing analysis of the point-wise and cell-wise block-relaxations

and a convergence analysis of the two-level algorithm. As in the case of higher degree
trial polynomials, dealt with in our earlier paper, we see also here that the use of point-
wise relaxation gives much faster convergence. By determining the spectral norm of the
error-ampli�cation operator it is shown that the observed ‘good convergence’ is guaran-
teed from the second iteration step on. We �nd convergence with a rate of about
0.2–0.4=iteration.
In Section 5 we report on numerical results for the solution of a one-dimensional Poisson

problem on the unit interval, where the solution has a thin boundary layer, its thickness
depending on a parameter ”. The results con�rm the theoretical analysis.

2. THE LINEAR DISCONTINUOUS GALERKIN DISCRETIZATION

We consider the Poisson equation on the unit cube �, partly with Neumann and partly with
Dirichlet boundary conditions

−�u=f on �

with u= u0 on �D and n ·∇u= g on �N , where �D ∩�N = ∅ and ��D ∪ ��N = @� and �D �= ∅. The
variational form of this equation, associated with the DG-methods [4, 9] reads: �nd u∈H 1(�h)
such that

B(u; v)=L(v) ∀v∈H 1(�h) (1)
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where

B(u; v) =
∑

�e ∈�h

∫
�e

∇u · ∇v dx −
∫
�int∪�D

〈∇u〉 · [v] ds

+�
∫
�int∪�D

〈∇v〉 · [u] ds+ �
∫
�int

[u] · [v] ds (2)

and

L(v)=
∑

�e∈�h

∫
�e
fv dx + �

∫
�D

〈∇v〉 · [u0] ds+
∫
�N
gv ds

Here, for non-negative integer k, the space Hk(�h) is the broken Sobolev space [5] on the
partitioning �h of the domain �,

�h= {�e| ∪e ��e = ��; �i ∩�j= ∅; i �= j}
The parameter � denotes the IP, and � the character of the discretization: �=1 gives Bau-
mann’s method (or NIPG if �¿0), �=− 1 gives the symmetric DG (IP-DG for �¿0). The
jump operator [·] and the average operator 〈·〉 are de�ned at the common interface between
two cells �i; j= ��i ∩ ��j, by

[w(x)]=w(x)|@�ini + w(x)|@�jnj
〈w(x)〉= 1

2(w(x)|@�i + w(x)|@�j)
(3)

for x∈�i; j. Here ni is the unit outward pointing normal for cell �i. For the jump operator at
a Dirichlet boundary the interface with a virtual (�at, exterior) adjacent cell, containing only
the Dirichlet data, is used. In case of a vector-valued function, �, we de�ne

[�(x)]=�(x)|@�i · ni + �(x)|@�j · nj
〈�(x)〉= 1

2(�(x)|@�i + �(x)|@�j)
(4)

The interior boundaries are denoted by �int =
⋃
�i; j.

In this paper we study the one-dimensional equation, since this can be considered as an
essential building block for the higher dimensional case where we use tensor product poly-
nomials. For test and trial space Sh ⊂H 1(�h) we use the space of discontinuous piecewise
polynomials on the partitioning �h. Then the discrete equations read: �nd uh ∈ Sh such that

B(uh; vh)=L(vh) ∀vh ∈ Sh (5)

With a basis {�i;e} for the space Sh this leads to the linear system
N∑
e=1

1∑
i=0
ci; e

(∫
�e
�′
i;e(x)�

′
j; e(x) dx − 〈�′

i;e(x)〉 · [�j; e(x)]|�int∪�D

+�[�i;e(x)] · 〈�′
j; e(x)〉|�int∪�D + �[�i;e(x)] · [�j; e(x)]|�int

)

=
N∑
e=1

1∑
i=0

∫
�e
f�j; e(x) dx + �[u0] · 〈�′

j; e(x)〉|�D + g�j; e(x)|�N (6)
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which we brie�y denote by Lhuh=fh. In this paper we restrict ourselves to Sh consisting of
piecewise linear polynomials on a uniform partitioning for which we use the
element basis functions �j(�)= �j(1 − �)1−j, j=0; 1, so that we have 2N basis functions
�j((x − xe)=h)=�j; e(x); j=0; 1; e=1; : : : ; N . For this basis of piecewise linear polyno-
mials the linear system (6) has a 2× 2-block-tridiagonal structure, with the discretization
stencil

1
h

−1
2

1− �
2

− h� 1 + �
2

+ h�
−1− �
2

1
2
� 0

0
1
2
�

−1− �
2

1 + �
2

+ h�
1− �
2

− h� −1
2

 (7)

if the equations (the weighting functions �e; j) and coe�cients are ordered cellwise as
[ce;0; ce;1]Ne=1. As we emphasized in Reference [9] we can also order the equations and coe�-
cients pointwise, according to function values at the cell-interfaces, [ce−1;1;
ce;0]Ne=2, which leads to the stencil

1
h


1
2
�

−1− �
2

1 + �
2

+ h�
1− �
2

− h� −1
2

0

0 −1
2

1− �
2

− h� 1 + �
2

+ h�
−1− �
2

1
2
�

 (8)

Thus, with the possible exception for the equations at the boundaries, the discretization matrix
appears to be a block-Toeplitz matrix and is described by the repetition of either stencil (7)
or stencil (8). Both stencils describe one and the same matrix, but the distinction between
cell-wise and point-wise blocks materializes as soon as we consider block-relaxation methods.

3. FOURIER ANALYSIS OF THE DISCRETE OPERATOR B(uh; vh)

In this section we �rst introduce the Fourier transform of a block-Toeplitz operator. We
describe the spectrum of the discrete operator Lh on an in�nite domain, and we discuss
its stability properties. We notice the di�erence between this operator for piecewise cubic
approximations, as described in Reference [9], and the corresponding operator for piecewise
linears. We recognize that for the latter a su�ciently large IP parameter has to be chosen
in order to obtain a stable scheme. Then, for the stable schemes, we compute the order of
accuracy.

3.1. Fourier analysis for a block-Toeplitz operator Ah

In Reference [9] we have shown that, for Ah = (am;j)∈R2Z×2Z an in�nite block-Toeplitz
operator, we have the identity ∑

j∈Z
am; jeh;!(jh)= Âh(!)eh;!(mh)

with

Âh(!)=
∑
j∈Z
am; jei( j−m)h!=

∑
k∈Z
a−keikh!=

∑
k∈Z
ake−ikh! (9)
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Table I. Eigenvalues of L̂h(!).

�h(!) Baum-DG Symm-DG IP-DG
�=1, �=0 �= − 1, � = 0 �=− 1, �= �=h

�1(!)
1 + cos(!h)

h
1− cos(!h)

h
�− cos(!h) + |�− 1|

h

�2(!)
1− cos(!h)

h
−1− cos(!h)

h
�− cos(!h)− |�− 1|

h

for all !∈Th ≡ [−�=h; �=h]. Here eh;!(jh) = eijh! is an elementary mode, de�ned on the
regular in�nite one-dimensional grid

Zh= {jh | j∈Z; h¿0}
Furthermore, with Vh = Vh(!) the matrix of eigenvectors v(!) of Âh(!), such that

Âh(!)Vh=Vh	h(!) (10)

then, with (Vh ⊗ eh;!)(jh)=Vh(!)eijh!, we have
Ah(Vh ⊗ eh;!)= Âh(!)(Vh ⊗ eh;!)= (Vh ⊗ eh;!)	h(!) (11)

Hence, the columns v(!)eh;!(mh) of Vh ⊗ eh;! are the eigenvectors of Ah and 	h(!) is a
family of 2× 2 diagonal matrices containing the eigenvalues of Ah on its diagonal.

3.2. Eigenvalues spectra of the discrete operator Lh

Now we study the eigenvalue spectra of the discrete operator Lh of (i) Baumann’s, (ii) the
symmetric-, and (iii) the IP-DG-method, all with linear elements. It is well known that in this
case Baumann’s and the symmetric DG-method are unstable and that an additional penalty
parameter �= �=h (IP-DG-method) can be introduced in order to stabilize the discrete operator
Lh. To study the behavior of the three di�erent DG-methods we look at the eigenvalue spectra
of L̂h(!), since the eigenvalues and eigenvectors of L̂h(!) correspond with the eigenvalues
and eigenvectors of Lh. Considering the point-wise stencil (8) we write for L̂h(!), using (9),

L̂h(!)=
1
2h

(
1 + �+ 2�− e!h + �e−!h 1− � − 2�− (1 + �)e−!h

1− � − 2�− (1 + �)e!h 1 + �+ 2�− e−!h + �e!h

)
(12)

The eigenvalues �h(!) of L̂h(!) for, respectively, Baumann’s, the symmetric and the IP-DG-
method are shown in Table I. Note that the same eigenvalues are obtained if the cell-wise
stencil (7) is used instead of the point-wise stencil (8). Only the coe�cients of the eigenvectors
v(!)eh;!(mh) are collected either point-wise ([ce−1;1; ce;0]) or cell-wise ([ce;0; ce;1]).
If we study the eigenvalues �h(!) of L̂h(!) for Baumann’s DG-method, we see in Table I

that they are real and non-negative: �1(!); �2(!) ∈ [0; 2=h]. Furthermore we see that �2 = 0 for
! = 0, which is the eigenvalue corresponding to the constant eigenfunction. This eigenfunction
corresponds to the equivalent eigenfunction for the continuous operator and is controlled by
the boundary conditions. However, we see that there also is an additional zero eigenvalue
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Figure 1. Eigenvalue spectra of discrete operator L̂h(!) for cubic stencil.

�1 = 0 for ! = ±�=h, and the corresponding eigenvector is oscillating piecewise constant.
This spurious zero eigenvalue causes the Baumann DG-method to be singular for linear basis
functions in the test and trial space.
The same oscillating piecewise constant function is an additional eigenfunction, with �2 = 0,

for the discrete operator Lh for the symmetric DG-method. Furthermore, for this DG-method
we recognize the saddle-point behavior �1(!)∈ [0; 2=h], �2(!)∈ [−2=h; 0].
If we study the eigenvalue spectrum �h(!) for the IP-DG-method, then we may still choose

the penalty parameter �. If we choose �¡0, the method is stable in the sense that the unique
zero eigenvalue corresponds to the constant eigenfunction. However, the method is inde�nite.
If we choose the parameter 06�¡1 the method is inde�nite and unstable (since then there is
a spurious zero eigenvalue with a corresponding oscillating piecewise constant eigenfunction).
For �¿1 the method is stable (the eigenvalues have non-negative sign). On the other hand,
for a large parameter � the discrete operator is ill-conditioned.
Whereas, for linear polynomials in the test and trial space, Baumann’s non-symmetric DG-

method has positive real eigenvalues, this is not the case for higher-order piecewise polyno-
mials (although they have positive real parts). Figure 1 shows the eigenvalue spectra of the
Baumann and the symmetric DG-methods for piecewise cubics, as analyzed in Reference [9].
The spectrum of Baumann’s method shows complex eigenvalues; in the case of the symmet-
ric DG-method the spectrum is real but inde�nite. Notice the distinction between eigenvalues
for low and high frequencies which is useful in the context of multigrid. (Low frequency
functions can also be represented on a twice coarser grid.)

3.3. Consistency of the IP-DG-method

In the previous section we have seen that the IP-DG-method for the piecewise linear basis
is stable if �¿1. In this section we study the accuracy and the discrete convergence of this
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method. For the analysis we use the point-wise stencil (8) and proceed analogously to the
treatment in Reference [9], and we study the truncation operator

�h=LhRh − �RhL (13)

and the operator corresponding with the discrete convergence, Ch = L−1
h �h. In (13)

Rh :C1(�h)→ R2Zh is the injective restriction de�ned by

uh(jh)= (Rhu)(jh)=

[
u(jh)|�j−1

u(jh)|�j

]

The second restriction, �Rh :C1(�h)→R2Zh , is the Galerkin restriction de�ned by

( �Rhf)(jh) =


∫ jh

( j−1)h
�1; j−1(x)f(x) dx∫ ( j+1)h

jh
�0; j(x)f(x) dx

for all f∈L2(�). Using �he! for the truncation error
�he!(x)= �hei!x=(LhRhe! − �RhLe!)(x)

and with the de�nition of Rh, we �nd

�he! = Lhei!jh
[
1
1

]
−!2hei!jh


∫ 1

0
ei!h(t−1)t dt∫ 1

0
ei!ht(1− t) dt


where the basis functions are scaled to the master element �̂ = [0; 1]. So,

�he! =

L̂h(!) [11
]

− h


∫ 1

0
ei!h(t−1)t dt∫ 1

0
ei!ht(1− t) dt

!2
 ei!jh

=: (L̂h(!)R̂h(!)− �̂Rh(!)L̂(!))ei!jh (14)

where L̂h(!) is the Fourier transform of the block-Toeplitz matrix Lh for the point-wise stencil.
The order of the truncation error is found by expansion of (14) for h→ 0. Since e!=ei!x

is continuous, both for Baumann’s method (�=1; �=0), and for the symmetric DG-method
without penalty (�=−1; �=0) and with interior penalty (�=−1; �= �=h), the absolute value
of the truncation error is

|�e!| =
[ 1
6 h

2!3 +O(h3!4)

1
6 h

2!3 +O(h3!4)

]
(15)
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Table II. The expansion of (16) for h→ 0, i.e. the order of convergence of pointwise values
at the nodal points.

IP, �=1=h IP, �= �=h, �¿1




−1
3
h!+ O(h2!2)

+
1
3
h!+ O(h2!2)







− 1
12(�− 1)

h3!3 + O(h4!4)

+
1

12(�− 1)
h3!3 + O(h4!4)




However, from the previous section we know that only the IP DG-method is stable and
de�nite, provided we choose �¿1. So, for that method we can derive the discrete convergence
from

L−1
h �he!= L̂h

−1(!)(L̂h(!)R̂h(!)− �̂Rh(!)L̂(!))ei!jh (16)

The results are summarized in Table II, distinguishing between penalty parameters �=1=h
and �= �=h with �¿1. We see that we loose two orders of accuracy if �=1=h. The IP DG-
method is more accurate for a larger constant �, but on the other hand, the method becomes
less attractive due to the worse condition number of the discrete operator Lh.

4. SMOOTHING ANALYSIS AND CONVERGENCE OF THE TWO-LEVEL
ALGORITHM

In this section we consider three block-relaxation methods: Jacobi-, Gauss–Seidel-, and sym-
metric Gauss–Seidel block relaxations. If we want to apply these relaxations to the unstable
operators (Baumann or symmetric DG with �=0) with cell-wise blocks, then we notice that
(i) it is impossible to apply Jacobi relaxation because of the singular diagonal blocks, and (ii)
that block GS does not converge because all eigenvalues of the iteration operator have abso-
lute value equal to 1. Point-wise block relaxation can be used. However, as can be expected,
spurious modes remain and no smoothing is achieved.
For the stabilized methods, with �¿1=h, all block relaxations are smoothers, but for �¿1=h

point-wise block methods perform much better than the cell-wise block equivalents.
Because of this result, later in this section we drop the cell-wise relaxation and analyze

two-level convergence for each of the three point-wise block relaxations. We determine the
spectrum of the two-level iteration operator (for di�erent values of �) and compute for each
of the relaxations the optimal damping parameter and the corresponding convergence rate.
Finally, in order to show that fast convergence is not only an asymptotic property after

many iterations, but can be expected already in the �rst steps, we determine the spectral
norms for the iteration operators at the end of Section 4.2.

4.1. Smoothing analysis

Having shown in Reference [9] for piecewise cubics that the smoothing properties of the
damped block-Jacobi (JOR) and the damped block-Gauss–Seidel (DGS) are better for point-
wise ordering than for cell-wise ordering, we see the same for piecewise linear basis functions.
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Table III. The relaxation methods.

	 ¿ 0 is a damping parameter

Bh MREL
h

JOR 	D−1 D−1((1− 	)D − 	(L+ U ))

DGSL 	(D + L)−1 (D + L)−1((1− 	)(D + L)− 	U )

DGSU 	(D + U )−1 (D + U )−1((1− 	)(D + U )− 	L)

Table IV. The stencils in the diagonal decomposition.

Cell-wise Point-wise

1
h




−1
2

1−�
2 − h�

0
1
2
�


 L

1
h



1
2
�

−1− �
2

0 −1
2




1
h



1 + �
2

+ h�
−1− �
2

−1− �
2

1 + �
2

+ h�


 D

1
h



1 + �
2

+ h�
1− �
2

− h�

1− �
2

− h�
1 + �
2

+ h�




1
h




1
2
� 0

1− �
2

− h� −1
2


 U

1
h




−1
2

0

−1− �
2

1
2
�




In this section we analyze the di�erent smoothers for the linear case, again distinguishing
between the cell-wise (7) and point-wise (8) approach.
For the discrete system Ahx= b we consider the iterative process

x(i+1) = x(i) − Bh(Ahx(i) − b) (17)

with Bh an approximate inverse of Ah. Decomposing Ah as

Ah=L+D+U (18)

into a strictly block-lower, a block-diagonal and a strictly block-upper matrix, the di�er-
ent relaxation methods are uniquely described either by Bh or by the ampli�cation matrix
MREL
h = Ih − BhAh. These operators are shown in Table III. Because Ah is a block-Toeplitz

operator, also the ampli�cation matrix Mh is block Toeplitz. Notice, that the meaning of the
block decomposition (18) is di�erent for the stencils (7) and (8). The stencils corresponding
to the decomposition (18) are given in Table IV. As we emphasized in Reference [9], the
di�erence between cell-wise and point-wise decomposition is that the eigenvectors eh;!(mh)v
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of the cell-wise stencil correspond to two-valued grid functions associated with the cell in-
teriors (in fact independently of the basis chosen), whereas for the point-wise stencil they
correspond to the two-valued grid function with the nodal points between the cells. This
makes the point-wise stencil better suited for a multi-grid algorithm. Using (9) we �nd the
Fourier transform of the basic Toeplitz operators: L̂(!)=Le−i!h, D̂(!)=D, Û (!) = Uei!h.
This yields the Fourier transform for the ampli�cation operators for JOR, DGS and SGS:

[MREL
JOR = D̂

−1((1− 	)D̂ − 	(L̂+ Û )) (19)

[MREL
DGSL = (D̂+ L̂)

−1((1− 	)(D̂+ L̂)− 	Û ) (20)

[MREL
DGSU = (D̂+ Û )

−1((1− 	)(D̂+ Û )− 	L̂) (21)

[MREL
SGS =

[MREL
DGSL

[MREL
DGSU (22)

By (11) we �nd the eigenvalues of MREL
h by computing the eigenvalues of [MREL

h (!) for
! ∈ Th. The eigenvalues corresponding with the high frequencies (|!|¿�=2h), that determine
the smoothing properties of the relaxation, are found as [MREL

h (!) for !∈Th\T2h. The spectra
for the three di�erent smoothers, applied on the DG method of Baumann (�=1, �=0), the
symmetric DG-method (�=−1, �=0) and the IP-DG-method (�=−1, �= �=h) are shown in
the Figures 2–4, respectively.
The IP-DG-method is stable for penalty parameters �= �=h, �¿1, which is re�ected in the

fact that the only undamped mode is the constant (eigen)function.
In Figures 2–4 we see that the Baumann and the symmetric DG method (both with � = 0)

show their instability by not damping the highest frequencies |!| ≈ �=h. The high frequencies
appear to be handled similarly as the low frequencies. We see that the IP-DG methods allow
smoothing by the various relaxation methods, and that (the case �=1=h excluded) the point-
wise relaxations are better than the cell-wise relaxations (high frequencies are better damped).
In Table V we summarize the damping of the high frequencies and we show the corre-

sponding optimal damping factors, 	, and smoothing factors for the damped relaxation methods
in point-wise setting. We conclude that the pointwise block-relaxation methods are excellent
smoothers. This brings us to focus more on their behavior in a multigrid algorithm in the
next section.

4.2. The two-level analysis (TLA)

Now we study the two-level operator for the IP-DG-method with three choices of �, viz.
� = 1=h, 2=h and 5=h, and we will compute optimal damping parameters for the smoothers
JOR, DGS and SGS in combination with the coarse-grid correction (CGC) for the di�erent
choices of the parameter �. The ampli�cation operator of the two-level algorithm for the error
is given by

MTLA
h = (MREL

h )�2MCGC
h (MREL

h )�1

= (MREL
h )�2 (I − PhHL−1

H
�RHhLh)(MREL

h )�1

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:473–491



TWO-LEVEL ANALYSIS FOR DISCONTINUOUS GALERKIN WITH LINEAR ELEMENTS 483

Figure 2. Eigenvalue spectra of [MREL
JOR (!).

where �1 and �2 are the number of pre- (post-) relaxation sweeps, respectively. MCGC
h is the

ampli�cation operator of the CGC. The ampli�cation operator for the residue is

�MTLA
h = ( �MREL

h )�2 �MCGC
h ( �MREL

h )�1

= (LhMREL
h L−1

h )
�2LhMCGC

h L−1
h (LhM

REL
h L−1

h )
�1
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Figure 3. Eigenvalue spectra of [MREL
DGS(!), without damping (	=1) relative to unit circle.
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Figure 4. Eigenvalue spectra of [MREL
SGS (!).

It follows from Reference [9] that the Fourier transform of the CGC MCGC
h is

[MCGC
h (!) = (Îh − P̂hH L̂−1

H
�̂RHhL̂h)(!) =

(
1 0

0 1

)

−
(

P̂h(!)
P̂h(!+ �=h)

)
(L̂H (!))−1( �̂Rh(!) �̂Rh(!+ �=h))

L̂h(!) 0

0 L̂h(!+ �=h)


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Table V. Smoothing factors (sf = max�=2h6|!|6�=h |�(!)|) for the undamped (top) and the damped
(bottom) relaxation methods. The damped relaxations are shown only for their point-wise ordered

versions, and the damping factor (	) is shown.

max! |�(!)| JOR DGS SDGS

�=2h6|!|6�=h Cell Point Cell Point Cell Point

Baumann — 1.0 1.0 1.0 1.0 1.0
Symmetric DG — 1.0 1.0 1.0 1.0 1.0
IP �=1=h 1.0 1.0 0:447 0:447 0:200 0:200
IP �=5=h 1.0 1.0 0:659 0:447 0:647 0:200

IP point-wise 	 sf 	 sf 	 sf

�=2=h 0:667 0:333 1.0 0:447 1.0 0:200
�=5=h 0:667 0:333 1.0 0:447 1.0 0:200

Figure 5. Eigenvalue spectra of FT(MCGC
h MREL

JOR )(!)=FT( �Mh
CGC �MREL

JOR )(!), without damping (	=1).

For our piecewise linear basis �i;e, the interpolation PhH : SH → Sh so that (PhHuH )(x)= uH (x)
for all x ∈ R\Zh, is given by the stencil (for pointwise ordering):

PhH u

[
0 1

2 1 0 1
2 0

0 1
2 0 1 1

2 0

]

Because the DG discretization is of Galerkin type with equal test and trial space, the restriction
of the residue, �RHh, is the adjoint of the prolongation, �RHh = (PhH )T. For the di�erent penalty
parameters � and di�erent smoothers JOR, DGS and SGS, the eigenvalue spectra of the
two-level operator for the IP-DG-method are computed from (11) and shown in Figures 5–7.
We see that none of the methods converge for �=1=h. However, for �=2=h or 5=h all

pointwise relaxations are excellent smoothers and we see fast convergence for the two-level
algorithm.
Having found the spectra and having computed the largest and smallest real eigenvalue

�min and �max we can determine the optimal damping parameter and the corresponding con-
vergence rate for the damped relaxation method. The parameter, minimizing the spectral radius
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Figure 6. Eigenvalue spectra of FT(MCGC
h MREL

DGS)(!)=FT( �M
CGC
h

�MREL
DGS)(!), without damping (	=1).

Figure 7. Eigenvalue spectra of two-level iteration with symmetric block-GS relaxation:
FT(MREL

DGSUM
CGC
h MREL

DGSL)(!)=FT( �M
REL
DGSU

�Mh
CGC �MREL

DGSL)(!), without damping (	 = 1).

Table VI. Damping parameters for the two-level operators 
(MCGC
h MREL

h )=
( �MREL
h

�MCGC
h ).

	opt IP-DG �=2=h IP-DG �=5=h

MCGC
h MREL

JOR 0:692 0:669

MCGC
h MREL

DGS 0:897 0:928


(MCGC
h MREL

h ) is given by

	opt =
2

2− (�min + �max)
Seeing that the case �=1 will not show h-independent convergence, we show in the Tables VI
and VII the damping parameters and the convergence rates for the cases �=2 and 5.
In order not only to know the asymptotic convergence rate but also the guaranteed converge

behavior after one or two iteration sweeps, we also compute the spectral norms ‖MTLA
h ‖,

‖ �MTLA
h ‖, ‖( �MTLA

h )2‖. The results are shown in Tables VIII–X. We see that the two-level

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:473–491



488 P. W. HEMKER, W. HOFFMANN AND M. H. VAN RAALTE

Table VII. Spectral radii 
(MCGC
h MREL

h )=
( �MREL
h

�MCGC
h ) for damping parameters in Table VI.


(MCGC
h MREL

h ) IP-DG �=2=h IP-DG �=5=h

MCGC
h MREL

JOR 0:385 0:339

MCGC
h MREL

DGS 0:217 0:238

MREL
DGSUM

CGC
h MREL

DGSL 0:156 0:180

Table VIII. The spectral norm (�max) after one iteration for the error with optimal damping.

MCGC
h MREL

JOR MCGC
h MREL

DGS MREL
DGSUM

CGC
h MREL

DGSL

IP-DG (�=2=h) 0:543 0:392 0:207
IP-DG (�=5=h) 0:478 0:417 0:250

Table IX. The spectral norm (�max) after one iteration for the residue with optimal damping.

�MCGC
h

�MREL
JOR

�MCGC
h

�MREL
DGS

�MREL
DGSU

�MCGC
h

�MREL
DGSL

IP-DG (�=2=h) 1:071 1:019 0:340
IP-DG (�=5=h) 1:056 1:028 0:343

Table X. The spectral norm (�max) after two iterations for the residue with optimal damping.

�MCGC
h

�MREL
JOR

�MCGC
h

�MREL
DGS

�MREL
DGSU

�MCGC
h

�MREL
DGSL

IP-DG (�=2=h) 0:411 0:200 0:030
IP-DG (�=5=h) 0:357 0:244 0:035

algorithm (and hence the multi-level algorithm) converges with a rate of about 0.2–0.4 per
iteration step and that reduction of the error and the residual is guaranteed, starting from the
second iteration step.

5. NUMERICAL RESULTS

In this section we check by numerical experiments the spectral radii of the two-level operators
with damped Jacobi-, MCGC

h MREL
JOR , Gauss–Seidel-, M

CGC
h MREL

DGS, and symmetric Gauss–Seidel
relaxation, MREL

DGSUM
CGC
h MREL

DGSL , for the IP-DG method with the penalty parameters �=2=h and
5=h. For that purpose we consider an inhomogeneous Poisson equation

−uxx = ex=�

�2(�1=� − 1) with u(0) = 0; u(1) = 0; � = 1=64
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Figure 8. log(‖dh‖2) as function of iterations for the two-level iteration operator on the error.

which has a sharp boundary layer-type solution. For the discrete system we use the linear
basis polynomials and we set the meshwidth to h=2−6. Our initial approximation is the
grid-function u0h = u

0
h;PRE = sin(1=2�j). We apply a pre-relaxation sweep

ui+1h;PRE = u
i
h;PRE + Bh(fh − Lhuih;PRE)

with Bh the approximate inverse of Lh as given in Table III, and the coarse-grid correction

u0h;POST = u
�1
h;PRE + PhHL

−1
H
�RHh(fh − Lhu�1h;PRE)

In case of symmetric damped Gauss–Seidel we apply an additional post relaxation sweep

ui+1h;POST = u
i
h;POST + B

T
h (fh − Lhuih;POST)

To be consistent with the Fourier analysis we measure the residue in the 2-norm

‖dh‖2 = ‖fh − Lhuh‖2 =
(
64∑
e=1

2∑
j=1
d2he; j

)1=2
The convergence of the residue is shown in Figure 8. The convergence factors as observed,
are given in Table XI.
Both for �=2=h and 5=h we see convergence, starting from the �rst iteration sweep. Fur-

thermore, for the IP-DG method with �=5=h the observed convergence factors correspond
very well to the spectral radii shown in Table VII. Only for the IP-DG method with �=2=h
the spectral radii of the Fourier analysis seem too optimistic compared with the convergence
factors in Table XI. This is clearly caused by a boundary e�ect (as can be seen if we study
the slowest converging component, which is exponentially growing towards the boundary).
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Table XI. Numerically obtained convergence factors corresponding with

(MCGC

h MREL
h )=
( �MREL

h
�MCGC
h ) for damping parameters as in Table VI.


(MCGC
h MREL

h ) IP-DG �=2=h IP-DG �=5=h

MCGC
h MREL

JOR 0:48 0:34

MCGC
h MREL

DGS 0:24 0:23

MREL
DGSUM

CGC
h MREL

DGSL 0:17 0:18

This is related to the fact that, as � approaches 1=h, the two-level algorithm becomes singular.
This singularity e�ect disappears for larger values of �= h�.

6. CONCLUSION

In an earlier paper we have shown that multigrid iteration can be quite e�cient for the solution
of elliptic equations that are discretized by higher-order discontinuous Galerkin discretization,
provided that a block (Jacobi or Gauss–Seidel) relaxation is used, based on a point-wise
(instead of a cell-wise) ordering.
In this paper we have studied the solution of the discrete equations for the discontinuous

Galerkin method with piecewise linear test- and trial functions. It is well known [10, 11] that
in this case the DG method requires an interior penalty (IP) parameter �¿1 in order to
guarantee that the discrete equations are stable.
We show that in this case, again, a multigrid method can be used to solve the corresponding

discrete equations if block relaxation is used, based on the pointwise ordering. If a suitable
IP parameter �¿1 is chosen, the block Jacobi or (symmetric) block Gauss–Seidel relaxation
have a good smoothing property.
Using Fourier analysis, in this paper, for feasible �-values, we compute optimal damping

parameters for the relaxation methods and the corresponding two-level convergence rates. In
view of the hierarchical structure of the DG multigrid-algorithm proposed in Reference [9],
the present results can also be used to justify the use of a low-order discretization in the
hierarchical scale of methods, if needed.
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