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A DEFECT CORRECTION METHOD FOR PARABOLIC SINGU-
LAR PERTURBATION PROBLEMS WITH CONVECTIVE TERMS
P.W.Hemker, G.I.Shishkin, L.P.Shishkina (Amsterdam, The
Netherlands; Ekaterinburg). The Dirichlet problem for a singularly
perturbed parabolic PDE with convective terms is considered on an in-
terval. The perturbation parameter ¢ takes any values from the half-
interval (0,1]; the reduced equation is a hyperbolic first-order one. As ¢
tends to zero, a boundary layer appears in the neighbourhood of that
end of the interval onto which the convective flow is directed. For such
a problem e-uniformly convergent schemes, i.e., schemes the accuracy of
which 1s independent of the parameter, are well known. In particular,
it is the scheme on piecewise uniform meshes condensing in the bound-

ary layer. The accuracy of this base scheme is O{N-1In? N + N; !},
where N 4+ 1 and Ng + 1 is the number of the space and time mesh
nodes, respectively. The development of schemes with a higher order of
the convergence rate is the actual problem. Here ¢-uniformly convergent
schemes with high-order time-accuracy are considered. For the numeri-
cal solution of the boundary value problem we use the base scheme and
the system of additional corrected schemes. The improvement in time-
accuracy of the solution by the base scheme is achieved by correction of
the right-hand side. In this correction procedure we use the pre-obtained
solution of the base scheme. The order of consistency for the new scheme
(after correction) is higher than that for the base scheme. Then we can
repeat such a defect correction by a similar way. This method with a
sequential correction of the local truncation error allows us to construct
e-uniformly convergent schemes with high-order time-accuracy. The effi-
ciency of these theoretical results is illustrated by the results of numerical
experiments. This work was supported in part by the Dutch Research Organization
NWO under Grant 047.003.017 and by the RFBR under Grant 98-01-000362.

SOLVING SCIENTIFIC PROBLEMS USING MAPLE J.Hiebftek
(Brno, Czech Republic). Today, computational simulation
means much more that number crunching. Automating algebraic com-
putation began about thirty years ago, with the programs Macsyma and
Reduce; newer entries to the field include Derive, MathCAD, Maple and
Mathematica. These Symbolic Computation Systems (SCS) directly ad-
dress academic and research issues in an engineering education. Using
SCS, we can get the answers to most of the questions on a traditional
freshman mathematical examinations. They can differentiate, integrate,
solve systems of equations (e.g. linear, nonlinear, difference, differential
and integral) and find various approximations. We can also use SCS
to treat questions of combinatorics, knot theory, molecular chemistry,
population biology or general relativity. They produce quite nice 2D
and 3D cfraphics, while they spare us the tedium of algebraic manipula-
tion, and let us focus on the real questions rather than on the numerical
evaluations. SCS such as Maple V by Waterloo Maple Inc., differ from
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IU1% peilleHHs MNOTHHX nyioxo obycnornennnx CIIAY. Haerca o630p ‘pe—
3yJILTATOB, NONYYeHHLIX aBTopaMy B 1995-97 rr., a Takie HOBLIX BhLIBO-
IIOB, BKJi0Yas omeHk® 3pdeKTHBHOCTH pa3paboTaHHBIX IMapajjlelbHLIX
anropaTmoB. Onucupaercs paspaboranHnil asropamu naker LINPAR.
Pa6ora noanepxana P®PU, rpanT 96-01-01557.

YUCJIEHHOE PEHIEHUE TPEXMEPHBIX 3AIAY O ITOJN3YILIEM

TEYEHUM BJ3KOM XXUIKOCTH CO CBOBOIHOM IIOBEPX-
HOCTBhIO METOIOM T'PAHUYHLIX SJIEMEHTOB B.A.SIxyTe-
Hok (Tomcx). B paboTe paccMaTpuBaloTCa BONPOCH, CBA3aHHHE C IPH-
MeHEHHEM HeOpAMOro BapHAHTA MeTOAa M'PaHHYHHIX 3JIEMEHTOB IUId 4H-
CJIEHHOT'O MOJEeJIMPOBaHUs MOJI3YUINX Ted4eHUHR BA3KOH XMOKOCTHU B Tpex-
MepHOM caydae. Ilas 3Toro ocyumecTriageTca nepexol oT nupdepeHnu-
aJILHOM NMOCTAHOBKM 3a1a4¥ K 'DaHHYHOHMHTErPAbHOR ¢ UCNOJb30OBAHH-
eM QyHIOaMeHTaAbHEIX pelIeHHH JMHeapU3oBaHHHIX ypaBHenwi Habbe-
Crokca ¥ PUKTHBHBIX MCTOYHMKOB HEH3BECTHOM 3apaHee HHTEHCHBHO-
CTH, pacnpeleJeHHHX No rpamuue obiacTu. IlonydeHHHle rpaBHMYIHO-
HHTerpajibHBE YPaBHEHHS HUCKPETHIUPYIOTCA NPH IOMOIIM pa3bmeHud
o6nacTu Ba TpeyrojbHkle NOCTOSHHLIE 3eMeHTH. [In% BHIYUC/ICHAA He-
CHETYJISPHEIX HHTErpajioB HCIOJIb3yeTcd KBafpaTypHas dopmyna Xam-
Mepa nAToro nopiaka. Bce HHTErpatkl ¢ 0cOGeRHOCTAMM BHIYHCIIZIOTCA
aHanuTHYecku. Il pemmeHMs CHCTeMBI JHHEHHLIX YPaBHEHHH OTHOCH-
TeJIbHO HEM3BECTHHX MHTEHCHBHOCTEH MCTOYHHKOB NpHMeHSeTCS MeTOoN
Caycca ¢ BeiGopoM ri1aBHOrO 3/ieMeHTa. B KadecTBe HIJIIOCTPAlMM BO3-
MOXHOCTEH JaHHOTO HOAXOAa HPOBENCHO HCCleNOBaHMe 3allOJIHeHHS Bep-
THXAJILHOTO KaHalla KBaJAPATHOI'O CeueHHs BA3Ko#i xuaxkocThio. Mccne-
IOBaHa 3BOJIIONKUS CBOGOMHON NOBEPXHOCTH B IIAPOKOM ANANAa30He H3Me-
HEHHd ONpeAesdioOmNX NapaMeTpoB.

ON SMOOQOTH DECOMPOSITIONS OF MATRICES T.E.Eirola
(Joensuu, Finland). For very good reasons, orthogonal matrices are
the backbone of modern matrix computation. They can be computed
stably, and provide some of the most successful algorithmic procedures
for a number of familiar tasks: finding orthonormal bases, solving least
squares problems, eigenvalues and singular values computations, and so
forth. The purpose of this work is to consider orthogonal decompositions
for matrices depending on a real pardmeter. Thus we consider &k times

continuously differentiable matrix functions, i.e., A € C*(R,C™*"),
k > 0. We consider a number of basic tasks, such as the QR-, Schur-,
and singular value decomposition of A, and their block-analogues. Of
course, in general, the matrix A(t) will have, say, an SVD at each given ¢,
but we are interested in conditions and procedures guaranteeing that the
factors involved are smooth. This is desirable in several situations. For
example, in updating techniques, perturbation theory, and continuation
processes. Sufficient conditions for existence of such decompositions are

given and differential equations for the factors are derived. Also generic
smoothness of these factors is discussed. Joint work with Luca Dieci.



