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1. Introduction

The solutions of boundary value problems in composed domains have singularities generated
by discontinuities in the coefficients and right-hand side. When the problem in question is
singularly perturbed (with a small parameter € € (0, 1] multiplying the highest derivatives in the
differential equation), redundant singularities may appear, namely boundary and interior layers.
The fact that the partial differential equation can be nonlinear complicates the solution process.
Because of the thin layers, standard numerical methods applied to problems from this class yield
unsatisfactorily large errors for small values of the perturbation parameter . Model examples
show that the errors of standard finite difference methods on uniform meshes grow and become
comparable with the solution for e &~ N=!, where N is the number of mesh intervals in .

In a space-time domain composed of two rectangles, we consider a singularly perturbed
boundary value problem for a semilinear parabolic reaction-diffusion equation. The conjugation
conditions which reflect the conservation laws are given on the interface between the subdomains.
As € — 0, the solution has boundary layers and a transient (interior) layer. The interior layer
appears on both sides of the interface. Problems of this type arise in numerical modelling of
nonstationary heat and mass transfer in a stratified composite medium when the coefficients of
heat and/or mass transfer are small.

For this singularly perturbed problem in the composed domain whose solution has several
singularities, our goal is to develop e-uniformly convergent numerical schemes based on a domain
decomposition method so that the problem to be solved on each subdomain has no more than
a single singularity. Using standard finite difference operators on piecewise uniform meshes
condensing in the layer regions, we first construct a (nonlinear) difference scheme that converges
e-uniformly at the rate O(N~2In? N + Nj*'), where Ny is the number of mesh intervals in
t. Making use of this base scheme, we construct domain decomposition schemes, in which
the linearized subproblems on overlapping subdomains can be solved sequentially or in parallel
(independently of each other). We give conditions under which the overlapping Schwarz-like
method developed in this paper is robust in the sense that its solutions converge e-uniformly (at
the same rate as the base scheme) as the number of mesh points grow.

Note that the use of piecewise uniform fitted meshes for solving linear partial differential
equations in composed domains was considered in [1]. Grid approximations to quasilinear
parabolic equations in homogeneous domains (the coefficients of these equations are continu-
ous on the solution domain) were studied, e.g., in [2]. A technique how to reduce the solution
process for singularly perturbed problems with multiple singularities to the solution of a few
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local problems on subdomains each of which involves no more than one singularity, which es-
sentially simplifies the solution of the problem of our interest, was not practically considered.
A similar approach was applied in [3] where a parameter-uniform overlapping Schwarz method
was constructed for linear one-dimensional reaction-diffusion problems with boundary layers in
homogeneous domains (see also there a review of the bibliography).

2. Problem formulation

In a space-time domain G composed of two rectangular subdomains G and G5, we consider
a singularly perturbed boundary value problem for the semilinear parabolic reaction-diffusion
equation

Lyu(z,t)= {szak(x,t)% —pk(x,t)%} w(z,t) = fi(z, t,u(z,t), (2,8) € Gy, (2.1a)
u(z,t) = p(x,t), (x,t) €S, k=1,2. (2.1b)

Here

G=Dx(0,T], D={a: —doy<a<d’}, do, d°>0; S=G\G,
the set D consists of two intervals Dy and Dy:
Dy = (=dp,0), Dy =(0,d°, correspondingly, Gy = Dy, x (0,7], k=1,2.

On the interface between the subdomains, i.e., on the set S*= 1" x (0,T], where I'* = {z = 0},
we have the conjugation condition

lu(z,t)=¢ a(x,t)aa—xu(x,t) =0, [u(z,t)]=0, (2,t)eS", (2.1¢)

which responds to the continuity of the solution and of the diffusion flux when passing across the

interface. The perturbation parameter ¢ takes arbitrary values in the half-open interval (0, 1].

In (2.1) the functions ag(z,t), pr(z,t) and fy(x,t, u) are assumed to be sufficiently smooth on

G}, and G}, x R, respectively, and ¢(=z,t) is sufficiently smooth on S;, 7 =0,1,2, ¢ € C(5),

where S = ST U Sy, ST =5, U Sy, Sp = S is the lower base, S and S, are the left and right
lateral boundaries. It is assumed also that !

0<a0§ak($7t)§a07 0<P0§Pk($7t)§1’07 ($7t)€§k; ( )

_ 2.2

et o)l < M, (0,t,0) €Grx By o, ) < M, (2,0) €53 k=1,2.

The symbol [v] in (2.1¢) denotes the jump of a function v when passing through the interface

S* from Gy to Gy [u(z,t)] = lim w(zo,t) — lim wu(zy,t), a(x,t)aiu(x,t) =
x

ro— T r1— T

d d
lim ag(wg,t)a—u(xg,t) — lim al(xl,t)a—xu(xl,t), (z,t) € 5, (z1,t) € Gy, (22,t) € Gy

Tro2— T T r1— T
It is convenient to write equation (2.1a) also in the form
Lu(e,t) = f(o,t,ule,8)),  (2,8) € G\ 57, (2.1d)

where L =1Ly, f(z,t,u) = fi(z,t,u), (z,t) € Gi. At the corner points Sy ﬂgL, compatibility
conditions are assumed to be satisfied so that the solution is sufficiently smooth for each fixed
value of the parameter €. For simplicity, we assume that

0 d?

_fk($7t7u)207 W

o fr(z, t,bu)| <M, (v,t,u) €Gr xR, k=1,2. (2.3)

! Here and below M (m) denote generic sufficiently large (small) positive constants that do not depend on
e and the discretization parameters. Throughout the paper, the notation w; ) means that the symbol w is
introduced in formula (j.k).



This condition ensures the existence and uniqueness of a solution for any values of ¢ from (0,1].
As e — 0, the solution exhibits boundary layers (in a neighbourhood of the parabolic bound-
ary ST) and a transient (interior) layer that occurs on both sides of the interface S*.

3. Finite difference schemes

1. For the boundary value problem (2.1) we construct a base finite difference scheme that
converges e-uniformly, i.e., with error bounds independent of the parameter e.
On the segment (¢ we introduce the mesh

G, =@ X Wo, (3.1)
where @ and @y are generally nonuniform meshes on [—dg, d°] and [0, Ty], respectively; the point
@ = 0 belongs to the mesh @. Let h* = 2*t'— ', 2* 2't! € @, h = max; h*; h] = /1 — ¢,
t, 't € Wy, hy = max; hi; N +1 and Ng + 1 are the numbers of mesh points in the meshes &
and @y. We assume that h < MN~! hy < MNO_I. Denote the node & = 0 by .

The equations (2.1a), (2.1b) are approximated by the difference scheme [4]

Az(z,t) = flz,t,2(x,t)), (z,t)e GL\S™, z(z,t) =¢(z,t), (z,t) € 5. (3.2a)

Here Gy, = G N @h, Sy, =95nN @h, A= €2ak($,t)(s§§ — pr(x)dz, (z,t) €EGrpy, k=1,2, 055 2(2,1)
and 0, z(2,t), 6z(x,t) are the second and first (forward and backward) difference derivatives,
bz 2(x, )= 2(K 7408 ) " (0p2(2, 1) =67 2(2, 1)), Spz(a, t) = (R') 7L (z(at ] t)—2(x, 1)), Sz 2(z,t)=
(hi_l)_l(z(xvt) - Z(wi_lvt))v T = $i7 5?Z($7t) = (hi_l)_l(z(xvt) - Z(xvtj_l))v t=t.

We approximate the conjugation condition (2.1c) by the discrete equation

clax(z, )8, —p~ (a1 (2, ) 8,) } 2(2, ) = 0, (,t) € S;, z=2a®

where p~ is the left—shift operator such that p~(aj(2,t) 8, 2(z%,t)) = a1 (271, t) 6, 2(z" =1, t) =
ar (271 1) dzz(2*,t). The discrete conjugation condition can be written in the “compact” form
similar to (3.2a)

Az(z,t) =0z (a(e 4 0,t) 6y (2, 1)) = f(2,t,2(2, 1)), (2,t) € S}, (3.2b)

where f(s.a5)(2,t,2)=0 for (z,1) €S} (at x= 2), the difference derivative dz 2(x,t) is defined
by [4] 6z 2(x,t)= 2R + h) " (z(zFh 1) — 2(a, 1)), @ = '

The difference scheme (3.2), (3.1) is monotone [4] e-uniformly. Using the technique of
majorant functions and a priori estimates, similarly to [1], we find the error estimate

(e, t) - 2(a,0)] < METNTUE NG, (2t) € G

On the uniform mesh @;;, where =" is a uniform mesh in @ with stepsize h= (d°+dg) N1,
Wo is a uniform mesh in time with step h; = T'/Ny, we obtain

lu(z,t) — 2(z,t)] < M[(e + N"H)2N"2 4 1\70_1]7 (z,t) € @;;.

Thus, scheme (3.2) on arbitrary (in particular, uniform) meshes converges for fixed values of the
parameter €, however, it does not converge e-uniformly.
To solve problem (2.1), we use a piecewise uniform mesh condensing in the boundary and

interior layers [1] .,
Gh = Gh = w*(O'h 0'2) X Wo, (33)

where &g is a uniform mesh with step h; = T /Ng, @* is a piecewise uniform mesh on [—dg, d°].
We construct the mesh @* by dividing [—do, d°] into 6 intervals [—do, —do+ 01], [~do + o1, —01],
[—01,0], [0,09], [02,d° — 03] and [d® — 03, d°]. The mesh width on each subinterval is constant
and equal to AV = 80y N~! on the intervals [—do, —do+oy] and [—0oy, 0], P =4 (do — 20) N71



on the interval [—do 4 o1, —0y], A®) = 80y N~ on the intervals [0, 73] and [d° — oy, d"], and
B4 =4 (do — 202) N~!on the interval [0y, d° — 03]. The parameters oy and oy are taken to be
oy =min [47dy, MycIn N], o9 = min[471d°, Myeln N], where My, My > 0 are arbitrary
constants chosen according to a priori estimates, similarly to [1].

Theorem 1 Let the data of the boundary value problem (2.1) satisfy conditions (2.2), (2.3),
and let ag, pp € C(Gy), fr € CYH(Gy x R), @ > 0, k = 1,2. Then the difference scheme
(3.2), (3.3) converges c-uniformly with error bounds

|ue,t) — z(z,8) | < M [NT2In? N+ N, (2,t) € G, (3.4)

2. The above difference scheme is nonlinear. In this subsection we construct a difference
scheme that is linear at each time level. To this end, we approximate a problem for the linearized
equation where the unknown function in the nonlinear term is taken at the previous time level
(similarly to [5]) as follows:

A(3.5)Z($7t):f($7t7 2($7t))7 ($,t>€Gh7

z(x,t) = @(a,t), (x,t) € Sh. (3:5)

Here A(3.5)Z($7 t) = A(3.2a)z($7 t)v ($7 t) € Gh\ ST, A(3.5)Z($7 t) = A(S.Zb)z(xv t)? ($, t) € GpNST,
Fa,t) = z(x, t — he), (x,t) € Gp.
For simplicity, we assume that
0 —
%f(x,t,u) < My, (z,t,u) € G X R.
Under the condition

he < My min p(z, 1) (3.6)
[ e

the difference scheme (3.5), (3.1) is monotone. Under condition (3.6) we obtain the estimate
similar to (3.4)

|u(x,t)—z(3.5)(ac,t)| S [N_21n2N+N()_1]7 ($7t)€§;7 (37)
where 2(35)(2,1) is a solution of scheme (3.5) on the mesh (3.3).

Theorem 2 Let the hypotheses of Theorem 1 and condition (3.6) be fulfilled. Then the solution
of scheme (3.5), (3.3) for N — oo converges to the solution of the boundary value problem (2.1)
e-uniformly. The numerical solutions satisfy estimate (3.7).

Our primary concern here is to construct a decomposition of this base discrete problem such
that the solution of the differential problem on each subdomain of the decomposition has no
more than one of the singularities (either boundary layer or the interior layer).

4. Discrete overlapping Schwarz-like method

For the scheme (3.5) we describe an overlapping domain decomposition method [5-8]. Let open
subdomains D¥, k =1, ..., K cover the domain D: D = U?:l D¥ and let G* = D* x (0,77,

k=1,..,K; K >3. We denote the minimal overlap of the sets D¥ and DI = UZB:1 itk D

by AF, and the smallest value of A* by A, i.e., min2p(x1,x2) = A, 2te Ej, 2? € E[j],

]7 w17 &
2l 2% ¢ {Dj N D[Jl]}7 j=1,....,J, where p(z!, 2?%) is the distance between 2!, 22. Generally
speaking, A = A(e).

Let each D* be partitioned into P disjoint (possibly empty) sets:

P
- —=k —k
pt=JDF, k=1,...K, D, ND,, =0, p1+#ps (4.1)
p=1



We set G’; = D;f Xwo,p=1,...,P, k=1,...,K. By G(t;) we denote the strip G(t;)= {(z,?):

(z,t) € G, t1 <t <ty + h}, t1, b1+ hy € &g, Wo={t": t"=nhy, n =0,1,..., N} is a uniform

mesh with step h; = T/No. We subdivide the strip G(t1) into sections GL(t1) = GE NG (ty),
—k

Sp(t) = G, () \ Gy(t).

On the sets G and @:, we construct the meshes
Gl =G"nG,, Gl =3G'nG,, (4.2)

where G, is either (3.1) or (3.3); we suppose that the boundaries of the subdomains G" and
@: pass through the nodes of the mesh G7,.

Assuming that the function z(z,t), # € D), for t = t"~! € Ty has been computed, we find
z(x,t) for t =" €Wy by solving successively the problems

Az (1) = 0, (2,) € Gpa(t"), (4.3a)
o/ K Z(z, t;17), k=1, oo
R (1) = { ke ke [ EOESHE PP

for (x,t)E@jh(t”)7 k=1,....K, t"€wy, n<Ny—1;

z;,f/K(w,t), (z,t) € G:h(t”), p=1,...,P
I (2, 1) = Z(z, t;17), k=1, . P K
Z(k_l)/K(x,t), k22}7 (xvt)eGh(t )\Up—le (t )7
k

for (z,t) € G),(t"); =1,...,K, " ¢€wy;

where Ay (2(2,1)) = Azs)z(z,t) — f(2, (2, "), (2,t) € GR(t™), 1" € ©o. The required
function z(z,t) on the set G, (t") is defined by

2(x,t) = BB (1), (x,0) € GR(t"), " €. (4.3b)

In (4.3a) Z(x,t;t"), (z,t) € GR(t"), t" €wp is determined by the extension onto G/(¢") of the
function z(z, "1, (z,t) € GL(t"™1), "' € w,.

The intermediate (linearized) problems on the subsets E:h = E: N Dy, can be solved in-
dependently of each other in parallel on P > 1 processors (see also [7, 8]). For P = 1 the

subproblems on E: -Dn D), are solved sequentially. It should be noted that the modified
Schwarz method developed in the paper is not iterative in the strict sense. The advantage of
this approach is that the method requires no iterations at each time level.

Under the condition

A=A() >0, € (0,1], i?ofl] [e7TA(g)] >0 (4.4)
eec(0,
we get the estimate
|Z(3.2)($7t) - 2(4.3)($7t) | < MNO_17 ($7t) S Ghv (45)

where z(3.9)(7,1) and z(4.3)(7,t) are solutions of the schemes (3.2), (3.1) and (4.3), (4.2), (3.1),
respectively. Taking account of (4.5) and (3.4), we obtain the e-uniform estimate

|u(x,t)—z(4.3)(ac,t)| S M[N_21n2N+N(J_1]7 ($7t) 65;7 (46)

in which z(4.3)(2,t) is now a solution of scheme (4.3), (4.2), (3.3).
Summarizing, we have the following main result.



Theorem 3 Let the Let the hypotheses of Theorem 2 hold. The condition (4.4) is necessary
and sufficient in order that solutions of the decomposition scheme (4.3), (4.2), (3.1) converge
e-uniformly (as Nog — o0) to the solution of scheme (3.2), (3.1). Under condition (4.4), the
solutions of the decomposition scheme (4.3), (4.2), (3.3) converge, as N, Ny — oo, to the solution
of the boundary value problem (2.1) e-uniformly. The numerical solutions satisfy estimate (4.6).

Remark 1 Let me < A(e), where the overlap A¥ in the decomposition (4.1) is minimal
but admissible by the nodes of the mesh (3.3). Then for small £ computational expenses on
solving the decomposition scheme are higher, but of the same order, than those for scheme
(3.5); besides, the domain decomposition introduces additional errors. Thus, on the same mesh
(3.3) the decomposition scheme loses on expenses and accuracy in comparison with scheme (3.5).
However, the amount of the computational work (defined by the number of mesh points at which
it is necessary to find the solution) in the decomposition method can be essentially less.

Remark 2 [t seems that parallel overlapping domain decomposition schemes accelerate the
numerical solution process but it is generally not the case. For example, when f(z,t,u) = cu,
(z,t,u) € G x R, ¢ > 1, the difference scheme is linear, and its parallelizing only decelerates the
solution of the linear scheme and leads to additional errors. This situation remains when the
function f(z,t,u) is close to linear with respect to u.
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