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Preface 

This volume contains a selection from the papers presented at the Fourth European 
Multigrid Conference, held in Amsterdam, July 6-9,1993. There were 78 registered 
participants from 14 different countries, and 56 presentations were given. 

The preceding conferences in this series were held in Cologne (1981, 1985) and 
in Bonn (1990). Also at the other side of the Atlantic special multigrid conferences 
are held regularly, at intervals of two years, always in Copper Mountain, Colorado, 
US. The Sixth Copper Mountain Conference on Multigrid Methods took place 
in April, 1993. Circumstances prevented us from putting a larger time interval 
between the Copper and Amsterdam meetings. The next European meeting is 
planned in 1996, a year later than the next Copper Meeting. 

When the first multigrid conference was held in 1981 there was no doubt 
about the usefulness of a conference dedicated specially to multigrid, because 
multigrid was a new and relatively unexplored subject, still in a pioneering stage, 
and pursued by specialists. The past twenty years have shown a rapid growth in 
theoretical understanding, useful applications and widespread acceptance of multi­
grid in the applied disciplines. Hence, one might ask whether there is still a need 
today for conferences specially dedicated to multigrid. The general consensus is 
that the answer is affirmative. New issues have arisen that are best addressed or 
need also be addressed from a special multigrid point of view. Most prominent 
among these issues are parallel computing, adaptive computations and applica­
tions other than elliptic boundary value problems. Multigrid has much impact on 
computational fluid dynamics, but also in other fields profitable use of multilevel 
concepts is possible and starts to develop. In fact, in almost all areas in which 
intensive computing is a major tool, multilevel principles may bring improvements 
or even allow major breakthroughs. Hence, to exchange the experiences special 
multigrid conferences will continue to be useful in the foreseeable future. 

Exchange of information on multigrid research is further aided by MGNet, in 
which papers and software are stored electronically, and may be retrieved by ftp. 
MGNet is maintained by C. Douglas of Yale University. Information on MGNet 
can be obtained by sending email to mgnet-requests@cs.yale.edu. 

The papers in this volume are ordered alphabetically by author. The invited 
presentations are followed by a selection of contributed papers. Financial con­
straints put a page limit on this volume. Rather than severely limit the number 



viii 

of pages available for each contribution, reducing these more or less to technical 
abstracts, we preferred to give authors sufficient space to show interesting details, 
and to accept the consequence, that not all contributions could find a place in these 
pages. We made a selection, and the remaining contributions will be published by 
the Centre for Mathematics and Informatics (CWI) in Amsterdam in their CWI 
Tract series. 

Several trends in the field that are discernible at present, are reflected in the 
papers presented at the conference. Maturing parallel computing technology has an 
increasing impact on scientific computing. This development is of prime concern 
to multigrid practitioners. After all, reduction of computing cost, measured in 
various norms, such as financial cost or elapsed wall clock time has from the 
start been the most (though not the only) appealing aspect of multigrid from a 
practical point of view. The holy grail of "just a few work units" takes on a new 
aspect in a parallel computing environment. Similar considerations of cost and 
quality lead to adaptive discretisation techniques for those applications that go 
beyond the realm of the smooth and continuous, to include sharp-edged features 
and discontinuities. Multigrid is especially suited here, because of the possibilities 
it offers for a-posteriori error estimation, and hence for the detection of special 
structures in solutions. Furthermore, multigrid for unstructured grids is actively 
pursued. In three-dimensional domains of complicated shape, unstructured grids 
are much more easily generated than structured grids and they give more flexibility 
when adapting the grid to the behaviour of the solution. However, there is still 
a long way to go before efficiency similar to that obtained for structured grids is 
obtained, especially for equations of second order. Algebraic multigrid, in which 
no reference is made at all to an underlying grid structure, shows progress, but 
also needs to be developed further. 

Multigrid has become an indispensible tool in computational fluid dynamics. 
Significant new developments are seen in the treatment of evolution and hyper­
bolic problems. Steady progress is being made for the multifarious mathematical 
models that play a role in fluid dynamics. But other fields present huge compu­
tational challenges as well. A prime example is quantum chromodynamics. Aided 
by multigrid, significant breakthroughs seem in the offing. Another example is tri­
bology, where computational models have improved significantly by application of 
multigrid. The reader will find papers about these topics in the present volume. 

The conference was made possible by the Centre of Mathematics and Infor­
matics (CWI), Amsterdam, and the University of Amsterdam. Financial support 
was provided by Akzo NV, IBM Nederland NV and the Royal Dutch Academy 
of Science (KNAW). We are also greatly indebted to Mr Frans Snijders and Ms 
Simone van der Wolff for their help in organising the conference in the historic 
setting of old Amsterdam. 

Amsterdam / Delft, October 1993 
P.W. Hemker 
P. Wesseling 
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On Robust and Adaptive 
Multi-Grid Methods 
P. Bastian and G. Wittum1 

ABSTRACT In the present paper we discuss the development and practical ap­
plication of robust multi-grid methods to solve partial differential equations on 
adaptively refined grids. We review several approaches to achieve robust multi-grid 
methods and describe two special new strategies for anisotropic and convection 
diffusion problems. The performance of these algorithms is investigated for three 
selected test problems. 

1 Introduction 

In the present paper we discuss the development and practical application of ro­
bust multi-grid methods to solve partial differential equations on adaptively re­
fined grids. Since a couple of years multi-grid methods are well established as fast 
solvers for large systems of equations arising from the discretization of differen­
tial equations. However, it is still a substantial unresolved question to find robust 
methods, working efficiently for large ranges of parameters e.g. in singularly per­
turbed problems. This applies to diffusion-convection-reaction equations, arising 
e.g. from modelling of flow through porous media, the basic equations of fluid 
mechanics and plate and shell problems from structural mechanics. 

Multi-grid methods are known to be of optimal efficiency, i.e. the convergence 
rate K does not depend on the dimension of the system, characterized by a stepsize 
h. Following [28] we call a multi-grid method robust for a singularly perturbed 
problem, if 

K(h,e) ::; KO < 1, \Ie> 0, h > 0, (1) 

e denoting the singular perturbation parameter. Up to now multi-grid methods 
satisfying (1) have been studied in the literature only for special model cases using 
structured grids, see [25], [26], [15], [27], [28], [29]. 

llnterdiszipliniires Zentrum fiir Wissenschaftliches Rechnen (IWR), Universitiit Hei­
delberg, 1m Neuenheimer Feld 368, 69120 Heidelberg, Federal Republic of Germany, 
email: wittum(Diwr.uni-heidelberg.de 
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Problems of the type mentioned, typically show degenerations in hyperplanes. 
To resolve these zones special dynamic grid adaptation techniques are necessary. 
Here it is necessary to rethink standard multi-grid techniques. In §2 we classify 
several multi-grid approaches for adaptively refined grids. On the one hand adap­
tively refined grids can substantially weaken the robustness requirement (1) as 
outlined in §3. On the other hand the unstructured grids generated by adaptive 
refinement require special numbering techniques so that the smoother does a good 
job on the problem. It is the main objective of the present paper to present a 
strategy to combine the techniques of robust multi-grid and adaptivity. 

The techniques have been implemented within the software package ug, which 
will be shortly described in §4. Results of numerical tests for several practical 
problems are given in §5. 

2 Multi-Grid Strategies 

2.1 BASIC MULTI-GRID TECHNIQUES 

Let the linear boundary-value problem 

Ku I in n (2) 

U UR on an 

with a differential operator K : U -+ F between some function spaces be given on 
a domain n <;;; Rd. Let (2) be discretized by some local discretization scheme on a 
hierarchy of admissible grids (cf. [13]) 

l = 0, ... , lmax (3) 

We use nested grids only for ease of presentation. Most of the methods discussed 
below can readily be applied to general loosely coupled grids violating (3). The 
discretized equations on nl are denoted by 

Ul 

with 

II in nl , for l = 1, ... , lmax 

UR,1 on ani 
(4) 

(5) 

Ul, Fl denoting the discrete analoga of U and F with finite dimension n. We assume 
that the discretized equations are sparse. Further let some "smoother" 
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Sl : Ul ----t Ul for l = 0, ... , lmax (6) 

and "grid transfer operators" 

PI-I: Ul - I ----t Ul , rl-I : PI ----t PI-I, for l = 1, ... , lmax (7) 

be given. 
Multi-grid methods are fast solvers for problem (4). We basically distin­

guish between additive and multiplicative multi-grid methods. The multiplicative 
method is the well-known classical multi-grid (cf. [12]) as given in algorithm 2.1: 

Algorithm 2.1 Multiplicative multi-grid method. 
mmgm(l, u, J) 
integer I; grid function u, I; 
{ grid function v, d; integer j; 

if (I = 0) u := K Z- 1 I; 

} 

else { 

} 

u:= S?(u,J); 

d := Tz-l(Kzu - J); 
v:= 0; 

for j:=l step 1 to 'Y do mmgm(l-l,v,d); 

u := u - PZ-1V; 

u := Sr2 (u,J); 

The additive multi-grid method is given by the following algorithm. 

Algorithm 2.2 Additive multi-grid method. 
amgm(l, u, J) 
integer I; grid function v[l], d[l]; 

{ integer j; 

} 

d[l] := Kzu - I; v[l] := 0; 
for j:=1 step -1 to 1 do { d[j - 1] := Tj-ld[j]; v[j - 1] := 0; 
for j:=l step 1 to I do v[j] := Sj (v[j], d[j]); 

v[O] := KOld[O]; 

for j:=l step 1 to I do v[j] :=v[j] + Pj-1V[j - 1]; 
u:= u - v[I]; 

The structure of both algorithms can be seen from Figs. l(a) and l(b). The 
main difference between these two variants is that in the multiplicative method 
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)-------1 S )-------( 

(b) 

S: Smoother 
D: Defect 
R: Restriction 
P: Prolongation 
+: Sum 

FIGURE 1. Outline of the V-cycle multiplicative multigrid algorithm mmgm (a) and of 
the additive multigrid algorithm amgm (b). 

smoothing and restriction of the defect to the next coarser level are performed 
on one level after the other sequentially, while in the additve method smoothing 
on the different levels can be performed in parallel. Restriction and prolongation, 
however, are sequentially in the additive method too. Usually, the additive methods 
are applied as preconditioners, since acceleration methods like cg directly pick an 
optimal damping parameter, the multiplicative methods are used as solvers and as 
preconditioners. According to [31], these methods can be formulated as additive 
Schwarz methods. 

Applying multi-grid methods to problems on locally refined grids one has 
to think about the basic question, how to associate grid-points with levels in the 
multi-grid hierarchy. Consider the hierarchy of grids {Ol, l = 0, ... , lmax} from (3). 
Early multi-grid approaches smooth all points in 0 1• This may cause a non-optimal 
amount of work and memory of O( n log n) per multi-grid step. This problem was 
the starting point for Yserentant , [32], and Bank-Dupont-Yserentant, [1], to de­
velop the method of hierarchical bases (HB) and the hierarchical basis multi-grid 
method (HB/MG). These were the first multi-grid methods with optimal amount 
of work per step for locally refined grids. This is due to the fact that on levell only 
the unknowns belonging to points in DI \ DI- 1 are treated by the smoother. How­
ever, the convergence rate deteriorates with log n. For the first time this problem 
was solved by the introduction of the additive method by Bramble, Pasciak and 
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TABLE 1. Multi-grid methods for locally refined grids. 

smoothing pattern 

(1) new 
points only 

(2) refined 
region only 

(3) all points 

basic structure 
additive multiplicative 

HB HBMG 
Yserentant, 1984, 

[32] 

BPX 
Bramble, Pasciak, 

Xu, 1989, [8] 

parallel multigrid 
Greenbaum, 1986, 

[11] 

Bank, Dupont, 
Yserentant, 1987, [1] 

local multi-grid, [20], 
[9], [5] 

classical multi-grid, 
[10] 

Xu, [8], (BPX). There on level I the smoother treats all the points in ill \ ill - 1 

and their direct neighbours, i.e. all points within the refined region. 
Table 1 gives an overview of the multi-grid methods used for the treatment 

of locally refined grids and classifies the variant we call "local multi-grid". The 
methods mentioned above differ in the smoothing pattern, i.e. the choice of grid 
points treated by the smoother. The methods in the first two lines are of optimal 
complexity for such problems. The amount of work for one step is proportional 
to the number of unknowns on the finest grid. However, only the methods in the 
second line, BPX and local multi-grid converge independently of h for scalar elliptic 
problems. The basic advantage of the multiplicative methods is that they do not 
need cg-acceleration and thus can be directly applied to un symmetric problems, 
further they show a better convergence rate and on a serial computer the additive 
process does not have any advantage. The local multi-grid scheme is the natural 
generalization of the classical multi-grid method to locally refined grids, since in 
case of global refinement, it is identical with the standard classical multi-grid 
method. 

The local multi-grid has first been analyzed in 1991 by Bramble, Pasciak, 
Wang and Xu, [9]. They considered it as a multiplicative variant of their so-called 
BPX-method, [8]. However, they did not consider robustness. Further there exist 
predecessors of this method since a couple of years in some implementations ( 
pers. communication by J.-F. Ma A ztre and H. Y serentant). Without knowledge of 
this, the authors developed this method as a variant of standard multi-grid based 
on the idea of robustness (cf. [5]). The main advantage of this approach is that 
the application to un symmetric and non-linear problems is straightforward (cf. 
[5]). Robustness for singularly perturbed problems is achieved by combining local 
multi-grid with robust smoothers (cf. [5]), as explained in the next section. 



6 P. Bastian and G. Wittum 

3 Robustness Strategies 

3.1 ROBUST SMOOTHING 

Already in 1981, Wesseling suggested the first robust multi-grid method for singu­
larly perturbed problems discretized on structured grids [25], [26]. The main idea 
is to apply a smoother which solves the limit case exactly. This is possible e.g. for 
a convection-diffusion equation using a GauE-Seidel smoother and numbering the 
unknowns in convection direction. Wesseling however, suggests to use an incom­
plete LV-smoother, since this handles the convection dominated case as well as 
the anisotropic diffusion (cf. [15], [28]). Main ingredients, however, are the use of 
structured grids and a lexicographic numbering. 

A simple analysis of the hierarchical basis methods (HB, HB/MG) shows 
that the smoothing pattern is too poor to allow robust smoothing. 

Remark 3.1 The hierarchical basis method and the hierarchical basis multigrid 
method do not allow robust smoothing for a convection-diffusion equation. The 
smoothing pattern used in these methods does not allow the smoother to be an 
exact solver for the limit case. This holds for uniformly as well as for locally 
refined grids. 

Based on this observation, we extended the smoothing pattern, adding all 
neighbours of points in 01 \ 0 1- 1 . This allows the smoother to solve the limit 
case exactly, provided the grid refinement is appropriate. This is confirmed by 
numerical evidence given in Chapter 5. 

Vp to now some theory is contained in [28],[29] and the new papers by Steven­
son [21], [22] for uniformly refined grids. This theory shows that the basic require­
ment that the smoother is an exact solver in the limit case is not sufficient to obtain 
robustness. Additionally it must be guaranteed that the spectrum of the smoother 
is contained in [-'19,1] for 0 :'S '19 < 1. This can be achieved by modification (cf. 
[28], [22]). 

3.2 A ROBUST SMOOTHER FOR CONVECTION-DIFFUSION 

PROBLEMS 

The construction of a robust smoother, which is exact or very fast in the limit, is the 
kernel of a robust multigrid method and makes up the main problem when applying 
this concept to unstructured grids. Here we need special numbering strategies. 

In the following we present a strategy for the convection-diffusion equation 

- E~U + c . 'Vu = f , (8) 

with the convection vector c, and E > o. Discretizing the convection term by means 
of an upwind method, we can assign a direction to each link in the graph of the 
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stiffness matrix. If the directed graph generated by this process is cycle-free, it 
defines a partial ordering of the unknowns. This partial ordering can be used to 
construct an algorithm for numbering of the unknowns, which brings the convective 
part of the stiffness matrix to a triangular form. The following numbering algorithm 
performs such an ordering on general unstructured grids, provided the convection 
graph is cycle-free. 

Algorithm 3.1 downwind_numbering. 

1. Assign the downwind direction from the discretization of the convective term 
to each link in the stiffness martix graph. Indifferent links are marked by o. 

2. Put n = number of unknowns. 

3. Find all vertices with minimal number of incoming links and put them in a 
fifo F. 

4. Derive a total order from the directed acyclic graph 

For all vertices L initialize Index( L) = 0; 
While (F not empty) do 

get E from F; 
(4a) Put Index(E) := 1; Put E in fifo FP; i := 1; 
(4b) While (FP not empty) and (i < n) do 

Get K from FP; 
For all neighbors L of K do 

If (L downwind from K) and (Index(L):S Index(K)) 
i := Index(L); 
Index(L) := Index(K)+I; 
Put Lin FP; 

5. Call quicksort with the vertex list and the criterion Index(L) < Index(K) ::::} 
L < K. Output: Ordered vertex list. 

Remark 3.2 If the edge graph is cycle-free, loop (4b) terminates in O(n)-steps 
with FP = 0. Loop (4) has complexity O(q. n) where q is the number of minimal 
elements in the edge graph, which is small. Because of calling quicksort in (5) the 
complexity of the whole algorithm equals O( q . n In n). 

If loop ( 4 b) terminates with F P =I- 0 and i ~ n, the edge graph contains a 
cycle. 

This method has been used for the computations described in Section 5 . 
Meanwhile it has been improved by Bey (cf. [6]). Cycles in the matrix graph may 
occur, if there are vortices in the convection c. If c is vortex-free, cycles can occur 
if several triangles with sharp angles are neighbouring each other and are almost 
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(a) (b) 

FIGURE 2. Illustration of semi-coarsening (a) and anisotropic refinement (b). 

perpendicular to the flow direction (cf. [6]). These numerically caused cycles, how­
ever, can be simply eliminated by finding and cutting elementwise cycles. This is 
possible with O( n) work count. 

3.3 SEMI-COARSENING 

Another strategy to obtain a robust multi-grid method is the so-called semi­
coarsening approach (cf. [26]). The basic idea is to improve the coarse grid correc­
tion instead of the smoother. Starting with a fine and structured grid, coarsening 
is performed only in those co-ordinate directions, in which the scale of the equation 
is already resolved. E.g. for the anisotropic model problem 

- (c8xx + 8yy )u = f , inn = (0,1) x (0,1) (9) 

with corresponding boundary conditions one would coarsen an equidistant carte­
sian grid in case of small c as shown in Figure 2 ( a) . 

Remark 3.3 Such a sequence of coarse grids yields a robust multi-grid method 
for the anisotropic model problem (9) without using a special smoother, since the 
coarse grid resolves the scale in the direction where the smoother does not work. 

This semi-coarsening approach, however, is based on the use of fine grids 
which do not resolve the differential scale, otherwise there would be no semi­
coarsening. Consequently this approach is not applicable as soon as the finest grid 
resolves the problem scale, which is crucial when solving differential equations. 

This does not apply to so-called multiple semi-coarsening approaches, since 
these methods are able to construct sequences of coarse grids from any struc-
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tured fine one, no matter if the scale is resolved. Thus we mainly have to look for 
an approach which allows to adapt the grid to the differential scale by adaptive 
refinement and to solve efficiently on the hierarchy of grids generated this way. 

3.4 ANISOTROPIC REFINEMENT 

Instead of starting with a fine grid and constructing the grid hierarchy by coarsen­
ing we start with a coarse grid and refine that anisotropic ally in order to resolve the 
scale successively. Such a refinement process is given e.g. by the "blue refinement 
strategy" due to Kornhuber, [16]. The basic idea is just to refine quadrilaterals 
with a "bad aspect ratio" by halving the longer edge. Bad aspect ratios can be 
introduced either by element geometry or by anisotropic coefficients in the equa­
tion. This is shown for the anisotropic model problem (9) in Fig. 2(b). Note that 
the discretization error is balanced on the coarsest grid for semi-coarsening, while 
it is balanced on the finest grid for the anisotropic refinement approach. Korn­
huber described how to generalize this approach to triangular unstructured grids. 
Following this process we finally obtain a grid 0 1 which resolves the scale of the 
problem. 

From this grid on we refine regularly and so the multi-grid process will obvi­
ously work without problems. 

Remark 3.4 A proof of robust multi-grid convergence is straightforward since the 
asymptotic behaviour is determined by the isotropic problem. So we need a robust 
method only for a finite sequence of grids up to a fixed h > 0, weakening the 
robustness requirement (1) to 

",(h,c:) :S "'0 < 1, 'tIE 2: c: 2: f > 0, Vh 2: l! > 0 , (10) 
which makes the job much easier. Thus it is sufficient in many cases to use just 
a lexicographically numbered ILU(3, since we do not need the property that the 
smoother is exact in the limit case. It is sufficient that it reasonably accounts for 
the "main connections" up to a fixed range of c: > 0 and for finite h. 

Since this process improves the approximation of the differential problem at 
the same time, this will be the appropriate approach to follow. 

An example of that type is the skin problem described in §5. 

3.5 ALGEBRAIC MULTI-GRID 

Another approach yielding robustness is the family of algebraic multi-grid meth­
ods, see e.g. [24] and the references there. A new algebraic multi-grid approach is 
described by Reusken, [23], which shows to be fairly robust in practice. The basic 
idea of algebraic multi-grid is to decompose the stiffness matrix K into 

(11) 
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/ application level ...... 

I main program, geometry, boundary conditions, problem coefficient 

I cript files I I grid file I 
" / problem class library ...... 

I di cretization II error estimators II olver I 
I user data layout definition (format) I 
"-
/" ug library ...... 

grid I/O u er interface device independent 
grid refinement command interpreter graphical output 

I low level grid management, multigrid data structure 

interfaces utilitie • memory management 
• graphic device driver • fifo 
• ba ic I/O • mi cellaneou 

'- -.J 

FIGURE 3. Overview of the internal structure of the ug code. 

where K f f denotes the part of Kl acting on the grid points which belong to the 
finest grid only, K cc the part of Kl acting on coarse grids points only and the 
off-diagonal blocks represent the coupling between coarse and fine grid. The ap­
proximation of K ec and the off-diagonal blocks within the multi-grid cycle have 
to be such, that it yields robustness. This is also satisfied for the frequency­
decomposition multi-grid method, [14], and other multiple correction schemes, 
see ([IS], [19]) . However, t hese methods typically work only on structured grids 
and do also not provide a strategy to improve the approximation of the differential 
equation. 

4 The Software Toolbox ug 

The code ug ("unstructured grids") is used as a test-bed for the robustness strate­
gies mentioned above and has been designed as problem independent as possible in 
order to allow reuse of its components for many different applications. It is a lay­
ered construction of several libraries, see Fig. 3 for an overview. The bottom layer 



1. On Robust and Adaptive Multi-Grid Methods 11 

contains all components that are totally independent of the PDE to be solved, 
e. g. grid I/O, grid refinement, device independent graphical output and the user 
interface. The next layer is the so-called problem class library that implements 
discretization, error estimators and solvers for a whole class of PDEs, e. g. a scalar 
conservation law. On top of that resides the user's application that provides the 
domain, boundary conditions and problem coefficients to the lower layers. 

The relative code size of these layers indicates that the proper abstractions 
(interfaces) have been chosen: The ug layer typically makes about 75% of the 
executable, the problem class layer takes 20% in the convection-diffusion case (with 
many different solvers) and a main program typically is only 5%. This means in 
practice: 

• 75% of the code can be reused without any change when switching to more 
complicated equations. This has been proved already for incompressible 
Navier-Stokes equations. 

• The user interested in implementing new numerical algorithms (a problem 
class library) will never be concerned with low level programming. 

• As a consequence of that his code is portable since machine dependencies 
typically arise only in the ug layer. 

The concept of code reuse becomes even more important in a parallel envi­
ronment, see [4] for a parallel implementation of ug. 

5 Numerical Results 

In the following we discuss the application of the above-mentioned robustness 
strategies to three problems, serving as paradigms for typical singularly perturbed 
problems. 

5.1 THE SKIN PROBLEM 

As a first test problem we take the following one which is used to model the 
penetration of drugs through the uppermost layer of the skin (stratum corneum). 
The stratum corneum is made up of corneocytes which are embedded in a lipid 
layer. The diffusion is described by the diffusion equation 

au 
-\l(D(x, y)\lu) + at 0 inn (12) 

u 1 onru 

u 0 onra 
au 

0 onrr urI 
an 



12 P. Bastian and G. Wittum 

.. I II I 
lipid layer - II II 

I II I 

II :~ 
II corneoc~te II 

I " I 
II II 

I comeocyte 

k-
I " I 

II II 
I " I 

r- 30 11111 ~ 
0.05 11111 II IL 

FIGURE 4. Right hand side: Structure of skin made up from corneocytes (white) and 
lipid layers (gray/black). The considered block of stratum corneum is llJ1m by 60.2J1m. 
Left hand side: Elementary cell consisting of a corneocyte surrounded by one half of the 
lipid layer. 

where n is the unit square and the diffusion coefficient D(x, y) is given by 

D(x,y) = { ~~ if (x,y) E lipid 
if (x,y) E corneocyte 

i.e. it may jump by some orders of magnitude across the corneocyte edges. The 
corneocytes are very flat and wide cells which in a two-dimensional cross-section 
are approximated by thin rectangles as shown in Fig. 4. 

From Fig. 4 we see that the lipid layer is O.ll1m thick while the corneocytes are 
1 by 30l1m of size. Since the permeability may jump by some orders of magnitude 
between lipid and corneocyte, we must align the coarse-grid lines with the inter­
faces. So we just take the corners of the corneocytes as points for the coarse grid 
connecting them to form a tensor product grid. Thus we get rid of the problems 
induced by jumping coefficients. However, we obtain highly anisotropic grid cells 
in the lipid layer with an aspect ratio of approx. 1:150. Since such an aspect ratio 
makes the approximation strongly deteriorate and the multi-grid method as well, 
we use the anisotropic ( "blue") refinement strategy to derive a robust multi-grid 
method and to create a grid which after 5 levels of blue refinement has elements not 
exceeding an aspect ratio of 1:5. Above that level we refine uniformly. To obtain 
a robust method on the coarser grids we use an ILU,I3-smoother, cf. [28]. Average 
convergence factors for a (l ,l ,V)-cycle are given in Table 2. For more details on 
this problem see [17]. 

5.2 CONVECTION-DIFFUSION EQUATION 

As a second example we show results for the convection-diffusion equation 
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TABLE 2. Convergence rate of a (l,l,V)-mmgm applied to the stationary skin problem 
for various values of D2 (Dl = 1). The number of unknowns was 54385 on level 5 (6 grid 
levels). 

D2 1 
P 0.08 

10 
0.22 

10 2 

0.39 

10 3 

0.41 

10 4 

0.45 

10 5 

0.45 

10 6 

0.43 

TABLE 3. Robustness of a (l,l,V)-mmgm with ILU-smoother and downwind numbering. 
The method used 8 locally refined grids to discretize problem the convection-diffusion 
problem with over 10.000 unknowns on level 8. The convergence rate 11:(10) is averaged 
over 10 steps and refers to the finest grid. 

1 101102103104105106107 

1\:(10) 0.068 0.067 0.075 0.102 0.092 0.068 0.033 0.018 

- f~U + e . \7u = f (13) 

in the unit square with Dirichlet boundary conditions. We choose e as follows 

where a is the angle of attack. The boundary conditions are: u = 0 on {(x, y) : 
x = 0,0::; y::; I}U{(x,y): 0::; x::; l,y = I}U{(x,y): x = 1,0::; y::; 
1} U {(x,y): O:S x < 0.5,y = O} and u = 1 on {(x,y) : 0.5:S x:S 1,y = O}. The 
jump in the boundary condition is propagated in direction a. We have dive = 0 
and e varies strongly on n such that the problem is convection dominated in one 
part of the region and diffusion dominated in another part. As discretization we 
use a finite volume scheme with first order upwinding for the convective terms 
on a triangular grid. The grid is refined adaptively using a gradient refinement 
criterion. As smoother we took a GauE-Seidel scheme with downwind numbering 
using algorithm 3.1 in a (l,I,V)-cycle mmgm. It is important to note that the 
smoother itself is not an exact solver. Thus we should see the benefit of multi­
grid in the diffusion dominated part and of the robust smoother in the convection 
dominated one. This is confirmed by the results given in Table 3. There we show 
the residual convergence rate averaged over 10 steps for problem (13) on adaptively 
refined unstructured grids versus c. 

For the same problem with c = 10-7 the same mmgm but without downwind 
numbering shows a convergence rate of 0.95 averaged over 40 steps and taking the 
smoother with downwind numbering but without coarse grid correction as a solver, 
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.... ~--------------- 4 mm -------.... ~ 
Dirichlet 0.0 

\ 

N: Neumann b.c. between wires 
D: Dirichlet 1.0 

0.01 mm at "wires" 

FIGURE 5. Problem definition, coarse grid and zoom for the drift chamber problem. 

we end up with a convergence rate of 0.949 as well. This confirms the outlined 
concept of robust multi-grid. Results of 3d computations can be found in [6J. 

5.3 DRIFT CHAMBER 

This problem solves the Laplacian -~u = 0 in the domain given by Fig. 5. The 
boundary conditions are of Dirichlet and Neumann type as indicated in the figure. 
The feature of this problem are the small wires with Dirichlet boundary conditions 
that must be resolved on the coarSe grid. The smallest wire has a radius of 0.005 
mm, while the whole chamber is 4 mm wide and 1 mm thick. So one has to trade 
off between a coarse grid with few unknowns but a large aspect ratio in grid cells 
and a coarSe grid with equal sized triangles but a large number of unknowns. The 
grid in Fig. 5 is a reasonable compromise with 85 nodes and 112 triangles but still 
aspect ratios are large and a robust smoother is required. 

Table 4 shows the results of multiplicative and additive multigrid with Sev­
eral different smoot hers applied after 3, 4, 5 and 6 levels of uniform refinement. 
Specifically the smoothers were damped jacobi with w = 2/3 (djac), (symmet­
ric) GauB-Seidel (gs, sgs) and ILU without modification and with (3 = 0.35 (ILU, 
ILU,a). We make the following remarks: 
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TABLE 4. Results for different solver/smoother combinations for the drift chamber prob­
lem. Multigrid data: (2,2,V) cycle for jacobi smoother, v = 1 for amgm, (2,2,V) cycle for 
all other smoothers, initial solution u = 0, numbers are iterations for a reduction of the 
residual by 10-6 in the euclidean norm. The grid nodes have been ordered lexicographi­
cally, iteration numbers exceeding 100 are marked with an asterisk, diverging iterations 
are marked with j. 

==~~7=~==~==~==~~==~ 
highest level 3 4 5 6 
grid nodes 3809 14785 58241 231169 

mmgm djac * * * * 
gs 79 99 * * 
sgs 48 59 66 70 
1LU 33 i i i 
1LUf3 9 9 9 9 

mmgm+cg djac 31 38 43 43 
sgs 13 16 17 18 
1LU 10 i i i 
1LUf3 6 6 6 6 

amgm+cg djac 74 99 * * 
sgs 36 46 53 57 
1LU 62 i i i 
1LUf3 20 24 25 26 

1. h independent convergence is only achieved with the 1LUf3 smoother. The 
optimal value was f3 = 0.35 but the choice is not very sensitive and good 
results are achieved with values between 0.2 and 0.5. This corresponds nicely 
with the theory in [28]. 

2. The additive method shows qualitatively the same behaviour as the multi­
plicative multi-grid method but has worse numerical efficiency. 

3. Multiplicative multi-grid with a symmetric GauB-Seidel smoother used as 
preconditioner in a conjugate gradient method is the only combination giving 
also relatively satisfactory results, being only a factor 3 slower in computation 
time than the 1L U f3 smoother. 

4. The diverging iteration for 1LU without modification can be explained by 
accumulating roundoff errors. Since the global stiffness matrix is symmetric 
positive definite but not an M-matrix due to obtuse angles the diagonal 
elements in the 1L U decomposition can become very small which leads to 
instabilities. The modification helps in this case too, since it enlarges the 
diagonal. 
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A Generalized Multigrid Theory 
in the Style of Standard Iterative 
Methods 
Craig C. Douglas1 

ABSTRACT A basic error bound for multigrid methods is given in terms of 
residuals on neighboring levels. The terms in this bound derive from the iterative 
methods used as solvers on each level and the operators used to go from a level 
to the next coarser level. This bound is correct whether the underlying operator 
is symmetric or nonsymmetric, definite or indefinite, and singular or nonsingular. 
We allow any iterative method as a smoother (or rougher) in the multigrid cycle. 
One of the advantages of this theory is that all of the parameters are available 
during execution of a computer program. Hence, adaptively changing levels can 
be achieved with certainty of success. This is particularly important for solving 
problems in which there is no known useful convergence analysis. Two problems 
arising in modeling combustion problems (flame sheets and laminar diffusion flames 
with full chemistry) are discussed. 
While this theory is quite general, it is not always the correct approach when 
analyzing the convergence rate for a given problem. A discussion of when this 
theory is useful and when it is hopelessly nons harp is provided. 

1 Introd uction 

In this paper, linear problems 

Au+j=O, u,jEM, AcC(M) (1) 

are solved using a nested space multigrid iterative method. The operator (matrix) 
A is typically the discretized (by finite elements, differences, or volumes) version 
of a partial differential equation. 

Many multigrid papers begin by narrowing their scope just to problems which 
are symmetric and positive definite, symmetric and indefinite, or nonsymmetric 

1 Department of Computer Science, Yale University, P. O. Box 2158, New Haven, CT 
06520-2158. and Mathematical Sciences Department, IBM Research Division, Thomas 
J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598-0218 E-mail: 
na. cdauglas@na-net.ami.gav. 
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and indefinite. In each case, these papers assume the problem is nonsingular, a 
set of smoot hers is defined, and one or more specific multigrid algorithms are 
defined (e.g., a V, W, or F cycle). Finally, analysis is provided, usually in only 
one particular norm. For excellent traditional multigrid theoretical treatments of 
problems, see [1], [8], [17], and [21]. 

The analysis in this paper is correct whether the underlying operator is sym­
metric or nonsymmetric, definite or indefinite, and singular or nonsingular. Any 
iterative method is allowed as a smoother or rougher in the multigrid cycle. Any 
multigrid cycle is allowed, including adaptively chosen ones. Finally, the analysis 
is not dependent on any specific norm. In fact, different norms can be used on 
different levels (though doing this can produce misleading convergence rates). 

The purpose of this paper is to provide a discussion on when to use the theo­
retical tool in [12] for analyzing nested space multilevel algorithms that are applied 
to any problem with any set of properties. The approach is simple enough to im­
plement in computer programs without adding an excessive amount of overhead. 
There are similar procedures, known as aggregation-disaggregation methods (see 
[6]) when A is not derived from partial differential equations; the theory in this 
paper applies directly to these methods. 

The basic correction multigrid algorithm is defined in the traditional recursive 
style in §2. This is then rephrased into a nonstandard form in §3. This leads to 
the two flavors of analysis in §4, one quite simple (and rarely sharp) and the other 
somewhat more complicated (and sharper). Examples and the practicality of this 
analysis are given in §5. 

The theory in §4 depends on three sets of parameters which are available 
either dynamically or in advance. The basic convergence (divergence) result is not 
stated in a "nice" closed form, as is usual in multigrid papers, but in terms of the 
convergence rate of the next coarser level's rate. 

2 A standard multilevel formulation 

Suppose that there is a set of solution spaces {Md{=l' which approximate M=M j 

in some sense, and that dim(Mk) ::; dim(Mk+d. In the partial differential equa­
tion case, the Mk correspond to discrete problems on given grids (which are not 
necessarily nested). Then the multigrid approximation to (1) requires solving a 
sequence of problems of the form 

(2) 

That there exist mappings between the neighboring spaces is assumed: 

Rk : Mk --+ Mk-l and Pk - 1 : Mk-l --+ Mk 

as well as mappings 
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For partial differential equations, there are natural definitions of Qk depend­
ing on the discretization method and the grids. See [12] for a more complete 
discussion of natural choices for Qk. 

Since for most applications, dim(Mk) < dim(Mk+l), Qk cannot be inverted. 
However, the theory in §4 uses Q"kl. Thus, the interpretation of Q"kl must be 
explained. For finite element methods commonly used in practice, Mk represents 
a refinement of Mk-l and 

this is true for both the h-version and the p-version of the methods. 
The same relation holds for refinements in the finite difference case. Hence, 

Q"kl can be taken to be injection of Mk-l into Mk in each of the cases described; 
otherwise Q"kl should be taken as a pseudoinverse. Note that a Moore-Penrose 
type pseudo inverse may not be the best choice; a Drazin type pseudoinverse may 
be better. 

For k 2': 1, assume there are iterative methods, represented by Mk and N k, 
and possibly dependent upon the data (e.g., conjugate gradients), which are used 
as smoothers (or roughers) on level k before and after, respectively, the residual 
correction step (on levell, note that there is never a residual correction step nor, 
usually, a smoother Nd. 

In the multigrid literature, the term smoother has become synonymous with 
the direct or iterative methods Mk and Nk. The term was used in [4] to de­
scribe the effect of one or more iterations of a relaxation method on each of the 
components of the error vector. For many relaxation methods (e.g., SSUR and 
Gauss-Seidel), the norm of each error component is reduced each iteration; hence, 
the term smoother. For many other iterative methods (e.g., SSOR or conjugate 
gradients), while the norm of the error vector is reduced each iteration, the norm 
of some of the components of the error may grow each iteration; hence, the term 
rougher. For some iterative methods (e.g., Bi-CGSTAB), the norm of the error 
vector does not necessarily decrease each iteration, much less smooth all of the 
error components. The term smoother in the traditional multigrid sense will be 
used, even though it is technically wrong. 

Standard multigrid analysis assumes the smoothers have the form 

Bk(W~+l - wD = fk + AkWL £ = 0,1,··· ,£k, 

where Bk corresponds to some scaled iterative method on each level k (e.g., sym­
metric Gauss-Seidel or conjugate gradients). This frequently leads to an analysis 
which assumes a fixed £k throughout the multigrid iterations. Neither assumption 
is required in §4. 

There are two principal variants of multigrid algorithms. One variant is com­
posed of correction schemes, which start on some level j and only use the coarser 
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levels k, k < j, for solving residual correction problems. The other variant is com­
posed of nested iteration schemes, which begin computation on level 1 and work 
their way to some level j, using each level k, k < j, both to generate an initial guess 
for level k + 1 and for solving residual correction problems. Analysis of nested iter­
ation algorithms in the context of this paper can be found in [12]; more traditional 
analyses can be found in [2], [7], [8], and [17]. 

In this paper, only correction schemes are considered. Define a k-Ievel (stan­
dard) correction multigrid scheme by 

ALGORITHM MG(k, {ILd~=l' Xk, ik) 
(1) If k = 1, then solve A1X1 = II exactly or by smoothing 
(2) If k > 1, then repeat i = 1"", ILk: 

(2a) Smoothing: Xk f-lI<i)(Xk,!k) 
(2b) Residual Correction: 

Xk f- Xk+Pk-1 MG(k -1, {ILR};~;,O,Rk(AkXk + !k)) 
(2c) Smoothing: Xk f- N~i)(Xk,ik) 

(3) Return Xk 

This definition requires that ILl = 1. Steps (2a) and (2b) are sometimes referred to 
as pre-smoothing and post-smoothing, respectively, in the literature. 

Symmetric multigrid schemes assume that Mk = N k . Nonsymmetric multi­
grid schemes usually assume that Nk = I, where I is the identity. However, it is 
computationally more efficient to assume Mk = I since the residual on level k - 1 
is !k-1 and does not need to be recomputed. Only rarely is the complete algorithm 
analyzed. 

The standard V and W cycles correspond to Algorithm M G (j, {I, ... ,I}, " . ) 
and Algorithm MG(j, {I, 2,···,2,1},·, .), respectively (the definition of the W cy­
cle frequently causes confusion). The F cycle [5] corresponds to something "in 
between" the V and W cycles. 

3 A nonstandard multilevel formulation 

In this section, a subtle change is made to Algorithm MG, which produces a 
simplified analysis for multigrid methods. 

To make the notation of this section consistent, a fake (extra) level j + 1 is 
introduced. Define 

and the initial residual on level j + 1, Zj+1, by 

A (-1) ! j+1Xj+1 + = Zj+1· 

This transforms the problem on all computational levels to one of solving a residual 
correction problem instead of the real problem on the finest grid and residual 
correction problems on the coarser grids. 
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Associated with each level k is a norm II . Ilk' which can be arbitrary. The 
norms can be different on each level, though the usefulness of this is unclear. For 
simplicity, the subscript from the norm symbol will be dropped. 

Define a k-Ievel (nonstandard) correction multigrid scheme using parameters 

Zk+l (the residual on level k + 1 at some step) and xk- l ) (the initial guess for 
level k, which is normally 0, except at the finest level) by 

ALGORITHM NSMG(k,Zk+l,xk- l )) 
(1) Initial residual: Rk+lZk+l E Mk 
(2) Pre-Smoothing: xkO) = M~1) Xk -1) such that 

AkXkO) + Rk+lZk+l = ZkO) , where IlzkO) II ::; p~l) Ilzk+lll 

(3) Let x~1) = xkO), zkl ) = ZkO) , and ril) = 0 
(4) Repeat i = 1,··· ,/-lk 

(5) 

( 4a) If i > 1, then 
. (i-I) A(i) 

(4a1) ReSIdual: Akxk + Rk+lZk+l = Ok 
(4a2) Pre-Smoothing: xki) = M~i)x~i-l) such that 

A A(i) R A(i) 
kXk + k+lZk+l = zk , 

where 

Ilzki) II ::; p~i) IIOki) II 

(4b) If k > 1, then 

(4b1) Correction: rki) = Pk-lXki~l' where 

xki~l = NSMG(k - 1, Zki ) , 0) 
and 

A _(i) R A(i) -(i) 
k-lXk-l + kZk = Zk_l 

(4d) Post-Smoothing: xki ) = Nki ) (xki ) + rki)) such that 
(i) (i) 

Akxk + Rk+lZk+l = Zk ' 
where 

Ilzki ) II ::; Eki) IIOki ) II 

Algorithm MG was defined in §2 in an intentionally imprecise manner. Al­
gorithm NSMG is a precise, but nonstandard definition of Algorithm MG. The 
first smoothing reduces the norm of the residual on level k by a factor involving 
the norm of the residual on level k + 1, which is nonstandard. For subsequent 
smoothings, this factor involves the norm of the residual on level k instead. The 



24 Craig C. Douglas 

parameters {/1e}, which determine how many iterations of the multilevel algorithm 
to do on each level, can be considered either fixed or adaptively chosen during the 
course of computation. 

Standard multigrid theory analyzes the case when a certain number of smooth­
ing steps are used. This may be explicitly stated (e.g., [1]), or it may be phrased 
as to require the choice of a constant number of smoothing iterations such that 
some error reduction condition is satisfied (e.g., [7]). This is worst case analysis 
and rarely models the behavior seen in practice. However, it allows the proof of 
certain complexity results of optimal order. 

The nonstandard formulation allows two interpretations of smoothing: first 
as the standard form, and second as fixing the factors E~i) and p~i) and letting the 
number of smoothing steps vary per iteration. 

4 Analysis 

In this section, assume that {Md is nested and analyze zJi) under minimal as­
sumptions. Two flavors of analysis are considered. The first is a trivial analysis 
that should not be used when anything is really known about the problem. The 
second is an affine space decomposition analysis that is somewhat sharper than 
the first treatment. 

The first result assumes only a simple property about each of the restrictions 
Rk: there exists a constant, bk E JR, such that 

(3) 

Since normally dim(Range(Qk 1 )) < dim(Mk), bk ~ 1. In many cases it is possible 
to choose norms for which bk = 1 and which are meaningful for the underlying 
elliptic problem. 

The problem is to determine conditions for {p~i), E~i)} in order to guarantee 
convergence of Algorithm NSMG. The results do not depend directly on properties 
of the Ak and fk. 

The basic theorem is as follows. 

Theorem 1 Assume that Zj+l is the residual on level j + 1 ~ 2 and that the pro­
longation operators Pk, 1 :S k :S j, are imbeddings and the inverse of the operator 
restrictions Qk 1 , 2 :S k :S j + 1, are embeddings: 

(4) 

Let 

E (I) (1) (1) 
1 = El PI 

11k 

and Ekl1k ) = IT (E~i) p~i) [bk + Ek~\-tl]), k> 1. 
i=1 
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Then, 
[[QjlZ;/lj)[[ S; E;/lj)[[Zj+l[[. 

The proof of Theorem 1 is a double induction argument and can be found in [12]. 

Remark 1 In some instances, different restriction operators R~i) are used during 

a multigrid cycle. Substituting 6~i) for bk covers this case. 

Remark 2 For the V cycle with eji) = ej and pY) = Pj, j = 1"", k, the definition 

of Ek1), k> 1, simplifies to 

Remark 3 When adaptively choosing when to change levels, the error term for the 
coarser level will be different each time a correction step is performed. Substituting 

( (i») 
E /lk for E(/lk) covers this case. 

k J' k 

Remark 4 For numerous problems, bk ~ 1 guarantees that Theorem 1 is not 
sharp nor even realistic. See §5 for another interpretation of bk that is compu­
tationally useful since for specific residual vectors u in (3), bk can be much less 
than 1. 

Remark 5 Many papers have been written analyzing multigrid using a variational 
point of view instead of an algebraic one. Rewrite (2) as 

Then Theorem 1 can be rewritten in a variational form. 

Now consider an affine space analysis. Each space M j is decomposed ap­
proximately into the parts which are corrected by the residual correction steps, 
and the parts which are relatively unaffected. This theory is considerably more 
complicated, but sharper than that in Theorem 1. 

Each space Mj is assumed to be decomposable into a smooth part Sj and a 
rough part 1j, e.g., 

So, Sj contains the high frequency components and 1j contains the low frequency 
ones. Note that other definitions for Sj and 1j can be used. 

Let 1 S; k S; j. Assume that Vk E Mk. Let 
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and 

< Vk > == < Vk >k == Ilvkl1kll· 

If Vk are Wk are the residuals before and after a post-smoothing iteration using 
Nk , and IIwkl12 = f~llvkI12, then there exist fk,S and fk,T such that 

(6) 

Similarly, if Vk are Wk are the residuals before and after a pre-smoothing iteration 
using M k , and IIwkl12 = p~llvkI12, then there exist Pk,SS, Pk,ST, Pk,TT, and Pk,TS 

such that 
p~,sslllvkII12 + P~,ST< Vk >2 and 

(7) 
p~,TslllvkII12 + P~,TT< Vk >2. 

As was noted at the end of §3, these parameters will probably only be bounded 
with estimates of some form. 

The result here requires more precise knowledge than (3), namely that for 
any u E Mk, there exist constants Dk,S and Dk,T E IR such that 

The problem is to determine conditions for {p~i~y, f~i~}, X, Y E {S, T}, in order 
to guarantee convergence of Algorithm NSMG. As befo~e, the results do not depend 
directly on properties of the Ak and fk. 

A sharper convergence result than Theorem 1 is as follows. 

Theorem 2 Assume that Zj+l is the residual on level j + 1 2: 2 and that Pk , 

1:S k:S j, and Qk 1, 2:S k:S j + 1, satisfy (4). Let 

E(l) (1) (1) - E(l) 
1 = f 1,SP1,S = 1,SS 

For 1 < k :S j, let 

E (i) (i) [(l: E(JLk-l») (i) E(JLk-d (i) ] 
k,SS = fk,S vk,S + k-1,SS Pk,SS + k-1,STPk,ST , 

and 
E (i) (i) [(l: E(JLk-d) (i) E(JLk-l) ) (i) ] 

k,ST = fk,S Vk,S + k-1,SS Pk,ST + k-1,ST Pk,TT . 

Then, 

JLj 

IIQ-1 (JLj) II II {E(i) E(i) E(i) E(i)} II II 
j Zj :S max j,SS + j,TS' j,ST + j,TT Zj+1· (8) 

i=l 
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The proof of (8) is a double induction argument and can be found in [12]. 

Remark 6 For a symmetric multilevel algorithm (see §2), all of the terms in 
Theorem 2 exist. It is possible to to see that whenever an individual term is large, 
there is another term multiplying it that is small. 

Remark 7 For nonsymmetric multilevel algorithms, the expressions simplify since 
some of the individual terms are either 0 or 1. 

Remark 8 For simple enough the 8j ,T ~ 0 and 8j ,s ~ 1. 

Special care is required when using this theory since it is, in some sense, 
too general. It is quite easy to calculate various terms in the two theorems using 
incompatible norms, resulting in nonsensical results. 

5 Examples 

In this section, 8k is computed for several examples. The first is for Dirichlet prob­
lems on IR? with simple, but not entirely trivial meshes. While the estimates are 
rather pessimistic, some advice is offered on practical uses of the simple theory in 
§4. Next, an example is presented where Theorem 1 is sharp. Finally, two problems 
arising in attempting to numerically simulate flames are examined. 

Assume that for each k, k = 1"", j, the spaces M k has a bilinear hat 
function basis over uniform squares of side length hk . This does not imply that 
the domain r2 is either rectangular or convex, just polygonal (possibly with holes) 
with boundary segments either parallel to the axes or inclined 45° to the axes 
(which requires appropriate modifications to some of the basis functions). 

Set 
Dij = {(i + l,j), (i - l,j), (i,j + 1), (i,j - I)} 

and 
Dij = {(i + l,j + 1), (i + l,j - 1), (i - l,j + 1), (i - l,j - I)}. 

Let Rk (9) Vij be the following weighted sum of Vij and its eight neighbors from 
level k: 

Rk (9)Vij = ~ [Vi j + ~ L VkP + ~ L Vk£] 

(k'£)EDij (k,f)ED'J 

We approximate 8k9) = 8k (Rk (9)) using a piecewise bilinear hat function v on 
level k - 1 which is centered at some point (i + l,j + 1) on level k. Note that, 
if Vij = (_I)i+j, then RkVij = 0 at any interior point of the (k - I)-grid. Thus, 
8k ~ 1; since Rk satisfies a maximum principal, it then follows that 
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and that 
8~9} = 1. 

Let Rk (5)Vij be the following weighted sum of Vij and its four neighbors from 
level k: 

Rk(5)Vij = ~ [ 2Vi j + ~ L Vkl] 

(k,l)EDij 

Again, the same argument shows that, with respect to the £00, 

If there are boundary elements associated with the edges at 45° to the axes, 
R k(9) and R k(5) can be mixed to form Rk. 

Besides motivating the affine space analysis, the theory of this section can 
actually be used in computer programs to adaptively change the parameter choices 
on coarser levels k (ILk and the number of iterations in the smoothers). Consider 
Laplace's equation on the unit interval, two levels, a uniform mesh, a central dif­
ference discretization, linear interpolation and projection, and one Jacobi iteration 
as the smoother. Sharp theory says that the convergence rate is bounded by 0.5. 
In a strictly nonrigorous exercise, 5000 randomly chosen problems were generated. 
In theory, 8~3} = 1, where 8~3} is derived using a three point restriction operator 
R2 • However, for individual residual vectors v, the following was calculated: 

The following was observed. 

Statistic 8(v) 
Minimum 0.3444 
Maximum 0.9312 
Average 0.7126 

Further, there was a direct correlation between the size of the estimated 8 ( v) and 
the actual error reduction produced by one multigrid iteration. 

Now consider the affine space analysis. Assume that only post smoothing is 
performed; this causes many of the terms in Theorem 2 to be either 1 or O. In this 
case, Theorem 2 predicts that the convergence rate is bounded by 0.5, which is 
sharp. Unfortunately, Theorem 2 predicts an overly pessimistic convergence rate 
when two post smoothing steps are used (c.f., [1] which gets the right bound in 
both cases). 
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For some problems, multigrid with particular smoothers is known to be a 
terrible method. For example, let q ~ 5 in 

{ 
-10Qu - 10-Qu xx yy 

U 

= f in (0,1)2, 

= 0 on 8(0,1)2, 

and choose a central difference discretization on a uniform mesh and Jacobi as 
the smoother. Then the coarse grid corrections do not necessarily improve the 
approximation to the solution. In this case, Theorem 1 actually is sharp. (The fix 
to making multigrid work well for this problem is to use either a line relaxation or 
a conjugate gradient method as the smoother or rougher.) 

The examples given so far were not the of interest to the authors of [12] 
when this theory was developed, however. Two problems which are currently being 
studied arise in numerical simulation of flames. These are complicated nonlinear 
coupled partial differential equations which are amenable to solution by multigrid 
methods provided that the right solvers are used on each level. The first is a flame 
sheet model (see [13]) while the second is a laminar, axisymmetric diffusion flame 
model (see [16]). 

In the flame sheet model, the chemical reactions are described with a single 
one step irreversible reaction corresponding to infinitely fast conversion of reac­
tants into stable products. This reaction is assumed to be limited to a very thin 
exothermic reaction zone located at the locus of stoichiometric mixing of fuel and 
oxidizer, where temperature and products of combustion are maximized. To further 
simplify the governing equations, one neglects thermal diffusion effects, assumes 
constant heat capacities and Fick's law for the ordinary mass diffusion velocities, 
and takes all the Lewis numbers equal to unity. With these approximations, the 
energy equation and the major species equations take on the same mathematical 
form and by introducing Schvab-Zeldovich variables, one can derive a source free 
convective-diffusive equation for a single conserved scalar. Although no informa­
tion can be recovered about minor or intermediate species in the flame sheet limit, 
the temperature and the stable major species profiles in the system can be ob­
tained from the solution of the conserved scalar equation coupled to the flow field 
equations. Further, the location of the physical spatially distributed reaction zone 
and its temperature distribution can be adequately predicted by the flame sheet 
model for many important fuel-oxidizer combinations and configurations. Since 
being studied as a means of obtaining an approximate solution to use as an initial 
iterate for a one dimensional detailed kinetics computation in [19], flame sheets 
have been routinely employed to initialize multidimensional diffusion flames. 

A schematic of the physical configuration is given in Figure 1 (though not 
drawn to scale). It consists of an inner cylindrical fuel jet (radius RJ =0.2cm), 
an outer co-flowing annular oxidizer jet (radius Ro =2.5cm) and a dead zone 
extending to Rmax =7.5cm. The inlet velocity profile of the fuel and oxidizer are 
a plug flow of 35cm/s. This yields a typical value for the Reynolds number of 
550. Further, the flame length is approximately L f =3cm and the length of the 
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FIGURE 1. Flame sheet physical configuration 

computational domain is set to L =30cm. Although the fuel and oxidizer reservoirs 
are at room temperature (300° Kelvin) , we need to assume, in the flame sheet 
model, that the temperature already reaches the peak temperature value along the 
inlet boundary at r = RI. This peak temperature is estimated for a methane-air 
configuration to be 2050°K. Hence, the inlet profile ofthe conserved scalar, SO(r), is 
specified in such a way that the resulting temperature distribution blends the room 
temperature reservoirs and the peak temperature by means of a narrow Gaussian 
centered at RI. The narrowness of the Gaussian profile has a relevant influence 
on the calculated flame length, so that its parameters have to be determined 
appropriately. 

A damped Newton multilevel solver is used (see [3] and [18]). Due to the 
model used, nonstaggered grids can be used, though they are tensor product grids 
with quite variable mesh spacings. The linear problems solved on each level are 36 
point operators. We found that GMRES with a Gauss-Seidel preconditioner was a 
very good solver for each level. The code uses a left preconditioned residual norm 
to determine when the solutions are adequate. In calculating 8ii ) in this norm, we 
found it to be in the interval [106 ,108] frequently. This required that the f'S and 

p's be quite small in order to achieve convergence. However, 8ii ) « Ilzk+lll so that 
this is not really an imposition. Even so, we saw speed ups of a factor of 10.5 on 
an IBM RS6000-560 workstation over the unigrid solution approach (see [13]). 

While 8ii ) was reduced dramatically by using a semi-coarsening approach, 
the overall run time increased by 50% over the traditional multigrid approach. 

We used a damped Newton multilevel approach instead of a full approxima­
tion scheme (see [20]) because experiments us to believe that in the full chemistry 
case, FAS will be too expensive. 
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The second flame numerical simulation is of a laminar, axisymmetric, methane­
air diffusion flame using nonlinear damped Newton multigrid (see [16]). The phys­
ical configuration is based on an inner cylindrical fuel stream surrounded by a 
coflowing oxidizer jet and the inlet velocities are high enough to produce a lifted 
flame with a triple flame ring structure at its base. Computationally, we solve the 
total mass, momentum, energy, and species conservation equations with complex 
transport and finite rate chemistry submodels. The velocity field is predicted using 
a vorticity-velocity formulation and the governing partial differential equations are 
discretized on a nonstaggered grid. The numerical solution involves a pseudo tran­
sient process and a steady-state Newton iteration combined with nonlinear damped 
Newton multigrid. Coarse grid information is used to provide initial starting es­
timates for the Newton iteration on the finest level and also to form correction 
problems, thus yielding significant savings in the execution times. 

The physical configuration consists of an inner methane-nitrogen jet (with 
radius 0.2cm), an air coflow (with radius 2.5cm), and the computational domain 
is [0,7.5] x [0,30] (all units are centimeters). The temperature and species mass 
fractions values for the surrounding air are the same as the ones for the dead zone. 
This physical configuration was chosen because experimental data and a numerical 
solution using primitive variables were already available for this problem. 

Once again, a variable width tensor product set of grids was used. Due to the 
high number of chemical species in the calculation, the discrete Jacobians were 270 
point operators. In the left preconditioned norm, bki ) was frequently in the interval 

[106 , 1010]. However, bki ) « II zk+lll so that this is not really an imposition. Still, a 
factor of 9.7 speed up was achieved on a 57 x 73 fine grid over a unigrid approach. 
In this example, bki ) was not reduced dramatically by using a semi-coarsening 
approach. 

6 Multiple coarse grid methods 

In [12], the Theorems 1 and 2 are extended to a multiple coarse space model. 
In this case, there are multiple b's for each level, the quantity depending on the 
number of coarse level correction problems that are associated with each level. 

While the theorems of §4 may not be satisfactory for simple problems, the 
multiple coarse space theory is for these problems. This style of analysis is much 
more accurate due to the fact that we can show that the b's can be quite small, 
including being 0 for the case of the domain reduction method (see [9], [14], and 
[15]). 
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7 Conclusions 

It is possible to prove a convergence result for multigrid and aggregation-disaggregation 
methods with minimal knowledge about the problem. By treating multigrid as a 
simple iterative method, almost nothing needs to be known about the grids, solu­
tion spaces, linear systems of equations, iterative methods used as smoothers (or 
roughers), restriction and prolongation operators, or the norms used on each level. 

Being able to prove such a result is much easier than showing that it is 
useful all of the time. In fact, this theory is normally not sharp enough to satisfy 
theoreticians. It should be used in computational settings in which almost nothing 
is known about the convergence rate a priori. 

One of the advantages of this theory is that all of the parameters are available 
during execution of a computer program. Hence, adaptively changing levels can 
be achieved with certainty of success. 

CODE AVAILABILITY 

A series of codes, Madpack (see [11] and its references), are available from MGNet 
[10] which are compatible with the philosophy applied here and with the earlier 
theory in [8]. 
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Turbulence Modelling as a 
Multi-Level Approach 

L. Fuchs1 

ABSTRACT Large Eddy Simulation (LES) of turbulent incompressible flows is 
shown to be directly related to the concept of multi-level approximation of a dif­
ferential problem on a sequence of successively refined grids. We discuss how a 
"Dynamic" -LES (D-LES) turbulence model can be modified so that it fits natu­
rally into an adaptive Multi-Grid scheme. The modified model assumes that the 
functional form of relationship between the (time- and/or space-) averaged second 
moments and the averaged variables, is grid independent. This assumption, and the 
other assumptions on the averaging operator, are satisfied also by several artificial 
viscosity forms. 

1 Introduction 

In many situations the fine structures of a flow field are not of interest. In most 
cases, the level of spatial and temporal resolution, that is of practical interest is 
by several orders of magnitudes larger than the Kolmogorov (i.e. smallest) scales 
of the turbulent field. Thus, we face a rather intricate situations: we need infor­
mation only on the "large eddies", but these depend also on the smaller ones 
that we are completely uninterested in. It is interesting to note that these small 
scales, cannot be computed anyway for engineering problems, due to the enormous 
(and non existing) computational power required for such calculations. Thus, the 
natural approach has always been to use a "model" that functionally simulates 
the interaction between the fine- (unresolved) and the large- (resolved) structures 
of the flow field. There arc several "main-stream" models for this purpose: Eddy 
viscosity type models (using commonly the two equation, e.g. k - E model), the 
Reynolds Stress Model (RSM) and models that use the so called Large Eddy Sim­
ulation (LES) approach. The eddy-viscosity concept is introduced into the LES 
approach, by estimating an equivalent turbulent viscosity from the resolved field 
(see below). A review of these different models, their background and applicability, 
can be found in many papers (c.f. [1-5]). 

1 Department of Mechanics/ Applied CFD, 
Royal Institute of Technology, S-100 44 Stockholm 
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This paper considers the so called "Dynamic LES" turbulence model. In this 
model one does not assume a "calibrated" value of a model paramter, but rather 
computes the modal parameter locally in each instant (time step). To be able to do 
so, one has to assume that the form of the model is filter independent. If the spatial 
filter that is used, is a local polynomial (similar to the one used to approximate 
the derivatives by finite-differences), one may compute the model "constant" from 
a double filtered relation, that is equivalent to the defect that is computed in 
the Multi-Grid (MG) process. We also discuss how one may simplify the "eddy 
viscosity" model, by applying the basic LES assumption on the generalized second 
moments of the mean components of the velocity vector. Furthermore, we point 
out how the basic LES assumption can be integrated into an adaptive MG solver. 

2 Averaged Equations 

Consider incompressible flows: 

Uk,k = 0, 

Ui,t + (UiUk),k = -P,i + {7ik,k , 

where 
1 

s· . - - (u· . + U .. ) t,} - 2 t,] },t· 

(1) 

(2) 

(3) 

These equations can be solved in principle, numerically. Accurate numerical 
solutions require that all spatial and temporal scales are resolved. Even if we ne­
glect the potential difficulties due to solution multiplicity and bifurcations, one 
still cannot solve the discrete system with adequate resolution, for Reynolds num­
bers (Re = U L Iv), that are not small enough. Furthermore, for most practical 
applications the fine details of the flow are not of interest and it suffices to obtain 
time-averaged values of the dependent variables at some discrete set of points in 
space. Thus, for these reasons it is natural to seek the space- and/or time-averaged 
values of dependent variables. Averaging the governing equation is not new and in 
fact it has already been carried out by Reynolds about hundred years ago. Inciden­
tally, Reynolds considered the space averaged quantities and not the time-averaged 
quantities that one often associates with "Reynolds averages". In general terms, 
Germano [6] carried out a formal averaging of the Navier-Stokes equations. The 
highlights of this derivations are given here for the sake of discussion. 

Consider averaging dependent variables: 

< Ui(X, t) >l,e= J Ui(X', t') G(x - x', t - t'; l, 0) dx' dt' , (4) 

with J G(x - x', t - t'; l, 0) dx' dt' = 1 , (5) 
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I and () are characteristic space- and time-scales which are the smallest to be of in­
terest. Examples for such averaging are pure time-averages (often called "Reynolds 
averages"), where one "filters-out" all smaller time-scales. Local spatial averaging 
(a "hat-function" or a Gaussian filter) is a corresponding averaging that is used 
in so called "Large Eddy Simulations (LES)" [3-5]. The classical decomposition 
of the dependent variables into the sum of the average and a fluctuating compo­
nent, is not always convenient. This is so whenever the average of the fluctuations 
and the average of the mean times the fluctuations do not vanish. When such 
averaging is applied to the Navier-Stokes equations, one ends-up with additional 
(cross-correlation terms) that are unknown and therefore such averaging does not 
contribute to the solution of the equations. If on the other hand, the above men­
tioned averages vanish, one ends-up with the "Reynolds averaged" Navier-Stokes 
equations. These equations are identical to the non-averaged equation with an 
additional term in the momentum equations (the divergence of the "Reynolds­
stresses"). Germano [6] generalized this concept by requiring the averages (spatial 
and/or temporal) have the following properties: 

< J + g >=< J > + < g > , 

< oj >= 0 < J > for 0 = constant, 

and 
< J,t >=< J >,t ; < J,k >=< J >,k 

(6) 

(7) 

(8) 

One may define a "generalized central moments" (second and third, respectively) 
by: 

T(j,g) =< Jg > - < J >< g > , 

T(j, g, h) = 

(9) 

< Igh > - < I> T(g, h)- < 9 > T(J, h)- < h > T(J, g)- < I >< 9 >< h> 
(10) 

By applying the average < * > to the Naver-Stokes equations one obtains: 

< Uk >,k= 0, (11) 

< Ui >,t +( < Ui >< Uk > ),k = - < P,i > + < O"ik >,k -[T(Ui' Uk)l,k . (12) 

This definition of T( Ui, Uj) leads to "averaging invariance" of the Navier­
Stokes equations. In this formulation, one still has to compute T( Ui, Uj ), or other­
wise model it. One may compute T( Ui, Uj) by deriving transport equations for the 
second moments. However, these equations contain in turn third-moments. This 
"closure" problem is the prime difficulty in modelling turbulent flows. 

Our aim here is to show how certain models (the one that we refer to here 
as "Dynamic Large Eddy Simulations - D-LES) can be related to a hierarchical 
modelling and how this model can be consider as a natural element of a multi-level 
approach. 
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3 Thrbulence Modelling via Eddy-Viscosity 

The closure problem of turbulence has been handled traditionally by different 
models. An often used model is the concept that the "Reynolds stress" can 
be modeled as being proportional to the rate of shear of the averaged flow field 
< Si,j >. This relation is also known as Boussinesq's assumption. The underlying 
assumption is that turbulence can be modeled by an equivalent viscosity (the 
"eddy viscosity"); typically: 

1 
'T' . - -8· 'Tk k = -2Vt < s· . > 't,l 3 1,,) , 't,) , (13) 

where 
(14) 

~ is the characteristic (spatial) length and < * > is the corresponding space 
averaging. By dimensional analysis, and by assuming a balance between production 
and dissipation of turbulent fluctuating energy, one finds that the eddy-viscosity 
is proportional to the square of the characteristic length-scale. A typical eddy­
viscosity model based upon spatial averaging is the Smagorinsky [3-5] model: 

2 1 
Vt = c~ (2 < Sl,m > < Sl,m » 2 • (15) 

The model "constant" c in the Smagorisky model, is unfortunately not 
universal and even it is not a constant within a given flow field. Thus, the numerical 
value of c has to be "calibrated" for each type of problem. An alternative approach 
has been proposed recently [6-13]. In this approach one leaves the numerical value 
of the constant, as a problem dependent parameter to be computed as part of the 
solution. Furthermore, the value of c may vary both in space and time. 

In the following we assume that < * > corresponds to a polynomial aver­
aging. We use the following notation: 

(16) 

Then, by definition 
(17) 

Smagorisky's model can be written as: 

1 
T .. . - -8· 'Tk k = -2Vt~ 2,J 3 1.,J , 'I.,) ; Vt = c~2Isi,jl . (18) 

The main point of the so called "dynamic" LES model is that one assumes 
that the same functional relation exists between the second central moment and 
the rate of shear of the averaged velocity field. The form of this relation should be 
independent of the filter size ~. Thus, we apply a second filter (with I = Li) after 
the first filter (I = ~) 
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Denote the generalized turbulent stress by Ti,j as: 

(19) 

Germano [G2] noticed the following identity: 

- ~ ~ 

L ·-T .-£'-u:u:-u:u: '/"J - 1"J 't,j - 1, J 1, J' (20) 

or by using the eddy viscosity model: 

1 ~2..c::::::c..c::::::c 2~-
L . - -bLk k = -2c6 Is' ·1 s . + 2c6 Is, ·1 s· .. t,) 3 1,,) , 1,,) 2,J '/"J 't,] (21) 

lt is evident that Li,j ,Si,j and Si,j can be computed explicitly. Since all com­
ponents in (21) above are known, with the exception of c, the model parameter 
can be computed locally. However, since (21) is a tensorial relation with six in­
dependent components (symmetric tensor), one has to make further assumptions. 
One may assume that c itself is a symmetric tensor, or else to assume a scalar 
approximation (times the identity tensor) to this tensor. In recent two years sev­
eral approaches have been reported: Germano et al [8] used an approximate local 
value of c which was later averaged to filter out high frequency fluctuations in 
c. Lilly [10] has suggested a least square approximation of the six components: 

(22) 

where 

(23) 

From the relation above it is obvious that c may vary in space and time. 
It is also clear that the dissipation rate (of fluctuation energy) is proportional to 
c. Negative values of c imply that energy is being transferred into the system. 
This effect is called "back-scatter" since normally energy is transferred from the 
large scales to the small ones, where they dissipate. In the back-scatter mechanism, 
energy is being transferred from the small scales to the large scales. This back­
scatter process is now accepted as being physically valid [7]. A third important 
property of the model is that c vanishes for laminar flows. Thus, the averaged 
equations become identical to the original equations when the flow is not turbulent. 
This property is not found in most other turbulence models that require an external 
(often manual) switching mechanism to turn the turbulence model on and off. 

lt should be noted that the "eddy-viscosity" model is not the only one that 
can be derived by pure dimensional considerations. It is easy to show that very 
conventional terms that are often called (or implicitly act as) artificial viscosity, 
may function as closure models for the second moments. Such terms can often be 
expressed as: 

(24) 
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With n = 1 one obtains the classical upwind scheme (or the "hybrid" scheme for 
larger cell Re, when combined with central differences). For n = 3 one recovers 
Kuwahara's [14] third order upwind scheme (a non-linear form of a fourth order 
artificial viscosity as is often used in compressible flow calculations; c.f. Jameson 
[16]). 

4 Multi-Level Adaptive Modelling 

As noticed above, one has to apply at least two filtering functions. From the two 
filtered values, one may deduce the local value of the second moments (provided 
that the functional behavior of the moments is the same for both filters). This 
is exactly the way we compute the coarse grid solution in the Multi-Grid (MG) 
process. The defect that is added to the governing equation on a coarser grid, is the 
difference in the residual on the coarse grid (double filtered function; corresponding 
to n,j) and the filtered residual on the finer grid (corresponding to fiJ). That is, 
the defect is corresponding to Li,j in (21). Thus, turbulence modelling can be 
considered as solving the differential equation on a rather coarse grid with a local 
mean value at the computational points. In terms of MG process this means that 
one has to correct the equation by a defect as is usually done in the MG process. 
Thus, the LES-process described in the previous section is nothing else but a 
standard coarse grid solution with a so called T-correction. Bearing this in mind, 
one may now skip altogether the need to rely on the "eddy viscosity" concept. 
Instead one may compute directly the divergence of the second moment tensor 
([Ti,j l,j). 

With this interpretation one may compute directly the defect 

(L· .) . = C/~?g' 2,) ,j 'l, , (25) 

where gi is the divergence of the difference in the second moments in (20). To 
compute C one may use a root-mean-square fitting, yielding simply that 

(26) 

The only possible source for difficulty here, is when gi == 0; In such cases however, 
one has also that c = O. This type of situation occurs for laminar regions in the 
flow field! 

The suggested approach has another advantage over the "eddy viscosity" 
model, when the model coefficient, c, varies in space. Large spatial variations 
cause large "spikes" in the defect and requires therefore smoothing as is done by 
Germano at al [8]. With this type of "dynamic-LES" it is natural to consider 
artificial viscosity as a "high-frequency spatial filter". The second moments can 
then be identified as the (explicit) high-order artificial viscosity terms. This would 
also supports the observations of Kuwahara that LES-like results are obtained 
without adding an explicit Sub-Grid-8cale (8G8) model [14,15]. A more closer 
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comparison of the above mentioned D-LES models (based on the "eddy viscosity" 
assumption or on the defect of the second moments) is given in [13]. 

The other issue associated with the above described procedure is the question 
when can the model be applied. That is, one has to ensure that the underlying 
assumption is valid. This happens when the spatial resolution is high enough so 
that the smallest resolved scales belong to the "inertial sub-range" of the turbulent 
spectrum. This scale is not known in advance, though it may be estimated (to its 
order of magnitude). For practical purposes one should rely on adaptive methods, 
that will introduce (local) grid refinements as long as the asymptotic behavior 
of the model is not reached. As MG processes yield data required for adaptive 
refinements as part ofthe solution procedure, it is natural that the D-LES scheme 
should be tightly connected to a MG-process. 

5 Concluding Remarks 

The Multi-Level philosophy can be directly extended to the modelling of turbulent 
flows in the frame work of Large Eddy Simulations (LES). The basic "dynamic" 
LES turns out to be identical to the calculation of the defects in the MG proce­
dure. The main issue of this type of modelling is whether or not one may assume 
the same functional relationship, used for modelling the second moments on the 
different grids. This assumption is presumably correct once one has entered to 
the "inertial subrange" of the turbulent spectrum. To ensure this, one has to use 
an "adaptive" scheme that refines the spatial discretization, locally, to the level 
required by the particular flow. All these aspects fit naturally into the concept of 
Multi-level computation of turbulence. 
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The Frequency Decomposition 
Multi-Grid Method 
Wolfgang Hackbusch1 

ABSTRACT The FD (frequency decomposition) multi-level algorithm is pre­
sented. It uses multiple coarse-grid corrections with particularly associated pro­
longations and restrictions. We discuss the construction of the algorithm and the 
proof of robustness by means of the techniques from domain decomposition meth­
ods. 

1 Introduction: Smoothing versus Coarse Grid 
Correction 

Multi-grid methods are known as very fast solvers for a large class of discretised 
partial differential equations. However, often, the components of the multi-grid al­
gorithm have to be adapted to the given problem and sometimes the problems are 
modified in order to make them acceptable for multi-grid methods. In particular, 
singular perturbation problems require special care. In latter case, the problem 
depends on the discretisation parameter and an additional parameter of the differ­
ential equation. An iteration is called robust, if the convergence speed is uniform 
for all of these parameters. 

The traditional remedy is the choice of a special smoothing iteration, while 
the coarse-grid correction is the standard one. For instance, block~versions of the 
GauB-Seidel iteration, the alternating line-GauB-Seidel smoothing (cf. Stiiben -
Trottenberg [9]), the incomplete LU-decomposition (ILU) and its block version 
(cf. Hemker [11], Kettler [13], Wittum [21]) were introducted for this purpose. 

The simplest but typical example of this kind is the anisotropic equation 

-auxx(x,y) - (3uyy (x,y) = f(x,y) (1.1) 

with non-negative coefficients. As soon as the ratio a/ (3 approaches 0 or 00, the 
multi-grid method with pointwise GauB-Seidel converges very slowly. The obtained 
convergence rates are independent of the discretisation parameter but not of the 

lInstitut fUr Informatik und Praktische Mathematik, 
Christian-Albrechts-UniversiUit zu Kiel, D-24098 Kiel, Germany 
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ratio a/ j3. Using line-GauE-Seidel smoothing, one obtains good convergence for 
a/ j3 ::; 1 or a/ j3 2: 1 depending on the line direction, while alternation line­
relaxation as well as modified ILU version yields uniform convergence for all a/ j3 
(cf. Hackbusch [3], Wesseling [19]). 

The Fourier analysis leads to the following explanation. Region I of Fig. 1.1 
consists of the "low frequencies". Components of this part are reduced by the 
coarse-grid correction. All other (high frequency) components must be eliminated 
by the smoothing process. In the case of a/ j3 « 1 and pointwise relaxation, the 
frequencies in region II are poorly reduced, while for a/ j3 » 1 region III fails. 

A slight modification of the standard coarse-grid correction is the semi­
coarsening (cf. Brandt [1], Hackbusch [3 §3.4.1]). 

In the frequency decomposition multi-grid algorithm we follow an alternative 
approach. We perform a more complicated coarse-grid correction using multiple 
coarse grids, while the smoothing iteration may be as simple as possible (e.g., 
damped Jacobi method). In the one-dimensional case, the standard coarse grid 
06- 1 consists of the grid points indexed by even numbers. The grid consisting of 
the odd points represents a second coarse grid 01- 1 . In the two-dimensional case, 
there are four coarse grids as indicated in Fig. 1.2. 

The subscripts ij of 0;;1 indicate that the grid is obtained from the standard 
one by a shift of ih in x direction and j h in y direction. We will see that together 
with the special choice of prolongations each coarse-grid will contribute a correction 
to one of the four regions in the frequency diagram of Fig. 1.1. 

There are also other multi-grid approaches with multiple coarse-grid correc­
tion. Mulder's [14] method uses a coarse-grid correction involving three grids: the 
standard one and the semi-coarsened grids w.r.t. both directions (cf. Fig. 1.3). The 
related prolongations are the usual ones. The aim of the method is the robustness. 

o 00 o 0 00 
o 00 o 0 00 

o 00 o 0 00 
o 00 o 0 00 

o 00 o 0 00 
o 00 o 0 00 

o 00 o 0 00 

Fig. 1.2a 0601 Fig. 1.2b 0101 
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Fig. 1.3 The three coarse grids of Mulder's coarse-grid correction 

This is discussed in the recent papers of Naik - Rosendale [15] and Oosterlee -
Wesseling [16]. 

The same coarse grids as in Fig. 1.2a-d are used in the PSMG method of 
Frederickson and McBryan [2]. The name PSMG (parallel superconvergent multi­
grid) indicates the aim of the method. The convergence of standard problems (not 
singular perturbation problems) is accelerated by tuning the parameters of the 
nine-point prolongation, which are the same for all four coarse grids. 

The frequency decomposition multi-grid method will be defined in Section 2 
and analysed in Section 3. It has first been presented in Hackbusch [4]. For details 
we refer to Hackbusch [6,7]. 

2 Construction of the Frequency Decomposition 
Multi-Grid Method 

Let the fine grid correspond to level e. The four different coarse grids O~;!, oi;!, 
O~l!' oil l at level e -1 are defined as in Fig. 1.2a-d. The set of these four indices 
is denoted by 

J = {(O, 0), (0, 1), (1,0), (1, I)}. (2.1) 

REMARK 2.1. The fine grid OR is the union of the grids o~-I, /'i, E J. 
Each grid is associated with a prolongation 

(/'i, E J). (2.2) 

For /'i, = (0,0), PI< is the standard one: for the other indices, PI< represents a 
nonstandard prolongation: 

1[121] [-1 2 -1 ] POO=- 242, PlO = ~ -2 4 -2 , 
4 1 2 1 4 -1 2 -1 

(2.3a) 

[ -1 -2 -1 ] Pn = ~ [ ~~ -2 ~q POI = ~ 2 4 2 , 4 
-1 -2 -1 4 +1 -2 +1 

(2.3b) 
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The use of completely different prolongations for each coarse grid is characteristic 
for the frequency decomposition multi-grid algorithms. The other variants with 
multiple coarse grids mentioned in Section 1 involve a standard interpolation. The 
range of the prolongations P,.., "" -I- (0,0), contains also high frequencies. PlOUi-1 
is oscillatory in x direction, Pal ui-l in y direction, and Pn Ui-l is oscillatory in 
both directions. 

REMARK 2.2. The span of range (p,..) for all "" E J is the space of all fine-grid 
functions. 

REMARK 2.3. For different indices L, "" E J, range (PL) and range (p,..) are ortho­
gonal. 

As in standard multigrid methods, the restriction is defined as the adjoint of 
the prolongation. 

("" E J). (2.4) 

Remark 2.3 is equivalent to 

REMARK 2.4. rLP,.. = 0 holds for different indices L, "" E J. 
In each coarse grid n~-l we will have to solve a coarse-grid equation with a 

coarse-grid matrix A~-l. As in the standard case, these matrices are defined by 
the Galerkin product 

(2.5) 

from the fine-grid matrix Ai. Note that positive definiteness of Ai' implies positive 
definiteness of all coarse-grid matrices. 

The new part of the algorithm is the multiple coarse-grid correction. Let Jo 
be a subset of the index set J. The simplest choice would be Jo := J. At least Jo 
has to contain the index (0,0). Using all coarse grids n~-l with"" E Jo, we are 
lead to the multiple coarse-grid correction 

U£ f--t Ui - L p,..(A~-I)-lr,..(Aiui - It)· (2.6) 
,..EJo 

If (0, 0) is the only index in Jo (2.6) represents the standard coarse-grid correction. 
The purpose of the additional terms in (2.6) is to correct also oscillatory errors from 
the regions II to IV of Fig. 1.1. More precisely, the index"" = (1,0) corresponds 
to region II "" = (0,1) to III, and"" = (1,1) to IV. Since the different parts of the 
spectrum should be corrected by the different coarse-grid corrections, the resulting 
method is called the frequence decomposition (FD) two-level iteration. 

In order to demonstrate that the robustness is a consequence of the multiple 
coarse-grid correction (2.6) and not of a suitably chosen smoothing iteration, we 
choose the damped Jacobi iteration. Of course, the choice of more sophisticated 
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smoothing processes can only improve the convergence. 
The FD two-level method consists of pre-smoothing ( v steps) followed by 

the multiple coarse-grid correction (2.6). The two-level method depends on the 
choice of Jo. For Jo = {(O, On one obtains the standard two-grid method. 

As for the standard multi-grid method, the straightforward version of the FD 
multi-grid algorithm is obtained from the FD two-level algorithm by replacing the 
exact solution in the coarse-grid correction (2.6) by the recursive application of 
the same method. Note that the treatment of the different coarse-grid equations 
can be performed in parallel. 

If the FD multi-grid algorithm is performed with a fixed subset Jo, the fol­
lowing operation count holds in the two-dimensional case. 

REMARK 2.5. If #Jo < 4, the V-cycle requires O(nt) operations. For #Jo = 4 the 
V-cycle takes O(nllog nl) operations. 

The W-cycle with #Jo > 2 requires a too large amount of work. Therefore, a 
modification will be discussed in §4. The statement in three dimensions is similar: 
One has to replace #Jo < 4, #Jo = 4 by #Jo < 8, #Jo = 8, respectively. 

Numerical results are reported in Hackbusch [6]. In addition, we show the 
convergence for the three-dimensional anisotropic equation auxx + f3uyy + "fuzz + 
u = f in [0,1]3 with a = 0.05, f3 = 0.001, and "f = 1. The involved coarse 
grids carry three subscripts indicating the shift into the x, y, and z direction. Let 
Jo consist of (0,0,0), (1,0,0), (0,1,0), (1,1,0), and (0,0,1). Choose smoothing 
by the Jacobi iteration damped by w = 1/2. Then the FD V-cycle produces the 
following rates depending on the number v of smoothing steps. 

v 1 2 3 5 10 
rate 0.524 0.275 0.235 0.226 0.203 

Using all coarse grids (Jo = J), we obtain rates which are only weakly dependent 
on v. 

v 1 2 3 5 10 
rate 0.245 0.240 0.235 0.226 0.203 

From these results we can draw the following conclusions. It is not true that 
the convergence rate behaves like l/v as for standard multi-grid methods (cf. 
Hackbusch [3]). Furthermore, the smoothing may playa minor role if Jo = J. 
Consequently, in the next chapter we will study the convergence of the FDE two­
level method without any smoothing (i.e., v = 0). 

3 Convergence Analysis 

We will formulate the FD-multigrid method as a special variant of the addi­
tive Schwarz iteration. Then the convergence analysis for domain decomposition 
methods applies to the frequency decomposition multi-grid method and yields 
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robust convergence. Since the convergence analysis for Schwarz-type iterations is 
restricted to positive definite problem, we have to restrict our considerations to the 
symmetric and positive case, although the FD multi-grid method is also applicable 
to nonsymmetric problems. 

First, we remind the reader to the convergence theory of the additive Schwarz 
method (for more details compare Hackbusch [8]). Then, we raise the question of 
robustness, i.e., we want to obtain convergence estimates independent not only 
of the dimension of the problem but also of the inherent parameters. It turns 
out that this question is easy to answer if the class consists of all non-negative 
linear combinations of positive semidefinite matrices. Finally, we make use of the 
orthogonality of the subspaces (cf. Remark 2.3). 

We consider a general system 

Ax=b (3.1) 

with a Hermitian and positive definite matrix A of the size n x n. We denote the 
linear space of the vectors x, b by X. The characteristic feature of the subspace 
iteration is the (approximate) solution of smaller subproblems, which we denote 
by 

A",y'" = c'" (K E J). (3.2) 

Here J is an index set. The size of A", is n", x n",. The vectors x, b from (3.1) 
and y"', c'" from (3.2) belong to the respective vector spaces X, X",(K E J). The 
connection between X", and X is given by an injective prolongation 

(K E J). (3.3) 

Endowing X and X", with the standard Euclidean scalar product (', .), we are able 
to define the transposed (Hermitian) mapping 

(K E J). (3.4) 

By assumption, r", is surjective. The (positive definite) matrices A", from (2.2) are 
defined by the Galerkin product 

(3.5) 

In the case of the FD multi-grid method, P", from (3.3) are the prolongations 
(2.3a,b), (3.4) describes the restrictions to the coarse grids, and (3.5) coincides 
with (2.5). 

The corresponding additive Schwarz iteration 

xm I--t xm+l := xm - w LP",A;lr",(Axm - b). 
",EJ 

(3.6) 
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is a damped variant of the FD two-level method (2.6). 
Using the second and third normal forms xm+1 = xm - N(Axm - b) and 

W(xm+1 - xm) = b - Axm of the linear iteration (cf. Hackbusch [7, §3]), one can 
represent the additive Schwarz iteration by the corresponding matrices 

N = W L NK with N K := PKA~lrK' 
KEJ 

The convergence is described by the constants 'Y and r in 

b> 0). 

(3.7) 

(3.8a) 

Here, B :S C means that C - B is positive semi-definite. If 'Y and r are the best 
possible bounds in (2.8a), 

",=rh (3.8b) 

is the condition number of W- 1 A (cf. Hackbusch [7, §8.3]). 
Choosing the optimal damping factor Wopt := 2/b + r) in (3.6), we obtain the 
convergence rate 

where M = J - N A is the iteration matrix. Using the additive Schwarz iteration 
(3.6) as basic iteration of the Chebyshev or cg-method, we obtain an asymptotic 
rate equal to (fo -l)/(fo + 1). 

Concerning the construction or estimation of the bounds 'Y and r in (2.7), 
two wellknown lemmata are applied (cf. Widlund [20], Hackbusch [7, §11],). 

LEMMA 3.1. r := #J satisfies {3.8a}. Since for the FD two-level methods #J is 
the number of coarse grids, r :S 4 is a bound independent of any parameter. 

LEMMA 3.2. Assume that for any x E X there is a decomposition x = L,KPKXK 
such that 

L(AKxK,XK):S C(Ax,x). (3.10) 
KEJ 

Then, (2.8a) holds with 'Y = 1/C. 
Next, we study the uniform convergence for a class U of matrices A = 

A(Cl:l' Cl:2, ... ) depending on parameters Cl:ll Cl:2, .... The set U is defined as follows: 

U := {A = L Cl:vA(v) > 0 with Cl:v 2 O}, (3.11) 
vET 

where A (v) (/J E J) are positive semi-definite matrices. In the case of the anisotropic 
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equation (1.1), the linear combination aA(1) + ,BA(2) of the one-dimensional sec­
ond differences A(1,2) = [-1 2 - 1] in x and y direction yields the standard 
discretisation. 

For the determination of '"Y = 1/ C by Lemma 3.2 one may use 

LEMMA 3.3. Let A(V) (II E 1) be the positive semi-definite matrices from (3.11) and 
assume that (3.10) holds for each A(v), II E I, with a constant Cv: 

L(At)X'\X~) ~ Cv(A(v)x,x) 
~EJ 

(x LP~x~ from Lemma 3.2, II E 1), 
(3.12) 

where At) := r~A(v)p~. Then (3.10) holds for all A E U with the constant C := 
max{ Cv : II E I}. 

The hypothesis of this paper is the orthogonality as stated in Remark 2.3: 

range(pt) and range (p~) are orthogonal for different 
indices i, '" E J. 

(3.13) 

The products r~p~(", E J) are positive definite. Therefore, the orthogonal 
projection onto X~ =range(p~) 

('" E J) (3.14) 

are well-defined. The orthogonality (3.13) allows a unique and easily describable 
decomposition of vectors", E X. For all x E X the identities (3.15a.b) hold: 

3.3. 

x = L(Q~x), Q~x E range (p~), 
~EJ 

x = L p~x~ with x~ := (r~p~)-lr~x. 
~EJ 

(3.15a) 

(3.15b) 

In the following we derive sufficient conditions for inequality (3.12) of Lemma 

The (Euclidean) scalar product, on which the definition of the transposed 
matrices and the orthogonality are based, is denoted by (., .). The corresponding 
norm is Ilxll := (x, X)1/2. We use identical symbols 11·11, (-,.) for elements from X 
(fine grid functions) and X~ = range (p~). In addition, we define the energy norm 
on X: 

Illxlli := (AX,X)1/2 for x E X. (3.16a) 

For the space X~, we choose suitable positive definite matrices B~ and define the 
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( energy) norm 

In the sequel, we consider the following estimates: 

IllpKll1 ~ Cp,K' 

IllrKll1 ~ Cr,K' 

111(rKPK)-IIII ~ IIICrp ,I<' 

Here, 111·111 also denotes the induced matrix norm, e.g., 

LEMMA 3.4. Condition {3.17a} is equivalent to the inequality 

with AK from (3.5). 

(3.16b) 

(3.17a) 

(3.17b) 

(3.17c) 

LEMMA 3.5. Assume that the matrices BK and rKPK commute. Then condition 
{3.17c} holds with the constant 

Crp ,1< := 1/ smallest eigenvalue of rl<pl<' 

From (3.17a-c) and (3.14) we conclude 

(3.18) 

LEMMA 3.6. Let CQ,K be the bound in {3.18}. Then inequality {3.12} holds with 

C := LeQ,K' 
KEJ 

To obtain parameter and dimension independent convergence, one has to prove 
(3.17a-c) with dimension independent constants c~~2, c~~2, d~~K for all A(v) 

(v E 1) instead of A. Note that A is involved in Illxlll .- (AX,X)I/2. Also the 

matrices B~v) involved in IllxKll1 may depend on v E I. 

As mentioned after (3.11), the first matrix A(1) may represent the second 
difference [-1 2 - 1] in x direction, which can be regarded as the tensor product 
of the one-dimensional stencil [-1 2 -1] w.r.t. x times the one-dimensional identity 
[0 1 0] w.r.t. y. It is not astonishing that the analysis of A = A (1) reduces to the 
analysis of the one-dimensional cases (cf. Hackbusch [7]), where only two coarse 
grids (indexed by Ii = 0,1) and the associated prolongations 

Po = [1/2 1 1/2]' PI = [-1/2 1 - 1/2] 
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are involved. To illustrate the proof technique, we demonstrate the estimation 
(3.18) for A(1) and K, = 0, 1. The results are stated in Lemmata 3.7 and 3.8. 

Let (Nx - 1) x (Nx - 1) be the size of the matrix A(1). For simplicity, we 
assume N x to be even. The energy norm III~III = (A~,~)1/2 from (3.16a) can also 
be represented by 

Nx 

1I1~1I12 = L I~j - ~j_112. 
j=l 

The index j refers to the x-location x = jh. For j 2 N x or j :::; 0, ~j := 0. We 
choose Bo := [-1 2 - 1]. Then, the squared energy norm (3.,16b) related to the 
coarse grid D2h = {O, 2h, 4h, ... ,I} equals 

Nx/2 

III~oIl12=(Bo~O,~o) = L I~O_~j_112 for~oEXo, 
j=l 

where the index j refers tot the grid point x = 2jh E D2h . We prove 

LEMMA 3.7. In the given case, the inequalities (3.17a-c) hold with the constants 

Gp,o = 1/V2. Gr,o = Vs, Grp,o = 1. (3.19) 

PROOF. (i) Let x E X and ~ = TOX E Xo. From 

~j - ~j-1 = OX2j-1 + X2j + ~x2j+d - (~X2j-3 + X2j-2 + ~x2j-d = 
= HX2j-2 - X2j-3) + HX2j-1 - X2j-2) + HX 2j - X2j-I) + HX2j+l - X2j) 

one concludes that 
2 2 

I~j - ~j_112 :<S; (12 + v'3 + v'3 + 12)/22x 
X {IX2j-2 - X2j_31 2 + 31x2j-1 - X2j_21 2+ 

+31x2j - X2j_112 + IX2j+1 - X2j 12} = 
= 8 {~IX2j-2 - X2j_31 2 + ~IX2j-1 - X2j_21 2+ 

+~IX2j - X2j_11 2 + ~IX2j+1 - x2j12} 

for 2 :::; j :::; N x /2 - 1 (use the Schwarz inequality). For j = lone has to note that 
~j-1 = 0. Then 

16 - ~012 = 161 2 = 
= I~X1 + X2 + ~x312 = [H X 3 - X2) + HX2 - xd + 2(Xl - xoW :<S; 

:::; [0)2 + 0)2 + 2] [(X3 - X2)2 + (X2 - xd 2 + 2(X1 - xO)2]. 

The index j = N x /2 is treated similarly. Summing over 1 :<S; j :<S; N x /2, we obtain 
III~IW :<S; 8111x1W, which proves Gr,o = VS. 

(ii) The product Ao := ToApo equals Ao = ~[-1 2 - 1]. Hence, Ao :<S; ~Bo 
and Lemma 3.1 prove Gp,o = 1/ J2. 
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(iii) The product TaPa equals HI 6 1] = 2I - ~ [-1 2 -1]. Since it commutes 
with Bo, Lemma 3.5 can be applied. The smallest eigenvalue of ~ [1 6 1] is bounded 
from below by H 6 - 1 - 1) = 1 proving Crp,o = 1. 0 

For the case of Ii = 1, i.e., PI = [-1/2 1 - 1/2]' choose BI = I in (3.16b). 

LEMMA 3.8. In this case, the inequalities (B.na-c) hold with 

Cr,1 = 1/v'2, Crp,1 = 1. 

PROOF. (i) Let x E X and ~ = pf x E Xl' Summing 

1~12 = IHx2j - x2j~Il- HX2j+1-2j)i2 

:::; ~ (IX2j - X2j~112 + IX2j+1 - X2j 12) 

over j, one obtains 11~112 = III~IW :::; III~III; = ~lllxlll; proving Cr,1 = 1/v'2. 

(ii) The product Al = TIApl yields the tridiagonal matrix 

7 3 
3 10 3 

3 10 3 
3 7 

Its largest eigenvalue is bounded by HI0 + 3 + 3) = 8 proving Al :::; 81. 
From Lemma 3.1 the estimate Cp,1 = vis follows. 

(iii) The product TIPI equals 

1 .. 

5 1 
1 6 1 

1 6 1 
1 5 

(3.20) 

Its smallest eigenvalue is 1. Hence, Lemma 3.5 yields Crp,l = 1. 0 

The bounds (3.19) and (3.20) result in CQ,o = CQ,l = 2. Since the same esti­
mates hold for the second difference w.r.t. y, Lemmata 3.6 and 3.3 prove uniform 
convergence of the anisotropic equation discretised by 
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with b = a, C = (3, a = e = o. Inequality (3.12) can also be proved for A(3)= 

identity and the rotated difference star 

A(4) = [-~ ~ -~]. 
-1 0 -1 

According to Lemma 3.3, the nine-point star (4.2): A = bA(t) +cA(2) +eA(3) +aA(4) 

with a, b, c, e ~ 0 leads to uniform convergence of the additive Schwarz method 
and hence of the FD two-level method. 

A diagonally second difference is not allowed in this context, but another FD 
approach including this term is described by Katzer [12]. 

4 The Multi-Level Version 

In the following, we discuss the generalisation of the two-level iteration (2.6) to 
a multi-level iteration corresponding to the well-known V- and W-cycles of the 
multi-grid method (d. Hackbusch [3]). Before analysing the W-cycle, we have to 
discuss the form of the auxiliary systems (3.2): AKyK = cK, which now are to 
be solved recursively by the same additive Schwarz method. One may check that 
the Galerkin products At) := r[! A(II)PK belong again to the same class U. The 
Galerkin product of a general matrix A E U does not leave U and the convergence 
analysis of the two-level iteration is also true for the subproblems (3.2). 

Let /'i, = /'i,two be the uniform condition number of the two-level iteration at 
all levels. As in the standard case, we can prove the following result (d. Hackbusch 
[7]): If the two-level convergence is fast enough, it implies multi-grid convergence. 

THEOREM 4.1. If /'i,two < 4, the convergence rate Pi of the W-cycle is bounded 
uniformly: Pt :::; p* < 1, where p* is the solution of p = (/'i,two - 1 + p2)j(/'i,two + 
1 _ p2). 

The unmodified W-cycle is unpractical because of the unfavourable (sequen­
tial) operation count. There are 4i coarse-grid problems at level £ - i of dimension 
Nt- i :::::! Nd4i summing up to Nt = dim(X). But since the W-cycle induces 2i 
recursive calls of the method at level £ - 1, the total amount of computational 
work is of order Nt + 21 Nt + 22 Ne + ... + 2£ Ne = O(Ni). 

However, most of the coarse-grid matrices have a constant (parameter inde­
pendent) condition number. Hence, the approximate solution of the coarse-grid 
equation by two W -cycles can be replaced by one (or few) steps of the Richardson 
iteration. The analysis (Hackbusch [7]) shows that only O(2i) of the 4i coarse-grid 
problems can lead to a larger condition number. Together with the number of 2i 
recursive calls at level £ - i, we arrive at O(2i)2i Ne-i = O(Ne) operations. Sum­
ming over all levels, we obtain a total amount of work (sequential version) in the 
order O(£Ne) = O(Ne log Nt). 
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Finally, we add that the corresponding V-cycle or F -cycle requires only a work 
of O(Nf.), while without modification an additional logarithmic factor appears as 
mentioned in Remark 2.5. 
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Multiscale Methods for 
Computing Propagators 
Lattice Gauge Theory 

• 
In 

P. G. Lauwers1 

ABSTRACT Gauge theories, a special kind of Quantum Field Theories, are the 
best mathematical framework to describe all known basic interactions in nature. In 
particular, the theory of the strong interactions (nuclear and subnuclear forces) is 
a four-dimensional SU(3) gauge theory called Quantum Chromodynamics (QCD). 
In state-of-the-art QCD simulations, requiring massive amounts of computer time, 
more than 95% of the CPU-time is spent computing propagators, i.e., inverting 
the huge fermion matrix. Although a multiscale approach may be called for to 
speed up many aspects of QCD simulations, first real breakthroughs should be 
expected thanks to more efficient multiscale algorithms for inverting the fermion 
matrix. Several strategies, proposed recently by different groups, are presented and 
discussed. 

1 Brief introduction to lattice gauge theories 

During the last fifty years, one of the great achievements in the physical sciences 
has definitely been the development of Quantum Field Theory (QFT) as the de­
scription of basic interactions in nature. That quantum gauge theories, a particular 
kind of QFT, are now generally accepted to be the correct description of at least 
three out of the four known types of interactions, is an intriguing fact [1]. Elec­
tromagnetism is described by Quantum Electrodynamics (QED), a U(l) gauge 
theory. The weak interactions, e.g. responsible for ;J-decay, have been unified with 
QED in the Glashow-Salam-Weinberg theory(GSW), an SU(2) x U(l) gauge the­
ory. Finally, the strong interactions, e.g. binding protons and neutrons within the 
nuclei, are described by Quantum Chromo dynamics (QCD), an SU(3) gauge the­
ory. Even gravitation, the fourth basic interaction, is generally assumed to be a 
gauge theory [2]. 

In the framework of QED, extremely precise predictions can be made by 

lGerman National Research Center for Computing Science (GMD) 
Institute Il.T, P.O.B. 1316, D-53731 Sankt Augustin, Germany 
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means of perturbation expansions. Many of them have been verified experimentally 
in high-precision measurements. In QCD the situation is completely different. Some 
of the most relevant aspects of the theory, e.g. the hadron spectrum, can not be 
investigated by perturbative methods. Although protons and neutrons, the main 
constituents of the nuclei, are generally believed to be composite states made 
up of three quarks bound together by QCD, no analytic method has been found 
enabling us to derive this simple fact from first principles. At present, the only tool 
for investigating this and many more equally essential properties of the theory is 
the Monte Carlo simulation of lattice QCD [3]. 

1.1 THE MODEL 

Lattice QCD is defined on a finite four-dimensional hypercubic lattice A, usually 
with periodic boundary conditions. L denotes the number of lattice points in each 
direction and h is the basic lattice distance. To obtain real physical predictions, a 
highly nontrivial double limit must be taken in the end: (i) Lh ---+ 00 (the physical 
extent of the lattice goes to infinity) and simultaneously (ii) h ---+ 0 (the lattice 
distance goes to zero). 

The first kind of variables in the theory are the link elements U:{3, located 
on the links of the lattice. They are elements of the fundamental representation 
of the gauge group SU(3), i.e., three-dimensional special unitary matrices. The 
upper indices 0: and (J are SU(3) indices, taking the values 1 through 3; the lower 
index IL takes the values 1 through 4 depending on the direction of the link. The 
second type of variables are the fermion fields 'l/J Q , located on the lattice points. 
They are anticommuting complex variables (Grassmann variables), transforming 
under the fundamental representation of the gauge group: the upper index 0: is 
the gauge group index, taking the values 1 through 3. A given state of the system, 
with values for all variables specified, is called a configuration. 

A gauge transformation of a configuration is defined by means of a map g: 
A ---+ G, where G is the gauge group; in two dimensions this means that a group 
element g(i,j) (fundamental representation) is assigned to each coordinate pair 
(i,j). Under the gauge transformation g, the fermion field 'l/J(i,j) is transformed 
into g(i, j)'l/J(i, j). The link element U1(i + ~,j), i.e. the group element located on 
the link connecting the points (i, j) and (i + l,j), is transformed into g(i, j)U1 (i + 
~,j)gt(i + l,j), where gt denotes the hermitian conjugate of g. It is evident, that 
many structures can be built with the U's and the 'l/J's that are invariant under 
any gauge transformation. An important gauge invariant quantity is the plaquette 
action Splaq, defined for every plaquette on the lattice; a plaquette is an elementary 
square consisting of four lattice links. In two dimensions a typical plaquette has the 
corners (i,j), (i+l,j), (i+ij+l) and (i,j+l). For this plaquette the gauge invariant 
SU(3) plaquette action is defined by 

Splaq = ~ Trace [U1(i + ~,j)U2(i + l,j + ~)Ut(i + ~,j + I)UJ(i,j + ~)l . (1) 
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Another gauge invariant quantity, containing fermion fields as well as link variables, 
is 1/;t(i,j)U1(i + ~,j)1/;(i + 1,j). 

A very important entity in lattice gauge theories is the fermion matrix M, a 
huge n VA x n VA complex matrix, where VA denotes the number of lattice points of 
the lattice A and n the dimension of the fundamental representation of the gauge 
group. In two dimensions, the explicit expression for the fermion matrix is 

MOi.{3 
(i,j)(k,l) 

(2) 

where mq denotes the quark mass. The explicit form of the fermion matrix M is 
not unique; Eq. 2 is the two-dimensional version of the staggered formulation [4]. 
An important alternative is the so-called Wilson formulation [5]. Which version is 
better, is still an open question, which should be decided on physical grounds. 

In lattice gauge theories, the content of the model is defined by the action S, 
a function of all the variables of the theory. In the case of lattice QeD, this action 
S consists of two terms: S = Se + SF . The gauge part Se is a simple function of 
the plaquette action Splaq, defined in Eq. 1: 

Se = f3 2:[1- Real(Splaq)] , (3) 
plaq 

where the sum runs over all plaquettes of A. The fermionic part SF, expressing the 
dynamics of the fermion fields as well as their interaction with the gauge fields, 
can be written as a function of the fermion matrix M and the fermion field 1/; in 
the following way: 

SF == (ii}, M[U]1/;) ; 

in two dimensions the explicit expression is 

3 

SF = 2: L L 1/;tOi.(i,j) M~j)(k,l) 1/;{3(k, l) 
(i,j)EA (k,I)EA 0i.,{3=1 

(4) 

(5) 

A fundamental property of gauge theories is that all physical quantities in the 
theory are gauge invariant. As a consequence, all physical quantities corresponding 
to a configuration can be expressed as gauge invariant combinations of 1/;'s and U's: 
e.g. the plaquette action Splaq is directly related to the energy density. Predictions 
for a physical quantity F[1/;t, 1/;, U] come, as is the case in all quantum theories, as 
its expectation value < F > given by the following expression: 

< F >= ~ J [d1/;t] [d1/;] [dU] F[1/;t, 1/;, U] exp[ -S[1/;t, 1/;, U]] , (6) 
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where the partition function Z, serving as a normalization factor, is defined by 

Z = J [d'lj;t] [d'lj;] [dU] exp[ -S['Ij;t, 'Ij;, U]]. (7) 

In these expressions the integration J [d'lj;t] [d'lj;] [dU] stands for the integration 
over all possible configurations of the system. The fermion fields, being Grassmann 
variables, can be integrated out. After this integration has been carried out, Eq. 
6 and 7 take the following form: 

< F >= ~ J [dU] F[M-l, U] det(M[U]) exp( -Sc[U]) , (8) 

with 

Z = J [dU] det(M[U]) exp( -Sc[U]). (9) 

Notice the appearance in these expressions of both the determinant det(M[U]) 
and the inverse M-l[U] of the fermion matrix. The expectation value < F > 
can now be given a simple interpretation: it is the weighted average of F[M- 1 , U] 
over all possible U-configurations with the expression det(M[U]) exp( -Sc[U]) as 
weighting factor. Exactly for this type of problems, at least if the weighting factor 
is real and nonegative for all configurations, Monte Carlo simulation methods were 
developed many years ago [6]. For a more rigorous and complete introduction to 
lattice gauge theories I must refer to the literature [3]. 

1.2 MONTE CARLO SIMULATIONS: QUENCHED AND FULL 

The ideas behind a Monte Carlo (MC) simulation are simple. Instead of computing 
the weighted average of F[M- 1 , U] over all possible U-configurations - an impos­
sible computational task for the large systems being studied - a Markov chain 
of sample configurations is generated with det(M[U]) exp( -Sc[U] ) as probability 
distribution. If all the rules of the game are carefully followed, then the regular 
average of F[M- 1 , U] over the sample configurations is a good estimator for the 
expectation value < F >, at least for long enough Markov chains [6, 7]. 

For reasons having to do with the double limit required for physical predic­
tions (see Section 1.1), reliable MC simulations of lattice gauge theories must be 
carried out on large systems - at least 244 and preferably much larger. This re­
quirement turned the simulation of the full theory into a computational task that, 
until recently, was unmanageable on the available computer systems. If one wanted 
physical predictions from lattice gauge theories anyway, one was forced to usc the 
quenched approximation, a drastic, but in many cases acceptable, approximation: 
det(M[U]) is set equal to 1 in Eq. 8 and 9. In the framework of this approxima­
tion, one should clearly distinguish two computational tasks: (i) the generation 
of statistically independent gauge field configurations with probability distribu­
tion exp( -Sc[U]) by means of a MC update algorithm; (ii) computation of the 
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measurements F[M-1, U] for these configurations, requiring the computation of 
M-l[U]. The traditional update algorithms for QCD are local and suffer from 
Critical Slowing Down (CSD). Much effort has gone into the search for efficient 
nonlocal update algorithms for lattice QCD and also for simpler, but physically 
equally relevant, models in statistical mechanics. This search was very successful 
for a whole series of models, leading to very efficient algorithms of two types: (i) 
Swendsen-Wang cluster algorithms [8] and (ii) Multigrid algorithms [9]. For QCD 
in four dimensions, however, the search still continues. The computation of the 
measurements F[M-1, U] requires for most relevant physical quantities the inver­
sion of the fermion matrix M, a task that can be accelerated by multigrid methods. 
Because this inversion plays an even more important role in the simulation of the 
full model, it will be discussed in that context. 

Over the years, as computer power increased, the interest in MC simulations 
of full QCD was renewed, especially after the invention of a much faster exact 
algorithm: the Hybrid Monte-Carlo algorithm [10]; in this context the word exact 
means introducing no additional approximations. Using huge amounts of computer 
time on some of the biggest computers available at present, this algorithm enables 
us to take a first glance at some of the most fundamental properties of QCD, 
albeit on lattices, barely large enough to guarantee reliable physical results [11]. 
The main computational obstacle preventing us from obtaining sufficient statistics 
for larger systems is the fact that the Hybrid Monte Carlo Algorithm requires 
the frequent inversion of the fermion matrix M as part of the updating process. 
In all recent large-scale full-QCD simulations, more than 95% of the CPU time 
was spent inverting the fermion matrix by means of standard algorithms as the 
conjugate gradient algorithm and the preconditioned minimal residual algorithm. 
A direct consequence is that any real breakthrough in inversion algorithms will 
almost certainly lead to a breakthrough in lattice QCD. Because of the nature 
of the problem, a multiscale approach looks very promising. Several groups are 
pursuing this approach with somewhat differing methods and goals. This variety 
of efforts will be the topic of the following sections. 

2 Parallel-Transported Multigrid (PTMG) 

Although gauge theories require extra precautions, PTMG is, in spirit, close to 
multigrid methods used for solving elliptic partial differential equations. Naive 
PTMG, was proposed and tested for inverting the fermion matrix M in the massive 
Schwinger model: two-dimensional U(I) lattice gauge theory [12]. Afterwards a 
more stable version was developed - standard PTMG, - one order of magnitude 
faster than the conjugate gradient algorithm [13]. It was successfully generalized 
to SU(2) [14] and SU(3) in two dimensions [15]. 
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2.1 THE COMPUTATIONAL PROBLEM 

The inversion of the fermion matrix M is achieved by solving the linear system 

L L M[U]f!,j),(k,l) <I>[U]fk,l) = Di,lDj,l DQ ,l . 
(k,l) (3 

(10) 

For simplicity's sake, explicit formulae are given for the two-dimensional case; the 
generalization to four dimensions is almost always straightforward. The numerical 
solution <I>[U] is one of the columns of M-l[U]. A measure for the accuracy ofthe 
approximate solution <I>[U] is the residual defined by 

rn,j) = Di,lDj,l DQ ,l - L L M[U]f!,j),(k,l) <I>[U]fk,l) 
(k,l) (3 

or its norm Irl, given by 

Irl2 = L L Irn,j) 12 . 
(i,j) Q 

(11) 

(12) 

If we denote the exact but unknown solution of Eq.lO by ~[U] and define the error 
E, corresponding to the present approximation <I>[U], by 

En,j) = ~[Um,j) - <I>[U]n,j) , (13) 

then Eq. 10 can be rewritten in a completely equivalent form: 

(14) 

The method, used for solving the problem iteratively, is the K aczmarz local re­
laxation procedure [16]. As is always the case for local algorithms, it suffers from 
Critical Slowing Down (CSD), caused by the existence of Approximate Zero Modes 
(AZM), eigenvectors of M with very small eigenvalues (absolute value). In general 
it can not compete with the conjugate gradient algorithm. The situation changes 
completely, if the Kaczmarz algorithm is used as the smoother of a multigrid al­
gorithm. 

2.2 THE MULTIGRID APPROACH (MG) 

The main idea of MG is trying to solve the problem on a coarser lattice A 1 with 
mesh size h(1), where the smooth AZM of AD are less smooth. For this purpose, 
we need a restriction (coarsening) operator I6, which transforms the components 
of the residual on AD to the coarse grid A 1 : 

(15) 
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On the coarse grid we then solve 

(16) 

where M(l) stands for the appropriate "translation" of the fermion matrix on 
the coarse grid AI . Finally, we need the interpolation operator If, translating the 
solution of Eq. 16 back to A 0 : 

(17) 

The interpolated E(O) is then used to obtain a better approximation on A 0 : 

(IS) 

The steps described here constitute the definition of a two-level process. The real 
MG process is generated by observing that the solution on the coarse grid Al 

may be accelerated in turn by an analogous procedure, involving an even coarser 
lattice A 2 , etc .. In this way, the familiar V- and W-cycles can be defined. In 
some cases, it is for theoretical or practical reasons not advantageous to carry 
through the coarsening as far as possible. We call this procedure a II = n cut­
off cycle, where n denotes the distance (expressed in number of levels) between 
the finest and the coarsest grid used. A cut-off II = 1 cycle corresponds exactly 
to the two-level process discussed earlier. On all levels, Vl Kaczmarz relaxation 
sweeps are carried out before a restriction operation; similarly after a coarse- grid 
correction (interpolation) V2 Kaczmarz sweeps are done on the finer lattice. For 
gauge theories, the restriction and interpolation operators, as well as the coarse 
grid fermion matrix, must be selected with care; standard PTMG is such a choice. 

2.3 RESTRICTION, INTERPOLATION AND COARSE-GRID M 

A special property of the staggered form of ~1 is that the fermion fields 'lj;, and 
consequently also the solutions <P, located at the lattice points of the different grids 
A (i) are not all equivalent. One must distinguish pseudofiavors: in two dimensions 
there are 4 pseudoflavors and in four dimensions 16. As an example, we show in 
Fig. 1, how the solutions <P a , <Pb, <PC) and <Pd, corresponding to the four pseudofla­
vors a, b, c, and d in two dimensions are distributed over the lattice. Because the 
equation to be satisfied by the solution <P (Eq. 10) depends upon the pseudofla­
vor, the fields <Pa ... <Pd are treated by PTMG as independent fields, i.e., they are 
restricted and interpolated separately. 

In gauge theories, the physical content is gauge invariant: the physical prop­
erties of a configuration do not change under a gauge transformation defined in 
Section 1.1. All configurations differing only by a gauge transformation are there­
fore physically equivalent. Assuming that the link variable U1 (i + ~,j) connects 
pseudoflavor a to b in Figure 1, it does not make sense to compare the specific 
value of this link variable with e.g. the link variable U1(i + ~,j +2), although this 



64 P. G. Lauwers 

FIGURE 1. Staggered fermions in two dimensions: geometrical distribution of the four 
pseudoflavors of the field <I> over the lattice. 

link connects the same pseudoflavors. Even if these U's are equal, a random gauge 
transformation, will destroy any relation between them. If, on the other hand, 
U1(i + ~,j) = U2(i,j + ~)U2(i,j + ~)udi + ~,j + 2)UJ (i + l,j + ~)UJ (i + l,j + ~), 
this relationship remains invariant under any gauge transformation. In the lan­
gauge of gauge theories, we say that U1 (i+~, j +2) has been parallel transported to 
the location of U1 (i + ~, j). Consequently, only averaging over parallel-transported 
quantities should be allowed as part of the definition of the coarse-grid M; the same 
holds for the definition of the restriction operator 1;+1 for the <I>'s. Summarizing, 
parallel-transporting the relevant quantities removes completely the unphysical 
gauge disorder from the MG process. More details on the precise definitions of 
restriction, interpolation and coarse grid M may be found in [13, 14, 15]. 

2.4 RESULTS AND OUTLOOK 

The first goal of the authors of PTMG was to develop an efficient inversion al­
gorithm, which outperforms the commonly used algorithms in all or part of the 
physically relevant region of the parameters (3 and m q . Starting with the massive 
Schwinger model, this goal was also reached for SU(2) and SU(3) lattice gauge 
theories in two dimensions. 

As a typical example, I present data of a numerical experiment for SU(3) 
lattice gauge theory on a 128 x 128 lattice, with quark mass mq = 0.01 [15]. M 
is inverted, or to be more precise Eq. 10 is solved, for 20 statistically independent 
gauge configurations, produced by the quenched SU(3) Monte Carlo algorithm, 
based on a heat-bath algorithm for three different SU(2) subgroups [17], with 
(3 = 400 (gauge field correlation length ( = 10). W-cycles, with on each level two 
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FIGURE 2. Comparison of convergence: PTMG ("( = 2, VI = V2 = 2, several cycle-depths 
L1) vs. Conjugate-Gradient algorithm for the inversion of the SU(3) staggered fermion 
matrix in two dimensions with mq = 0.01. The norm of the residual is plotted vs. the 
CPU time in seconds (one processor of a CRAY-YMP). The data shown are averages over 
20 quenched SU(3) configurations for L = 128 with f3 = 400 (~ = 10). The data points 
for the CG represent 50 CG sweeps, those for the multigrid algorithm two W-cycles. 

relaxation sweeps before each coarsening and two sweeps after each correction, are 
used: "( = 2 and VI = V2 = 2. The effect of the cycle depth ~, defined in section 
2.2, was also investigated. The numerical experiment consists of measuring for each 
configuration the norm Irl of the residual after every cycle as well as the amount 
of CPU time used (one processor of a CRAY-YMP). The results are summarized 
in Fig. 2, proving at least for this particular experiment the superiority of PTMG 
over conjugate gradient in realistic computer time. 

Although these results are very encouraging, one should not forget that the 
real goal should be fast solvers for lattice gauge theories in four dimensions, not 
two. There are good reasons to believe that for correlation lengths ~ around 10, 
i.e., for configurations with relatively little physical disorder, and with lattice sizes 
of the order of 1284 , PTMG will also beat conjugate gradient. Especially with 
full QCD, however, simulations of this size will remain too big a computational 
task for many years to go, even with strongly increased computer power. Tests 
with somewhat smaller systems have not been carried out yet because of memory 
requirements: an efficient implementation of PTMG in four dimensions requires 
approximately ten times the amount of memory needed for one gauge configura­
tion. 
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3 Ground-state projection multigrid 

It became clear in the previous section that smoothness is not an obvious concept 
in gauge theories, because of the presence of gauge disorder and its interplay with 
real physical disorder. Based on the expected connection between smoothness and 
low-energy eigenstates, several groups of investigators, with varying degrees of 
sophistication and success, chose their MG interpolation operators in such a way 
that they project on the ground-state (smoothest) solution of the finer lattice in 
some sense [18, 19, 20, 21, 22]. In this section I can only give a brief outline of 
one particular way, how this idea can be realized [18, 19]. For more details and a 
complete description of the results I must refer to the literature. 

3.1 PHYSICAL SMOOTHNESS 

Instead of solving 
(19) 

where D is the anti-hermitian matrix defined in Eq. 2, the equivalent system 

(20) 

is solved. If cI> is a solution of Eq. 20, then X = (D + mq)tcI> is the corresponding 
solution of Eq. 19. The main reason for solving Eq. 20 instead of Eq. 19 is that an 
appropriate choice of interpolation and restriction operator, e.g. by the variational 
method, leads to an algorithm that can never diverge. 

In the framework of solving Eq. 20, smoothness of an approximation or so­
lution cI> is given a quantitive meaning by means of the functional 

(21) 

If s[cI>] < s['.lIJ, then cI> is said to be smoother than '.lI. As a consequence, the 
smoothest field cI>0 is the eigenstate of the operator (-D2 + m~) corresponding to 
the lowest eigenvalue Ao of this operator. It is important to note that by this defi­
nition smoothness depends on the problem to be solved, because D, is a function 
of the gauge configuration (Eq. 2). The interpolation operator I;-I, as well as the 
restriction operator Ii-I' must now be defined in such a way that the coarse grid 
corrections can "take care of" the smooth components on the fine grid. 

3.2 LOCAL GROUND-STATE PROJECTION KERNELS 

Instead of treating a realistic but complicated problem, I will present explicitly, 
how these kernels may be constructed for a one-dimensional case: inverting a one­
dimensional version of the covariant Laplacian plus mass term. I want to stress 
that this one-dimensional model is used only to show how to construct the kernels 
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- it does not have any meaning as a bona fide lattice gauge theory. Let us define 
the one-dimensional covariant "Laplacian" in the following way: 

We take the coarsening factor for the MG to be 3, i.e., the number of point on the 
grid Ak will be ~ the number of points on the next-finer grid Ak-l (in one dimen­
sion). The restriction from A k-l to A k, is carried out by means of the operator 
Itl in the following way: 

I k (.(k) .(k-l») ;r..(k-l)(.(k-l») . 
k-lz ,Z 'l' Z , (23) 

the interpolation operator is taken to be the hermitian conjugate of the the restric­

tion operator: I~-l = Itl t. We use non-overlapping restriction operators, setting 
Itl(i(k), i(k-l») = 0 if i(k-l) ~ {3i(k), 3i(k) + 1, 3i(k) +2}, i.e., each point i(k) E Ak 

gets contributions from three points on A k-l. The interpolation operator is now 
selected as the lowest eigenstate of a cut-off version of the operator to be inverted: 
IP(i(O) E {O, 1, 2}, i(l) = 0) is the solution of the following set of equations that 
corresponds to the lowest eigenvalue >'0: 

+ m~ IP(O, 0) 

+ m~ IP(1,O) 

+ m~ IP(2, 0) 

>'0 IP(O, 0) 

>'0 IP(I, 0) 

>'0 IP(2, 0) . 

Methods similar in spirit but considerably more complicated have been developed 
for inverting the fermion matrix. The details may be found in the literature cited 
above. 

It is not a priori clear that defining the "local" kernels as the solution of an 
eigenvalue problem with some cut-off version of the operator (-D2 + m 2 ) is really 
the best one can do. This may well be the reason, why the results obtained with 
this method are not as good as one could hope for. One way to circumvent this 
problem will be treated in Section 4. 

3.3 RESULTS AND OUTLOOK 

Several variants of this method have been investigated, not only for the staggered 
fermions [18, 20]' but also for the Wilson fermions [22]. Most of the work was 
limited to lattice gauge theories in two dimensions. SU(2) lattice gauge theories 
with staggered fermions in four dimensions were also investigated [19]. In the latter 
study, lattices of sizes up to 184 were used and it is shown that a break-even with 
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traditional methods may be reached for not too large systems, albeit with much 
larger memory requirements. 

There seems to be a consensus that, although the practical implementations of 
projective multigrid methods seem to suffer less from Critical Slowing Down than 
the traditional algorithms, this problem has not been completely eliminated for the 
realistic case with non-trivial link variables U. It is completely eliminated, however, 
if "ideal" kernels are used [23]' long-range kernels first proposed and used in the 
framework of Renormalization Group studies. This result is of theoretical interest 
only, because the complexity of these kernels makes them useless for practical 
simulations. 

Summarizing, it can be said, that, in spite of some encouraging results, no 
real practical alternative has been found yet to replace the traditional inversion 
algorithms in four-dimensional QCD simulations, at least not for the system sizes 
that will be used during the next few years. 

4 Iteratively Smoothing U nigrid (ISU) 

As the name says, this method is not a MG algorithm in the usual sense, but rather 
a unigrid method. The smoothness concept behind this method is the same as for 
the ground-state projective method (Section 3.1). This method is very recent and 
not many results have been published yet: a brief outline and the first promising 
results can be found in [24], more details are contained in [25]. 

4.1 INTERPOLATION KERNELS A[Ojl(x, z) 

The problem solved is the same as in the previous section: Eq. 20. As in all unigrid 
methods, no coarse grid representations of the system and of the operator (-D2 + 
m 2 ) are computed. Coarse grid corrections are made directly on the variables of 
the original grid A a by means of interpolation kernels A[Oj] , where j refers to the 
coarse grid Aj. 

An important difference with the practical projective multigrid algorithms is 
the fact that the range of the interpolating kernels, especially the ones responsi­
ble for very coarse corrections (high value of j), strongly overlap. In Fig. 3, the 
different grids and the range of the interpolation kernels are presented for the 
one-dimensional toy-problem of Section 3.2. 

The interpolation kernel for the corrections from level Aj is denoted by 
A[Oj] (x, z), where x E Aj and z E AO. The way these interpolation kernels are 
selected is very similar in spirit to the method for the local ground-state projec­
tion kernels in Section 3.2. First of all, the condition A [OJ] (x, z) = 0 is imposed, 
if z lies outside the range of x. Then, the remainder of the elements is deter­
mined by finding the eigenstate corresponding to the lowest eigenvalue Ao (x) of 
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FIGURE 3. Grids and range of interpolation kernels for one-dimensional ISU: (a) 
schematic picture of A 0 through A 3 , (b) range of interpolation kernels Aioll, (c) range of 
interpolation kernels A [021. 

the eigenvalue problem: 

[-~ + m 2 jA[Oj] (x, z) = Ao(x)A[Oj] (x, z), (24) 

where [-~ + m 2 ], acting on the coordinates z E A 0 , is the operator to be inverted. 
An important question to be asked about this algorithm is the amount of 

computational work involved. The projection kernels A[Ol], i.e., the kernels used 
for the corrections from A 1 , are computed directly by inverse iteration. One then 
computes the remainder of the kernels A[Oj], with j > 1, iteratively by means of 
it MG scheme. As a consequence, the amount of computational work to build the 
kernels is estimated to be proportional to VA X N(~-l), where VA stands for the 
volume of the lattice and N is the number of grids. After the kernels have been 
found, the computational work to find the solution <I> is proportional to VA X N. 

4.2 RESULTS AND OUTLOOK 

In a careful study, the authors of the method have shown that it eliminates 
CSD completely for the inversion of the covariant Laplacian plus mass term in 
two-dimensional SU(2). In fact, they consider the operator (-~ - EO + 8m2 ). In 
this expression, ~ stands for the covariant Laplacian in two dimensions, the two­
dimensional generalization of Eq. 22. The parameters EO and 8m2 are introduced 
to study the behavior of the inversion algorithm near criticality (lowest eigenvalue 
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FIGURE 4. Convergence of the inversion of the operator (-6 - EO + 8m2 ) by means of 
ISU: correlation time T vs. 8m2 for three different lattice sizes. The data are averaged over 
40 quenched two-dimensional SU(2) configurations generated with heat-bath algorithm 
for {3 = 1. (unpublished data, courtesy of M. Baker, G. Mack, M. Speh [24]) 

of the operator to be inverted ncar zero). Because ~ is a function of the link vari­
ables U, also its spectrum and in particular its lowest eigenvalue depend upon the 
specific gauge configuration. The authors therefore subtract the lowest eigenvalue 
EO of the operator -~ and then add by hand the parameter 6m2 to have complete 
control over the approach to criticality. Using two-dimensional quenched SU(2) 
configurations ((3 = 1.0), they compute for several values of 6m2 and for different 
lattice sizes the correlation time To This quantity is defined as the decay constant 
of the exponential decay of the norm of the residual as a function of the number 
of Unigrid-sweeps: T = 1 means that one unigrid-sweep reduces Irl by a factor 
e. From the data, collected in Fig. 4, it follows that CSD has been eliminated 
completely, actually the method seems to become even more effective for larger 
lattices. These results are very encouraging and the method will be tried out for 
the inversion of the fermion matrix. 

Although CSD has been eliminated completely, this method might only be­
come competitive with the traditional algorithms in practical QCD simulations for 
very large lattices, due to the large computational work required for building the 
kernels. 

5 Gauge-Potential Multigrid 

Although the physics of a configuration can be completely expressed in gauge in­
variant terms, this does not necessarily mean that algorithms used e.g. to invert 
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the fermion matrix must be gauge covariant. Just because the physics hidden in 
a particular configuration does not change under a gauge transformation, it is 
perfectly acceptable to subject the configurations to a gauge transformation and 
then work with the transformed configurations. Removing the gauge disorder in 
the configurations by a gauge transformation and then using traditional MG tech­
niques on this gauge-fixed configuration are key ingredients in a recently proposed 
MG method to invert the fermion matrix [26, 27]. 

5.1 THE NUMERICAL PROBLEM 

This investigation is carried out for U (1) lattice gauge theory with reduced stag­
gered fermions [28]. This fermion formulation is similar to the usual staggered one 
introduced in Section 1.1, but the number of lattice locations, where the fermion 
field'IjJ is defined, is reduced by a factor 2. Just as in the case of the usual staggered 
fermions, one should distinguish pseudoflavors both for the fermion field 'IjJ and for 
the field <I> (the solution of the linear system to be solved). In two dimensions there 
are now two pseudoflavors instead of four: a and d; in four dimensions the num­
ber of pseudoflavors is eight. <I>a and <I>d are distributed over the two-dimensional 
lattice as in the usual staggered case: Fig. 1; the fields <I>b and <I>c, however, are 
missing in the reduced staggered case. 

The reason for distinguishing pseudoflavors is that the equations they must 
satisfy are different. Let us assume that (in two dimensions) the pseudoflavor a 

fields are located at the lattice points (1 + 2n,0 + 2m) and correspondingly the 
pseudoflavor d fields at the points (0 + 2k, 1 + 21) where n, m, k, I are integer 
numbers. In this case the numerical problem to be solved can be described by 
giving the two generic equations: 

lIt 1 
2h [U1 (2 + 2' 2) <I> a (3, 2) - U1 (2 - 2' 2) <I> a (1, 2)] 

lIt 1 + 2h [U2 (2, 2 + 2 )<I>d(2, 3) - U2 (2, 2 - 2 )<I>d(2, 1)] 

mq 1 t 1 
+T[U2 (2,2 + 2)<I>d(2, 3) + U2 (2, 2 - 2)<I>d(2, 1)] fb(2, 2), 

lIt 1 
- 2h [U2 (3, 3 + 2)<I>a(3, 4) - U2 (3, 3 - 2)<I>a(3, 2)] 

111 
+ 2h [UI (3 + 2' 3)<I>d( 4,3) - ut (3 - 2' 2)<I>d(2, 3)] 

mq 1 t 1 
+T[U2 (3 + 2' 3)<I>a(3, 4) + U2 (3 - 2' 3) <I> a (3, 2)] = fc(3, 3). (25) 

5.2 GAUGE-POTENTIAL REPRESENTATION AND GAUGE-FIXING 

In Section 1.1, lattice gauge theories were defined using two types of variables: 
the link variables UIL and the fermion fields 'IjJ. There is a completely equivalent 
description, where gauge potentials AIL take the place of the link variables Uw If 
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Nc is the number of generators of the gauge group G (Nc = 8 for QeD) and 
T a are the generators of the fundamental representation of G, then the relation 
between link variables Ull and the gauge potentials All is given by 

Nc 

Ull = exp[ih L A~Ta] . (26) 
a=l 

This relation becomes considerably simpler for small gauge potentials (lhA~1 « 1): 

Ull ~ 1 + ih 'L;::1 A~Ta. For the gauge group U(l), this reduces even further to 
Ull ~ 1 + ihAw Using this A-field discretization for restrictions and interpolations 
as part of a multi-grid approach may have theoretical advantages [26]. 

In Section 2.3 the concept of parallel-transport was introduced to remove 
gauge-disorder and still keep a gauge-covariant formulation. Another well-known 
method to avoid the problem of gauge-disorder consists of removing, as well as pos­
sible, the unphysical degrees of freedom by gauge-fixing in an appropriate gauge. 
The configurations are subjected to gauge transformations selected in such a way 
that the A-fields of the gauge-transformed configurations are as smooth as possi­
ble, where the word smooth now has its traditional meaning. For their work with 
U(l) lattice gauge theories in two dimensions, the authors use the Landau-gauge, 
i.e., they impose the condition div All = 0, or in discretized form 

1 1 1 1 
A1 (i + 2,j) - A1 (i - 2,j) + A2 (i,j + 2) - A2 (i,j - 2) = O. (27) 

After this gauge-transformation, the gauge-disorder of the discretized fields A and 
«) has been removed and the full range of MG-techniques can now be used to tackle 
the physical disorder. 

5.3 RESULTS AND OUTLOOK 

In a series of controlled experiments for U(l) lattice gauge theories in two dimen­
sions, the effects of the details of the MG-procedure are investigated. Different 
ways to discretize the equations - central and backward-forward - are tried out; in 
the latter case a generalized Kaczmarz relaxation scheme, allowing for the simulta­
neous relaxation of two equations, is found useful. The importance of polynomial 
acceleration, removing slowly convergent (or even divergent) modes by linearly 
combining iterants, is investigated as a function of quark-mass mq and fJ. The 
effects of different ways of building the averages for the restriction operator and 
the corresponding interpolation operators are investigated. Until now the numer­
ical experiments have been carried out on configurations generated by a gaussian 
approximation [27]. Only configurations with zero global topological charge have 
been considered and a method has been proposed to handle configurations with 
non-zero charge [26]. 

The preliminary results are very encouraging [27]. Although the efficiency 
decreases for increasing physical disorder (decreasing values of fJ) and smaller 
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values of the quark-mass m q , full MG-efficiency is reached for probably the whole 
physically relevant range of the parameters. Polynomial acceleration seems to be 
necessary for small quark masses, especially if they are combined with small values 
of (3 (large physical disorder). 

Although these experiments are very interesting by themselves, the main 
interest of the lattice gauge theory community is QeD in four dimensions. The 
generalization of some of the ingredients of this approach to such four-dimensional 
non-abelian gauge-theories is nontrivial. The urgent need for faster algorithms, 
however, more than justifies the effort. 

6 Concluding remarks 

In this survey of attempts to build fast multiscale algorithms for inverting the 
fermion matrix in QeD simulations, I was forced to be incomplete. I was only able 
to briefly sketch some approaches and present a couple of results. One multigrid 
method, based on the Migdal-Kadanoff renormalization group transformations, I 
had to skip completely [29] and no attention could be paid to more theoretical 
investigations of the problem [30]. Still I hope that I succeeded in conveying an 
impression of the very active search for multiscale algorithms in an important field 
of research. 

Me simulations are and will remain an important tool, in some cases even 
the only tool, to obtain nonperturbative information about physical models. These 
models describe a wide range of important physical phenomena: elementary par­
ticles and their interactions, solids and their phase-transitions, etc .. In these phe­
nomena and in their simulation, many different physical length scales play an 
essential role. Hence, a multiscale approach may reduce considerably the overall 
computational work, required to obtain the relevant physical information. For a 
discussion of ideas and also some results in applying a multiscale approach to many 
different aspects of Me simulations, I refer to the contribution of A. Brandt at 
this conference. 

In the Me simulations of full QeD, the real computational bottleneck, at this 
moment, is the inversion of the fermion matrix. Although multiscale approaches 
may be needed for many more aspects of the simulation (efficient gauge-fixing, 
efficient updates, etc.), I expect the first contribution to come in the form of a fast 
multiscale inversion algorithm. If such a solver is found for QeD in four dimensions, 
the quality of the physical predictions will improve dramatically. Also the need for 
a multiscale approach to the other aspects of the Me simulations will then become 
apparent. 
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Adaptive Multigrid on 
Distributed Memory Computers 
Hubert Ritzdorf and Klaus Stiiben1 

ABSTRACT 2 A general software package has been developed for solving sys­
tems of partial differential equations with adaptive multigrid methods (MLAT) 
on distributed memory computers. The package supports the dynamic mapping 
of refinement levels. The general strategy is described and results are reported on 
compute-intensive problems as well as on some simple problems representing worst­
case situations from a parallel efficiency point of view. Inherent limitations of the 
parallel efficiency will be discussed. 

1 Introduction 

Generally, adaptive grids are a result of the computation, and dynamically map­
ping the work load to the processors and achieving load balance are tasks which 
have to be performed at run time. Careful strategies must be employed in order not 
to destroy the parallel efficiency through communication overhead. In this paper, 
we present results obtained for the multi-level adaptive technique (MLAT [1],[2]) 
on 2D block-structured, boundary-fitted grids which are widely used in aerody­
namic applications. Such grids permit the numerical solution of partial differential 
equations on geometrically complex domains while keeping regular the local data 
structure (within each process). We will discuss communication and mapping as­
pects, the way in which local refinement areas are generated and distributed to 
the available processors. 

MLAT is known to provide very fast solvers on sequential computers and the 
question is how far this is applicable to parallel machines. While dynamic mapping 
is required by any adaptive algorithm, an additional problem occurs in MLAT, 
namely, the problem that each cycle requires substantial global communication 
(data re-distribution before switching refinement levels). It turns out that the latter 
has no severe consequences in connection with "complex problems". However, 
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for applications with low arithmetic per grid point, the corresponding overhead 
may seriously limit the achievable parallel efficiency. Although still acceptable for 
environments with "ideal" interconnection networks, this limitation is fatal for 
bus-connected systems like workstation clusters. 

Results will, in particular, be presented for the steady-state Euler equations. 
The emphasis is laid on the adaptive refinement of the shock position. High parallel 
efficiencies are obtained even for relatively small problems. As worst-case examples, 
we consider scalar problems with singularities induced by the shape of the domain 
(re-entrant corners). Based on some simple analysis, we will point out the crucial 
aspects. 

2 Adaptive multigrid (MLAT) 

MLAT is essentially an FMC-like process (full multigrid, [1], [2]) which initially 
works merely on a hierarchy of "global" grids, n7 (£ = 0,1,2, ... , £c), where na 
denotes the finest global grid given by the user. Only at run time, controlled by 
certain criteria, local refinement levels n~£ (£ = 1, 2, ... , £ f), extending over in­
creasingly smaller sub domains of the original domain, will be detected and succes­
sively added to the grid hierarchy. If no more local refinement levels are detected, 
mere multigrid cycling is continued until a reasonable convergence criterion is sat­
isfied. 

Let the number of points on the global and the locally refined levels be de­
noted by Nc and N _£, respectively. We will consider only standard coarsening. In 
particular, the global grids are nested and the number of points on n~ is (approx­
imately) N£ = No/4€; the refinement grids are locally nested, and the coarse-level 
restriction of grid n~£ is denoted by 

(1) 

Throughout this paper, we tacitly assume that N _€ decreases for increasing £ such 
that Nmg = O(No) where Nmg denotes the total number of grid points involved 
in the multigrid process. 

Analogous to non-adaptive cycles, adaptive ones are defined recursively by 
means of two-grid methods. Besides the fact that, in the adaptive context, FAS (full 
approximation scheme [1], [2], [14]) is employed, the only essential difference is that 
- on any refined grid n~€ - the corresponding two-grid method uses grids n~€ and 
n~£+l (rather than n~£+l)' Along the artificial inner boundaries of n~£, boundary 
values are usually interpolated from the current approximation on grid n~£+l' The 
concrete type of interpolation used may be crucial for the speed of convergence 
as well as for the global discretization error. In many cases, sufficiently accurate 
standard interpolation may be used (e.g., in case of Poisson-like equations). In 
other cases, e.g. compressible fluid flow problems, more care has to be taken (cf. 
Section 3). 
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Due to the above assumption, the computational work per V-cycle is O(No). 
Since this is no longer true for different cycle types like F- or W-cycles, such cycles 
should be avoided in the adaptive context. Moreover, applying FMG in the above 
fashion, even if it is based on V-cycles, does not yield an O(No)-method. Instead, 
one should employ FMG in a more sophisticated way (e.g. A-FMG [1], [2], [12]). 
If robustness requires, for instance, the use of F-cycles rather than V-cycles, one 
should not use F-cycles directly; more efficiently, for instance, the particular re­
cursive structure of an F-cycle can be combined with the A-FMG process resulting 
again in an overall computational work of O(No). 

In this paper, we do not consider optimal FMG-implementations, but rather 
focus on the most crucial aspects from a parallel point of view, in particular those 
which are specific for the adaptive situation. That is, we focus on the parallel 
realization of the refinement process itself as well as on the parallel efficiency 
of plain multigrid cycles applied to the full sequence of grids. (Unless explicitly 
stated otherwise, we have V-cycles in mind, see above.) Clearly, a more in-depth 
consideration of the parallel performance has to take the total FMG process into 
account. 

2.1 PARALLELIZATION ASPECTS 

Since the different multigrid levels are treated sequentially, the only reasonable 
parallelization strategy is to map each level to as many processors as possible. 
Formally, this is analogous to the standard way of parallelizing non-adaptive cy­
cles. The well-known deficiencies - decreasing ratio arithmetic/communication 
and, eventually, less points than processors - just not only apply to the global 
coarse levels but similarly to the locally refined ones. 

There are, however, some new aspects which will be discussed below for the 
case of block-structured grids, i.e., grids which are composed of subgrids each of 
which is logically rectangular (for a very simple example, see Figure 1). Such 
grids are widely used, for instance, in aerodynamic applications. They build a 
compromise between geometrical flexibility and simplicity of the data structure. 

The block-structure provides a natural basis for the parallelization: Each 
block is mapped to a different process. (As usually, overlap regions of a certain 
width have to be introduced in order to allow for an efficient communication.) The 
minimum number of blocks required to describe a concrete geometry is merely 
defined by the requirement that the final grid should be "reasonable". Usually, this 
number is much lower than the number of available processors, P. Consequently, on 
a parallel machine, large blocks are subdivided further in order to obtain good load 
balancing which typically means that each block should contain the same number 
of grid points. For instance, the grid in Figure 1 has originally been created as a 
single-block grid (by a biharmonic grid generator) and was then subdivided into 
16 equally sized blocks for use on a 16-processor machine. Generally, good load 
balancing can be obtained only approximately, which is certainly a tribute we have 
to pay for, say, the advantages of block-structured grids as opposed to unstructured 
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FIGURE 1. Block-structured grid around the NACA0012 airfoil (here: 16 blocks) 

grids. 

Introducing and mapping new locally refined grids 

During the refinement phase, the grid data of each new refinement level is initially 
distributed across only some of the processes. That is, the parallel FMG process 
cannot continue in a load balanced way (with the new level being the finest one) , 
until that new level has been re-mapped to all processors. Note that this mapping 
does not affect the mapping of previous refinement levels. 

Generally, obtaining optimal load balancing at each stage of the FMG process 
is too complicated and costly. What is required is an algorithm which rapidly 
re-maps distributed locally refined block-structures to reasonably load balanced 
ones. Omitting complex details as well as some technical restrictions which require 
certain natural modifications, the essential steps of such an algorithm are simple 
and outlined in the following. We assume that grid n~e+l already exists and that 
the next refined grid, n~e, has to be created and mapped. 

1. Each process checks for refinement areas independently of the others. Since 
we are considering only block-structured grids, each process has to embedd 
its local refinement area( s) into logically rectangular subgrid( s). If no process 
detects refinement areas, the refinement process is finished. 

2. If refinement areas have been detected, communication is required to analyze 
the resulting block-structure and to set up the corresponding data-structure. 
At this point, local "process blocks" should be joined to larger "superblocks" 
whenever possible in order to obtain a final block-structure with as few 
blocks as possible. (This gives the maximum freedom for a load-balanced 
mapping.) The optimal number of grid points each processor should work 
on, N(P) = N_e/P , is computed and broadcast. 
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3. All blocks containing less than N(P) points are distributed immediately (each 
block to a different process). Small blocks should share the same processor 
such that the total number of points treated by a processor is as close to 
N(P) as possible. 

4. Since the previous step will not give optimal load balancing with respect 
to the small blocks, the optimal number of grid points for the remaining 
processors is re-computed: N(P) = N ~e/ j5 where N ~e and j5 denote the 
remaining number of grid points and processors, respectively. If there are 
blocks left containing less than N(P) points, go back to the previous step. 
Otherwise, proceed to the next step. 

5. Blocks containing more than N(P) points have to be subdivided. To be more 
precise, if a block contains n points, it is subdivided into m subblocks, m 
being the largest integer::; n/ N(P). Each of the subblocks should approxi­
mately contain the same number of points. Note that all blocks can perform 
their subdivision in parallel. 

6. The total number of subblocks created in the previous step cannot exceed P, 
but it may be smaller, in which case there are free processors (at most equal 
to the number of blocks which initially had to be subdivided). If this is true, 
blocks which currently contain the largest subblock(s) are re-subdivided with 
the number of subblocks increased by one. This is applied to as many blocks 
as required to make all processors busy. 

The result of this procedure is a new block-structure with each block mapped 
to a different process. Note that the main goal is to minimize the size of the largest 
block. In fact, this is the most crucial point in trying to obtain approximate load 
balancing, much more important than trying to get all the small blocks perfectly 
load balanced. For reasons of high parallel efficiency, one might want to impose 
additional constraints like, e.g., preserving nearest neighbor relations or minimizing 
the cost for data re-distribution within cycling (see Section 2.1). Apart from the 
fact that the underlying goals are conflicting, it is very hard to realize "optimal" 
algorithms for general block-structured grids. Since it is not clear a priori, whether 
or not such more sophisticated algorithms would really pay in practice, we have 
not yet invested much work in this direction. 

We want to emphasize that each of the essential mapping steps can be per­
formed in parallel and all communication can be arranged to be either nearest 
neighbor or along embedded trees. Thus, the communication overhead is merely 
O(log(P)). In practice, the total work required for re-mapping is negligible if com­
pared to the rest of the work. An examplary sequence of three successive, block­
structured refinement areas, obtained when solving the Euler equations on the grid 
as depicted in Figure 1, is shown in Figure 2 (for more details, see Section 3). 
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FIGURE 2. Hierarchy of 3 block-structured refinement areas. 

Data re-distribution within each multigrid cycle 

Due to the above mapping, data has to be re-distributed whenever locally refined 
levels are switched during a multigrid cycle. (This can only be avoided by using 
much more complicated mapping strategies, see Section 4.3.) This re-distribution 
should be done such that all arithmetic required in the grid transfer (corrections, 
residuals) can be performed in a load-balanced way. 

To be more precise, let us assume that we have just finished relaxation on 
grid r!~l+1 and that we want to transfer corrections from that level to the next 
finer one, n~t. At this point, the relevant correction data is contained on the 
coarse-level subgrid n~Hl. Since this subgrid is distributed only over some of the 
processors, one should first distribute the data to the processes of grid r!~l and only 
then perform the actual interpolation and correction. Similarly, during the fine-to­
coarse transfer, all necessary computations (evaluation of residuals, application of 
the full weighting operator, etc.) should be done on the fine level; only the data 
which is really relevant for the coarser level should then be re-distributed. Note 
that now, according to the definition of FAS, two types of grid functions have to 
be re-distributed, namely, residuals and current approximations. 

In addition to load balancing, this way of re-distributing data has another 
obvious advantage: the amount of data to be re-distributed is the smallest possible. 

Treatment of the critical levels 

Both for the coarsest global grids and the finest local grids, the number of grid 
points may finally become smaller than the number of processors. We call the 
corresponding levels the critical ones. 

Concerning the critical fine levels, we reduce the number of processors grad­
ually from level to level. To be more specific, the decision on the number of pro­
cessors which will stay active on grid r!~l is based on the number N -H 1 of points 
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contained in the coarse-level subgrid !1~Hl: the number of active processors on 

grid n~£ is P _£ = min {P, N -H I}. Consequently, on each of the critical fine levels, 
each processor is acting on a fixed number of grid points (4 on the average). In ad­
dition to the usual communication overhead (inter-level as well as intra-level), this 
introduces arithmetic overhead in the parallel cycle. Generally, the total overhead 
caused by the critical levels depends merely on P. For instance, it is O( log( P)) if 
N -c decreases geometrically3. 

Clearly, in order to keep the overhead caused by the critical coarse levels of 
the same order, one has to proceed similarly on these levels. For a small number 
of processors, however, one might as well skip these levels totally, and simply re­
solve the new coarsest-grid equations sufficiently well (e.g. by additional relaxation 
steps). 

2.2 AVAILABLE SOFTWARE 

The communication tasks required on block-structured grids are independent of 
the actual application. A comfortable and flexible library of highlevel FORTRAN 
routines has been developed (COMLIB [5]), which perform all communication 
required on such grids. This includes both local and global communication on 
single grid levels (provision of overlap areas, overlap update, computation of global 
quantities, etc.), analyzing, mapping and load balancing of new refinement levels, 
global data re-distribution as well as all inter-level communication. 

On the one hand side, one may regard the COMLIB as a user interface to 
a parallel machine, freeing the user from the need to usc any parallel language 
construct. In addition, and much more important, the usc of the provided routines 
drastically simplifies the development of parallel application programs. Each pro­
cess "sees" merely a single logically rectangular grid; the complex grid structure as 
a whole is solely managed by the COMLIB and never visible to the programmer. 
Thus, basically, the programmer's work is reduced to what he would have to do 
on standard sequential computers and for single-block grids. Finally, the COMLIB 
itself is based on a portable message passing programming model which has been 
implemented on a wide variety of different architectures, thus giving portability 
among all these machines (PARMACS [6]). 

Remark: In the current library release, two of the steps described in Section 
2.1 are not yet realized. Firstly, the distributed local refinement blocks are not 
"joined" as mentioned in Step 2. Secondly, only one grid block is treated by each 
processor (cf. Step 3). (The creation of more than one process per processor is not 
supported on all new architectures.) 

The results presented in the following have been obtained by the general 
program package LiSS [11], [8] which has been developed for the parallel multigrid 

3We here think of "real" parallel systems. Of course, for workstation clusters this is 
not true. 
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solution of large classes of systems of partial differential equations on distributed 
memory computers. LiSS is based on the COMLIB and can thus handle general 
block-structured grids. 

3 Results for the Euler equations 

In the following, we consider the steady-state Euler equations 

8f+ 8g=0 h f= [pu~:p 1 8 8 were , 
x y puv 

(E + p)u 

[ 
PV 1 puv 

g = pv2 +p 

(E + p)v 

with p, u, v, E and p denoting the density, the cartesian velocity components, 
the total energy and the pressure, respectively. In addition, we assume the state 
equation p = b - 1)(E - ~p(u2 + v2)). 

As test examples, we consider flows around the NACA0012 airfoil with Moo = 
0.85, angle of attack 1.00 (Example 1) and Moo = 0.8, angle of attack 1.250 

(Example 2). In the first example, we have a strong shock at the lower surface, in 
Example 2 only a very weak one (see Figure 3). 

FIGURE 3. Pressure distribution for Examples 1 and 2 

Following [4], we use a finite-volume discretization based on Osher's flux­
difference splitter. In contrast to [4], however, we apply it to a vertex-centered 
distribution of unknowns. The computational grid, 03, and its corresponding sub­
division into 16 blocks (for the use on 16 processors) are shown in Figure 1. 

Values at points along inner boundaries of refinement areas are not interpo­
lated from coarse-level values, but rather discretized conservatively by applying 
Osher's scheme to special control volumes (cf. Figure 4a). This turned out to 
be important; using non-conservative formulas instead (e.g. cubic interpolation) 



6. Adaptive Multigrid on Distributed Memory Computers 85 

may cause not only a deterioration of the accuracy, but also a considerably worse 
multigrid convergence (cf. [3]) . Note that the unknowns along inner boundaries 
are incorporated into the multigrid process in just the same way as all the other 
unknowns. 

b······ ....... () 

FIGURE 4. a) Discretization at inner boundary, b) Refinement criterion 

For the self-adaptive grid refinement, a heuristic criterion, based on the finite­
element residual, turned out to be well suited (cf. [13]) . It not only detects critical 
areas but also yields a natural stopping criterion for the refinement process (in 
contrast to most criteria used in practice, e.g. those based on gradients). The 
essential idea is as follows . For each point of the current level, Q, its corresponding 
control volume is subdivided into two triangles, ~1 and ~2 (cf. Figure 4b). For 
each triangle, we compute linear functions approximating u , v , p and E (based 
on their current nodal values), and - by inserting these functions into the Euler 
equations - corresponding residual vectors r? and r~. With rt denoting the j-th 
component of r?, we define the control quantity 

2 4 

rh(Q) = L L 1. I rt I dx. 
i=1 j=1 ~ . 

Figure 5 shows contour lines for the finite element residual rh in case of Example 
1, plotted on grid n~. 

Given some tolerance, E, points with rh (Q) 2: E will be marked for refinement. 
After all points of the current level have been processed this way, marked points will 
be embedded into blocks (Step 1 in Section 2.1) and the refinement and mapping 
algorithm outlined in Section 2.1 yields the next refinement level. This process is 
applied recursively to add more levels. 

For Example 1 and E = 10- 3 , we obtain 3 levels of block-structured refinement 
areas (depicted in Figure 2) . The corresponding composite grid is shown in Figure 
6. Figure 7 compares the pressure distribution, computed on the finest global grid, 
n~ , and the locally refined one, respectively. 
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FIGURE 5. FE-residual contour lines for NACA0012 (Example 1) 

FIGURE 6. Composite grid (Example 1) 

FIGURE 7. Pressure distribution without/with local refinements (Example 1) 
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Generally, the parallel efficiency, E(No, P), is defined by 

1 T(No,l) 
E(No, P) = P T(No, P) ; (2) 

where T(No,p) denotes the computing time required (by the same program) on 
p processors. Since, usually, storage limitations do not permit the solution of the 
complete problem on a single processor, we measure parallel efficiency in terms 
of £(No, P) instead, see (2). Here, ai and Ci denote the (wall-clock) time for the 
arithmetic and the total communication time (including idle times), respectively, 
on processor i. We have E(No, P) ~ £(No, P) if all processes are synchronized 
when the parallel application and the time measurements start, if each process 
(block) is mapped to a different processor, if the parallel algorithm does not involve 
substantial additional arithmetic, and if the floating point performance of the 
nodes does not depend too sensitively on the grid size (such that we can assume 

T(No, 1) ~ Er=l ai). Below, all this is approximately true. 
Table 1 shows convergence factors (p), number of grid points on the composite 

grid (Neg) and parallel efficiencies £ per cycle4 measured on the Intel iPSC/860 
for P = 16. The first row contains results for the finest global grid OS (i.e. no 
refinements), the other rows refer to an increasing number of refinement levels (3 
and 4 in case of Example 1 and 2, respectively). 

Example 1 Example 2 
finest level p Neg £/cyc p Neg £/cyc 

0 0.33 3200 71.4% 0.31 3200 70.8% 
-1 0.43 8446 1 0.31 11224 1 
-2 0.56 12123 1 0.37 21507 1 
-3 0.5 13866 67.3% 0.40 26925 1 
-4 - - - 0.40 28771 69.4% 

TABLE 1. Numerical results measured on the iPSC/860 (P=16) 

Although the finest global grid is relatively coarse (3200 points, i.e. only 200 
points per processor), the parallel efficiency measured for the final adaptive cycles 
is rather high, namely, 67.3% and 69.4% for the two examples. Clearly, the best we 
can expect, is the efficiency of the corresponding cycles without refinements, i.e., 
71.4% and 70.8%, respectively. That is, the effective loss in parallel efficiency due 
to the introduction of refinement levels is very small. It is essentially caused by the 
increased number of grids with a deteriorated arithmetic/communication ratio and 
by non-optimal load-balancing of the refinement levels. Due to the high arithmetic 

4For reasons of robustness, we used F-cycles rather than V-cycles (cf. the correspond­
ing remarks in Section 2). 
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work per grid point (many 100 floating point operations), the communication work 
required for global data re-distribution has by far the lowest influence (cf. also the 
next section). 

This indicates that, for compute-intensive problems, we do not have to ex­
pect a severe performance degradation for adaptive multigrid cycles on parallel 
machines if compared to their non-adaptive counterparts. 

4 Worst-case considerations 

In this section, we first consider scalar problems with boundary-induced singulari­
ties. For many such problems, reasonable refinement strategies are known a priori. 
Concrete measurements are performed for the Poisson equation. Clearly, this par­
ticular problem can be solved very efficiently by different approaches without using 
local refinements. We here regard it merely as a worst-case problem for parallel 
machines (low arithmetic per grid point, many refinement levels). Afterwards, we 
will consider the limits of the parallel efficiency. 

4.1 BOUNDARY-INDUCED SINGULARITIES 

It is well-known that a corner at the domain boundary typically causes a singularity 
in the solution of elliptic boundary value problems near that corner, the strength 
of which depends on the size of the inner angle ¢ (7f/2 < ¢ ::; 27f) (cf. Figure 8). 
Using second order differencing on a uniform grid 03 of mesh size ho, generally 
results in a global discretization error (measured in the maximum norm) of O(hti) 
with some 'fJ < 2. For instance, for the Poisson equation with Dirichlet boundary 
conditions, we have (essentially) 'fJ = 7f /¢. 

ch 
1 

r r 

~ 
q 

q2 

n n q3 

00 ~ 1 
ho=l/no 

FIGURE 8. Exemplary domains and simplified computational grid 

One way to obtain O(h6) accuracy is to refine the grid locally towards the 
corner [1], [7], [12]. The "optimal meshsize" at the distance r from the corner, 
1-l(r) , typically is 1-l(r) = ho(r/R)1-TJ/2 (R denotes the "radius" of the domain, 
measured from the singular point). Note that the finest mesh size to be used near 
the corner, h*, is defined by 1-l(h*) = h* which obviously satisfies h'l = O(h6) (i.e., 
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h* is the mesh size which, if used globally, would give a global error of just the 
required order). 

Since we employ only mesh sizes h-l = ho/2l, we may select h-l for all 
points with r£ S r < rl+1 where rl is defined by 1t(r£) = h-e, i.e., rl = ql R with 
q = 0.52/(2-1) « 1/2). Assuming that the singular corner is located in the origin, 
a reasonable hierarchy of grids n~l (.€ = 1,2, ... ,.€ f) is recursively obtained by 
discretizing 

with respect to h_e. (We slightly enlarge the size of n-l such that its interior 
boundary coincides with grid lines of the previous grid, n~H 1.) The sequence of 
grids is terminated for'€f = max{.€: r£ > h-t} ~ log2q(ho/R). 

To be more specific, let us consider the Poisson equation with Dirichlet bound­
ary conditions on the first domain in Figure 8 (corresponding to the case 'T} = 1/2 
and q = 0.54/ 3 ~ 0.4). For simplicity, we formally restrict the computations to 
the unit square (R = 1), assuming that the refinement strategy (3) is done in one 
corner (see Figure 8). Denoting ho = l/no, the number of refined levels becomes 

(4) 

which is three times larger than the number of global multigrid levels. 
Figure 9 shows parallel V-cycle efficiencies (3 smoothing steps per level), 

measured on the iPSC/860 for different numbers of processors and different values 
of no. For each grid level, the processor mapping is boxwise (cf. Figure 10). 
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FIGURE 9. Parallel V-cycle efficiency on iPSC/860 (Poisson equation, TJ = 1/2) 

For the same no, the total intra-level communication (and also the additional 
arithmetic required on the critical levels due to a reduced number of processors) 
is of the same order for cycles with and without local refinements. This is because 
the number of grid points decreases geometrically both towards the coarsest global 
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as well as towards the finest refinement grid (with factors approximately 1/4 and 
4q2, respectively). The corresponding overhead for adaptive cycles is just higher 
by a factor depending only on 'rJ. 

For small no, this overhead dominates the additional overhead caused by 
inter-level communication (global data re-distribution) in adaptive cycles, and, 
consequently, cycles with and without local refinements behave similarly with re­
spect to their parallel efficiency (cf. Figure 9). For increasing no (and fixed P), 
however, the increase of the intra-level communication is of lower order (compared 
to the increase of arithmetic), while the inter-level communication overhead grows 
at the same rate. (To be more precise, the essential cost is due to the data trans­
mission; the corresponding startup cost is also of lower order). This results in a 
saturation of the parallel efficiency of adaptive cycles as clearly seen in the figure. 

4.2 MAXIMAL EFFICIENCY 

We have seen in Figure 9 that the maximally achievable V-cycle efficiency, Ef!:) 
(the limit of E(No, P) for fixed P and No ------+ (0), may be rather low for problems 
with low arithmetic per point. In order to discuss this aspect somewhat further, we 

want to roughly estimate Ef!:). This is fairly simple, since, for increasing No, the 
only communication overhead left is merely due to the data-transmission in the re­
distribution steps. Compared to the arithmetic, all the other overhead (including 
all overhead caused by the critical levels) is of lower order. 

Since we are only interested in the most crucial aspects, we make some ide­
alizing assumptions. First, we assume an "ideal" network of processors. That is, 
the time required for transmitting i double precision numbers from one processor 
to any other one is given by t( i) = 0: + (3i (0: = startup time, (3 = time for trans­
mitting one number). In addition, any different pairs of processors can perform 
their communication fully in parallel. Second, we assume that all levels are load­
balanced and re-mapping has been done such that each processor keeps as many 
grid points for itself as possible. Finally, we assume arithmetic and communication 
to be fully synchronized. 

Let us first consider interpolation from grid n~R+l to grid n~R for the par­
ticular refinement process considered in the previous section. All data relevant for 
interpolation is distributed across those processors whose geometrical area over­
laps with n~Hl (shaded region in Figure 10). Assuming that n~Hl extends over 
the area of at least one processor5 , according to our idealizing assumptions, the 
amount of data to be sent during re-distribution (worst case among the processors), 
is effectively 

(5) 

By summing up, and ignoring terms which are not important for our asymp­
totic consideration, the total amount of data to be sent in the coarse-to-fine re-

5This means that the processor grid satisfies P = Pl X P2 with Pi ~ l/q. 
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distribution steps of one V-cycle is seen to be effectively 

- h 
Q til I-

(N t /4 points) 

3 Nmg 
=---

4 P 

process grid on 
h 

Q _t~ 1 

-t 1 points) 

FIGURE 10. Data re-distribution involving grids ~~t+l and ~~€ 

(6) 

Although derived for a particular sequence of refined grids, it is clear that 
(6) is also relevant in general: Assuming any sequence of locally refined grids, then 
(5) is still true 

if there is at least one processor whose geometrical area on n~Hl 
lies completely inside the next refinement grid, n~Hl. 

(This corresponds to the requirement in Footnote 5.) If this happens to be true 
for each level, we obtain the same approximation for L as above. In this sense, (6) 
characterizes the worst-case for a general sequence of refined grids. 

Thus, assuming now more generally that we are solving any elliptic PDE 
system of m unknowns by adaptive V-cycles and that the (FAS) fine-to-coarse 
data re-mapping costs twice as much as the coarse-to-fine one, the worst-case 
total re-distribution cost per cycle is approximately 3mfJL. Assuming finally the 
sequential work per cycle to be approximately (JNmg (with (J denoting the cost for 
a two-grid-cycle per grid point, not counting the cost for solving the corresponding 
coarse-grid equations), we obtain the following worst-case approximation for the 
maximum parallel efficiency per cycle: 

(J 
(7) 

(J + ~ mfJ . 

That is , this approximation is valid if (*) is true for each e. Otherwise, it is too 
pessimistic. Note that (7) is independent of P. 

For the case shown in Figure 9 (Poisson equation), we have m = 1 and 
approximately (J = 25 (in terms of number of floating point operations). Since the 
iPSCj860 has as a realistic node performance of about 5 MFlops and a bandwidth 
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of 2.7 MBytes/sec, we can assume (3 ~ 15. From (7) we obtain Ef!) ~ 0.43 if (*) 
is true for each £, i.e., if the processor grid consists of at least 3 processors in either 
direction (cf. Footnote 5 for q = 0.4). This is in fairly good agreement with the 
result shown in Figure 9 for P = 16. For P = 8 and P = 4, the requirement (*) is 
never true and thus (7) is too pessimistic. 

In this concrete situation, the limitation of the efficiency is not too severe. 
However, the current trend in hardware development shows a very strong increase 
in node performance while, at the same time, the communication bandwidth in­
creases only slowly. For instance, IBM (with its SP1) aims at a peak performance 
of over 500 MFlops per node in the near future. On such machines, the maximally 
achievable efficiency will become much worse than above. Assuming a fictitious 
machine with 128 MFlops and a bandwidth of 4 MBytes/sec (the approximate 

peak values of the CM5), we obtain (3 ~ 256 resulting in only Ef!) ~ 0.04. 
In any case, however, since the maximally achievable efficiency does not de­

pend on P, asymptotically, the scalability properties of adaptive cycles are sim­
ilar to those of non-adaptive ones. That is, the speedup S(No, P) behaves as 
O(P)/log(P) if P ~ 00 and the grid size per processor, No/P, is kept fixed. 
It is just the constant which is (possibly much) smaller for adaptive cycles. 

4.3 CONCLUSIONS 

Clearly, the larger (J, the less severe (7) becomes. This is particularly the case for 
systems of equations where we typically have (J = O(m2 ). In fact, for the problem 
treated in Section 3 (Euler equations, many 100 floating point operations per grid 
point), the data re-distribution had no essential negative influence on the parallel 
performance, at least not within the range of machines and grid sizes which we 
were able to test. 

However, one should keep in mind that (7) is based on the idealized assump­
tions stated at the beginning of Section 4.2. In particular, the independency of Pis 
only true for ideal networks for which the re-distribution work can fully be shared 
between all processors involved. In a real parallel system, how good this idealiza­
tion is (can be) met, will strongly depend on the concrete network as well as on 
the number of processors. Generally, we have to expect that the parallel efficiency 
will not only be limited, but that the limit will also get worse for increasing P. 

As an extreme case of a more severe situation, consider a single-bus connected 
system (e.g., workstation cluster) such that different processors cannot be assumed 
to send data in parallel any more. For the particular model problem considered 
in Section 4.1, for instance, (5) has to be replaced by L-e = q2 (N-Hl - N_e/4) 
resulting in L = ~q2 Nmg . The corresponding maximum efficiency, 

E(P) = (J 

00 (J + ~ q2 (3 P , 
(8) 

now quickly tends to 0 if P increases; adaptive multigrid cycles are not scalable 
at all on such systems. In fact, the maximally achievable speedup, S~) = P E~) , 
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is not only bounded from above but is, if ~ q2f3 ?: (J, even smaller than 1, inde­
pendently of P! Incidentally, for clusters of high speed workstations (connected by 
Ethernet), f3 will typically be of the order of many hundreds. That is, unless (J is 
very large, we cannot expect any significant speedup on such systems, even not if 
No is arbitrarily large. 

Let us return to systems with a real parallel network. Even if the influence of 
data re-distribution then is not substantial for sufficiently complex problems, one 
might want to reduce this overhead as far as possible. Clearly, this can only be 
achieved by more sophisticated mapping strategies than the one sketched in Section 
2.1. The general goal should be to avoid (*) as far as possible and to map refinement 
grids such that as many processors as possible can share the final re-distribution 
work. Since the location of new refinement areas is not known in advance, this 
means that a complicated multi-stage re-mapping strategy is required. 

In case there is some information on the location of refinement grids, there 
may be straightforward ways to proceed. For instance, for point singularities as 
considered in Section 4.1, one might use stripwise rather than boxwise mapping (cf. 
Figure 11a). In our model case, instead of (5), we then obtain L - e = (q N-€+l -
N_e/4)/ P. By summing up and observing that N _e/4 ~ q2 N-€+l' we obtain 
L = ~ i1;qNmg / P which gives 

E (P) = (J 
00 9 -.JL . 

(J + 4" l+q f3 
(9) 

Compared to (7), the communication term is not only significantly smaller (by at 
least 66%) but also decreases for decreasing q . 

2 
. ...... l. ......... ,.-

3 

a) 

3 ... 1.... .. . 
3 .. ': 4 : 2 

b) ~4 : 2 : 
.f:t:21 : : 

1 . 2 
: .' 3 . 
~' ...... ' 4 

c) 1,\' .~I' 4 

FIGURE 11. Different mapping strategies 

If we assign all processors to both n~e and n~e+l for each e, re-distribution 
may even be totally avoided. Two possibilities are sketched in Figure 11b-c for 
the case P = 4. The first one [10] implies that each processor obtains as many 
different subregions as there are refined levels, a disadvantage which is avoided 
by the second mapping. Note that such strategies, in particular the one in Figure 
11 b, might be used as a basis for a mapping strategy also in general situations. 
The implementation of the multigrid algorithm itself may then however become 
quite cumbersome. To our knowledge, such strategies have not yet been tested in 
practice. 
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Finally, we would like to briefly comment on competitive asynchroneous 
multi-level strategies. Due to their additional vertical parallelism, different pro­
cessors can be assigned to different levels which, up to a certain extent, should 
remove the typical efficiency degradation of standard parallel multigrid towards 
smaller grids in the hierarchy. AFAC (asynchroneous fast adaptive composite grid 
method [9]) has been developed (and is meaningful only) for adaptive grids. It al­
lows the finest global grid and all refined grids to be treated simultaneously. There 
are, however, two severe drawbacks of this approach. 

First, from a convergence point of view, two AFAC cycles roughly corre­
spond to one MLAT cycle. Consequently, for complex problems (such that the 
parallel efficiency of MLAT is around 50% or higher), AFAC cannot compete with 
MLAT. Second, AFAC requires global data re-distribution in essentially the same 
way as MLAT, except that this re-distribution is performed "outside" each cy­
cle. However, just because vertical parallelism is exploited, less processors will be 
available per level and, consequently, less processors can share the work for data 
re-distribution. In fact, a closer view shows that the essential communication term 
of AFAC (corresponding to the one of MLAT in (7)), is no longer independent 
of P, but rather grows like O(l092(P)). That is, unless P is relatively small, the 
maximally achievable parallel efficiency will be considerably lower for AFAC than 
for MLAT. 

Summarizing, AFAC might be superior to MLAT only in special situations. 
For instance, for applications with low arithmetic per point, solved on machines 
with relatively small P and high startup costs. Note furthermore that re-distribu­
tion-free mappings (as indicated in Figure 11 for MLAT) do not exist for AFAC. 
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Multicomputer-Multigrid 
Solution of Parabolic Partial 
Differential Equations 
Stefan Vandewalle1 and Graham Horton2 

ABSTRACT 3 We discuss the numerical computation of approximations to the 
solution of parabolic partial differential equations by using multigrid methods on 
parallel computer systems. The paper focuses on algorithms that operate on the 
whole of the space-time grid, treating the time-dimension as just another spatial 
dimension. Three different algorithms that have appeared earlier in the literature 
are recalled; their theoretical convergence properties are analyzed by Fourier mode 
analysis, and their parallel complexities are investigated. 

1 Introduction 

The time-accurate numerical solution of parabolic partial differential equations 
(PDEs) is a time-consuming computational procedure in many scientific and engi­
neering disciplines. The application of efficient numerical algorithms and the use 
of advanced parallel computer architectures are therefore of great importance in 
order to lower the required computation time. 

Traditionally, time-dependent PDEs are solved as a sequence of boundary 
value problems defined on successive time-levels. The great potential of multigrid 
as a rapid solver for these boundary value problems was realized from the early 
days of multi-level algorithms research, see, e.g., [2, 3, 24, 18]. Over the years 
various improvements to the basic algorithm have been suggested: modified nested 
iteration techniques based on the similarity of time-dependent PDEs to parameter-
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3The following text presents research results of the Belgian Incentive Program "In­
formation Technology" - Computer Science of the future, initiated by the Belgian State 
- Prime Minister's Service - Science Policy office. The scientific responsibility is assumed 
by its authors. 
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dependent continuation problems ([9, 11]), modified multigrid cycle types to solve 
for an incremental solution instead of the full PDE solution ([4, 8]), T-extrapolation 
and frozen-T techniques which allow time-stepping to proceed on coarse spatial 
grids with possibly large time-steps while retaining fine grid accuracy ([3, 18, 7, 8]), 
and double discretization methods to circumvent certain stability problems ([7, 8]). 

The parallel implementation of the multigrid algorithm for boundary value 
problems has been the subject of numerous studies by many authors. A compre­
hensive overview of some this work is given in [20]. A comparison of the parallel 
performance of various time-stepping methods for parabolic problems, including 
explicit, implicit and line-implicit methods, is presented in [32]. By these and other 
studies it was made clear that the essentially sequential nature of the time-stepping 
procedure imposes serious limitations on the obtainable parallel performance. No 
matter how many time-steps are to be computed, the obtainable degree of paral­
lelism is restricted by the parallelism in the multigrid solver used to compute the 
solution in one single time-step. This is especially disappointing as the number of 
time-steps is often many times larger than the size of the spatial mesh. 

This observation has led to the development of algorithms that operate on 
more than one time-level simultaneously; that is to say, on grids extending in space 
and in time, further called space-time grids. One such algorithm is the parallel 
time-stepping method ([33]). It is closely related to the class of windowed relax­
ation methods ([23]). The parallel time-stepping method is the obvious extension 
of any standard iterative technique to multiple time-levels: while the solution is 
being computed on the first time-level by applying the iterative method to a start­
ing approximation, the approximations to the solutions on subsequent time-levels 
are being updated by the same iterative method, or, possibly, by an other one. 
The overlap of computations on different time-levels enables the use of many pro­
cessors, especially when slowly convergent iterative solvers are used. With rapidly 
converging iterative solvers like multigrid, however, only few processors can be 
used effectively, and the method loses most of its advantages. A second method, 
multigrid waveform relaxation, originated by combining the multigrid idea with 
the waveform relaxation method, an iterative solver commonly used in electrical 
engineering practice for solving large nonlinear systems of ordinary differential 
equations ([19, 30, 27, 28, 29, 31, 17]). Parabolic multigrid is a method that ex­
tends the elliptic multigrid idea to the set of equations obtained after discretizing 
a parabolic problem in space and time ([10, 5]). Its time-parallel variant was re­
cently the subject of much further study ([1, 6, 13, 15, 14]). The latter two methods 
were analyzed and compared in [26]. Finally, a fourth method is the space-time 
multigrid method, which was developed only recently by addressing some of the 
convergence problems that arose within the time-parallel multigrid method ([16]). 

The latter three multigrid methods are presented in §2. They turn out to be 
closely related, as multigrid methods defined on grids extending in space and in 
time. Their theoretical convergence characteristics are studied in §3 by means of 
a two-grid Fourier mode analysis. We derive their parallel complexities in §4, and 
compare the results with the complexity of standard time-stepping, and that of 
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an 'optimal' direct solver. We end in §5 with some concluding remarks. 

2 Multigrid methods on space-time grids 

We shall concentrate on the problem of numerically computing the solution to a 
model problem, in case the d-dimensional heat equation, 

Ut - [).u = f(x, t) x E n = (O,I)d, 0 < t ::; T , 

subject to the usual initial and boundary conditions 

U(x,O) 

u(x, t) 

g(x) , x En, 
h(x, t), x E an , 0 < t ::; T . 

(1) 

(2) 

(3) 

For notational simplicity, we consider the one-dimensional problem, discretized 
in space using central differences on a regular grid with grid spacing [).x, and 
discretized in time with the backward Euler method, on a set of time-levels with 
constant time-increment [).t. This discretization leads to a large linear system of 
equations in the unknowns Ui,j with i = 1, ... , 1/ [).x-l and j = 1, ... , T / [).t, that 
approximate the PDE solution at the grid points (Xi, tj) with Xi = i . [).x and 
tj = j . [).t. The grid will be denoted further by nh, with h standing for the pair 
([).x, [).t) characterizing the size of the grid. The equations on nh arc of the form 

1 2 1 1 1 
- ([).x)2 Ui-l,j + (([).x)2 + [).t)Ui,j - ([).x)2 1Li+l,j - [).t Ui,j-l = f(:ri, tj), (4) 

or, with the parameter Ah defined as [).t/ [).x 2 , 

Note that parameter Ah can be considered as a measure of the degree of anisotropy 
of the discrete operator. In the case of a very large Ah, the set of equations is 
essentially decoupled in time, and corresponds to a set of (almost) independent 
discrete boundary value problems, one per time-level. In the case of very small Ah, 
the set of equations is (almost) decoupled in space, and corresponds to a set of 
first order linear recurrences, one per spatial grid point. 

The principal components of any multigrid method are the coarsening strat­
egy, the discretization on each grid level, and the smoothing and intergrid transfer 
operators. Each of the three algorithms discussed below uses the 'natural' dis­
cretization corresponding to (5) on each grid level. (Of course, the value of Ah may 
differ from one grid level to the next.) Hence, for a given fine grid, the three meth­
ods solve the same set of equations. They differ only in the choice of coarsening 
strategy and multigrid operators. 

The multigrid waveform relaxation method employs a semi-coarsening strat­
egy, with coarsening only in the spatial dimension. The standard smoother is a 
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zebra Gauss-Seidel method (i.e., red/black line-relaxation), with lines parallel to 
the time-axis. It can be shown that this smoother is robust w.r.t. Ah ([26]). Note 
that the time-line solver is particularly simple as it only involves the forward eval­
uation of first order recurrence relations. The intergrid transfer operators are the 
standard ones used in combination with semi-coarsening. In the sequel, we shall 
use the linear prolongation (I'H) and full weighting (Ifn formulae, with stencils 
whose non-zero values extend in the spatial dimension only, 

~ 1 ~ ~ ~ [ and If! 
2 0 0 0 

~[~ ~ ~l 
4 0 0 0 

(6) 

The method easily extends to higher dimensional problems, and PDEs different 
from our model problem (1). The method was first presented in [19] for linear 
problems, and in [30] for nonlinear ones. A large number of examples, illustrating 
typical multigrid convergence rates are given in [27, 28, 25]. Its application for 
solving time-periodic parabolic problems is analyzed in [29]. Its implementation on 
small-scale and medium-scale multiprocessors is discussed in the above references. 
Large-scale and massively parallel implementation are documented in [31] and in 
[17], respectively. 

The parabolic multigrid or time parallel multigrid method differs from the 
multigrid waveform relaxation method only in the choice of smoothing operator. It 
applies a standard spatial smoother replicated on each time-level. Non-smoothed 
old values are used whenever values at grid points on previous time-levels are 
needed. The red/black smoother, for example, consists of one point-wise relax­
ation step on all red grid points at all time-levels concurrently, followed by a 
similar operation on all black points. Note that colouring is only w.r.t. the spa­
tial dimension. Further inspection reveals an interesting relation to the waveform 
relaxation method (for the system of equations (5)). While the waveform method 
solves each system of equations in one time-line exactly, the parabolic multigrid 
method solves them approximately, by doing one Jacobi relaxation step. 

The parabolic multigrid method was described first in [10], and a theoret­
ical analysis for a one-dimensional model problem followed in [5]. The parallel 
implementation of the method, its application to the Navier-Stokes equations, and 
the use of different time-parallel smoothers is discussed in [1, 6, 13, 14, 21]. Its 
combination with extrapolation techniques is the subject of [15]. 

The most recent method studied in this paper is the space-time multigrid 
method. It is based on a semi-coarsening strategy, with coarsening in space or in 
time depending on the current value of Ah. If Ah is larger than a certain threshold 
value Acrit, coarsening is in the spatial dimension, and restriction and prolongation 
operators are the standard ones given in (6). If Ah is smaller than Acrih coarsening 
is in the time-dimension. In that case special intergrid operators are used, whose 
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TABLE 1. Averaged convergence factor of space-time multigrid V(2,1)-cycle on rectan­
gular grids for the one-dimensional model problem with backward Euler discretization 
(n s = l/~x, nt = T/~t, Ah = ~t/(~X)2). 

ns X nt 32 X 32 32 X 64 32 X 128 32 X 256 32 X 512 32 X 1024 
Ah = 1/64 0.023 0.031 0.048 0.061 0.074 0.086 
Ah = 1/4 0.049 0.077 0.11 0.15 0.14 0.14 
Ah = 1/2 0.081 0.13 0.14 0.13 0.13 0.13 

Ah = 1 0.095 0.11 0.12 0.13 0.13 0.12 
Ah = 2 0.092 0.10 0.10 0.097 0.09 0.082 
Ah = 4 0.083 0.091 0.093 0.087 0.081 0.081 

Ah = 64 0.020 0.019 0.021 0.022 0.023 0.023 

stencils are given by 

I'Ji : 1 ~ ~ ~ [ 
000 

and If! : ~[~ ~ ~l 
2 0 1 0 

(7) 

The method is further based on a point-wise red/black smoother, with standard 
colouring of the entire space-time grid. 

As explained in [16], by this choice of operators and smoother the space-time 
multigrid method approaches an exact solver in the limiting cases of Ah going to 
00 and Ah going to O. In [16], the method is also discussed in combination with 
different time-discretization methods (Crank-Nicolson and second order backward 
differentiation), and numerical results are provided for the two-dimensional model 
problem. Some numerical results of a computational experiment are presented in 
Table 1. They illustrate the very good convergence of the method, for different 
values of Ah and for different mesh sizes. In this table we concentrated on the 
most interesting case for practical purposes, where a fixed-size spatial problem is 
integrated over various large time intervals. 

3 Two-grid Fourier mode analysis 

In this section we shall analyze the two-grid variants of the three multigrid methods 
presented in the previous section. We consider the one-dimensional model problem, 
discretized with the backward Euler method on a space-time grid nh with (ns + 
1) X (nt + 1) grid points; i.e., ns = l/6.x and nt = T/6.t. The two-grid method 
makes use of an additional grid, nH , derived from nh by doubling the mesh size 
in the space dimension (H = (26.x, 6.t)) or the time dimension (H = (6.x, 26.t)) . 

By a two-grid cycle the error eo1d of an approximation to the solution on nh 

is transformed into a new error enew with enew = M H eo1d where M H is the , h' h 
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so-called two-grid iteration matrix. This matrix is given by 

Mf! = S~2 (h - I'liL]/ If! Lh) S~l , (8) 

where Sh is the smoothing operator on Oh; VI and V2 are the numbers of pre­
and post-smoothing iterations; h, I'li, If!, are the identity, prolongation, and 
restriction operators. LH and Lh are discretized differential operators on OH and 
0h. It can be shown that the entries of Mf! depend on Ah and AH only, and not 
of the particular values of the discretization parameters hand H. 

The properties of the two-grid iteration matrix are often determined, or ap­
proximately calculated, in the frequency domain, by a so-called exponential Fourier 
mode analysis ([2]). This analysis can be regarded as an analysis for special model 
problems, namely those with periodic boundary conditions. This analysis shows 
that multiplication with matrix M f! leaves certain linear spaces of exponential 
Fourier modes invariant. More precisely, it can be shown that Mf! is equivalent 
to a block-diagonal matrix, whose diagonal blocks are matrices of rank at most 4. 
The general expression for the diagonal blocks is called the Fourier mode symbol 
of the two-grid operator. This symbol is easily found to be 

Mf! (B) = S~2(B) (h - i'li(B) i]/(B) if! (B) ih(B) ) S~l (B) , (9) 

where Sh(B), if! (B), i'li(B), ih(B), and iH(B) denote the symbols of the smooth­
ing operator, restriction operator, prolongation operator, fine grid PDE operator, 
and coarse grid PDE operator. Precise formulae of these symbols and a further 
discussion can be found in [16, 26]. 

The convergence of the two-grid cycle is characterized by the Fourier mode 
convergence factor, 

p = max{II:(Mf!(B)): B E 8:s}. (10) 

where 11:(.) denotes the spectral radius operator, and where the set of frequencies 
8 s is given by 

8 s = {(Bs, Bt ) : Ba. = 27rka./na., ka. = -na./4, -na./4 + 1, ... , na./4 - 1}. (11) 

(We assumed that ns and nt are multiples of 4.) The value of p usually shows very 
good agreement with actual convergence factors obtained on Oh. Its calculation 
is straightforward, by numerically computing II:(Mf! (B))) and by optimizing this 
over the discrete set 8 g . We have calculated two-grid Fourier mode convergence 
factors for the multigrid waveform relaxation method, the parabolic multigrid 
method, and the space-time multigrid method. The results are graphically depicted 
as functions of the parameter Ah in Figure l. 

The waveform relaxation picture clearly illustrates the robustness of the 
method across the entire range of Ah values. The parabolic two-grid method per­
forms satisfactorily for large values of Ah, i.e., when the problems on each time-level 
are more or less decoupled. In that case parabolic multigrid is equivalent to a stan­
dard elliptic multigrid method for a problem extending in space only. The method 
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1.0 - WAVEFORM RELAXATION I-- 1.0 
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p 0.6 0.6 p 

0.4 0.4 

0.2 0.2 

0.0 0.0 
-8.0 -4.0 0.0 4.0 8.0 

l.0 SPACE-TIME MULTIGRID - - - -- l.0 
/ 

0.8 / 0.8 
/ 

0.6 
/ 

P / 0.6 p 
/ 

0.4 / 0.4 

0.2 / 
0.2 / 

0.0 0.0 
-8.0 -4.0 0.0 4.0 8.0 
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FIGURE 1. Two-grid Fourier mode convergence factor for backward Euler discretization 
(two-grid cycle with 2 pre- and 1 post-smoothing steps, ns = nt = 128). 
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fails, however, completely for small values of Ah. Finally, two curves are drawn in 
the space-time multigrid picture. The solid line corresponds to the space-coarsening 
strategy, while the dashed line corresponds to the time-coarsening strategy. The 
intersection of both curves determines the value of ACrit. As such for any Ah it 
follows that the p of the space-time two-grid method is always on the lower of the 
two curves. Hence, the method is robust for any Ah. 

4 Parallel complexity 

Parallel complexity is a theoretical measure of an algorithm based on the as­
sumption that an unlimited number of processors is available for its execution. It 
describes the asymptotic dependence of the parallel computation time of the algo­
rithm on the size of the input. Any communication requirements are disregarded. 

Consider the d-dimensional model problem; let ns denote the spatial side­
length of the space-time grid and nt the sidelength in the time direction. We shall 
derive the parallel complexities of the nested iteration variants of the multigrid 
methods described in §2. Standard multigrid arguments show these algorithms to 
achieve discretization accuracy, given that the convergence rate of a V-cycle is 
independent of the grid size, and a fixed number of V-cycles is used per grid level. 

The parallel complexity of a standard time-stepping method is given by 

(12) 

This is easily seen by observing that the nt time-steps are executed sequentially, 
and by noting that the parallel complexity of the modified nested iteration algo­
rithm on a grid with sidelength ns is given by O(log2(ns)), see, e.g., [20]. 

As derived in [17], the nested iteration multigrid waveform relaxation algo­
rithm with a fixed number of V-cycles per grid level has a complexity equal to 

(13) 

The complexity of evaluating the recurrence relations in the smoother is O(log( nt)), 
if a parallel cyclic reduction or recursive doubling method is used. This is at the 
same time the total complexity of the operations at a single grid level, as the 
other operations are O( 1 ) computations. Summing the total number of grid levels 
visited in the nested iteration method on a grid hierarchy with O( log(ns)) grid 
levels, we arrive at (13). 

The parabolic multigrid method is identical to the previous method, except for 
its smoother, which is a point-wise algorithm. The complexity of the latter is O( 1 ). 
This immediately leads to the following expression for the parallel complexity of 
the nested iteration parabolic multigrid algorithm: 

(14) 
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Finally, from [16] we recall the complexity of the nested iteration space-time 
multigrid algorithm, 

(15) 

The correctness of this formula is easily realized by considering the point-wise 
nature of all involved operators, and the fact that the total number of grid lev­
els is given by O(1og(ns ) + log(nt)). Note that the complexity of the method is 
O( log2 (n) ), where n is the total number of variables. This agrees with the classical 
formula for the parallel complexity of the multigrid method for elliptic problems. 

In [34] an information theoretic lower bound is derived for the cost of solving 
linear PDEs. By considering how many data values are required to calculate a 
single solution value, it is shown that the parallel complexity must a least grow as 
O(log(n)), independent of the algorithm used. For problem (1) it is easy to come 
up with an algorithm that achieves this optimal complexity, see, e.g., [22, §3.3.3] 
and [12, §5.6.2]. 

Spatial discretization and incorporation of the boundary conditions, trans­
forms (1) into a system of ordinary differential equations (ODEs), 

u - LU = F(t) , U(O) = Uo . (16) 

L is the discrete d-dimensional Laplace operator. Let Q be an orthogonal matrix 
that diagonalizes L, i.e., QT LQ = A, with A = diag().l, ).2, ... ). (Its columns are 
the eigenvectors of L.) For spatial discretization with standard finite differences, 
matrices Q and A are well-known in terms of sine-functions. Setting U(t) = QU(t), 
F(t) = QF(t) and Uo = QUo, system (16) can be rewritten as a system of ODEs 
whose equations are decoupled, 

(17) 

The following three-step algorithm results. Step 1: Compute Fj = QT F(tj) for 
every time level tj, and compute Uo = QTUo. Step 2: Discretize and solve system 
(17) for the values Uj ~ QTU(tj), using the Pj and Uo values. Step 3: Compute 
Uj = QUj for every time level tj. 

Steps 1 and 3 require O( log(ns) ) parallel steps, since the computations on 
each time-level can proceed concurrently, and since multiplication by Q or QT can 
be performed by means of the d-dimensional Fast Fourier Transform (FFT). Step 
2 requires O( log(nt) ) parallel computations, when parallel cyclic reduction (CR) 
is used to calculate the linear recurrences that arise in the ODE solver. Hence, the 
parallel complexity of the FFT fCR algorithm is given by 

(18) 

5 Concluding remarks 

We have discussed various ways of extending standard time-stepping multigrid to 
methods that solve on several time-steps simultaneously. The potential for par-
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allelism for this class of problems is thereby greatly increased. We considered 
multigrid waveform relaxation, space-time multigrid and the parabolic multigrid 
method. 

Two-grid Fourier analysis shows both principal methods to be robust w.r.t. the 
space-time grid aspect ratio Ah, both achieving a fast two-grid convergence rate. 
The parabolic multigrid method is, however, limited to the large Ah case. The lat­
ter scheme has a parallel complexity which is independent of the number of time 
levels nt, whereas that of the former two methods is polylogarithmic in the size of 
the time dimension. All three methods compare favourably in this respect to the 
standard time-stepping scheme, whose parallel complexity remains linear in nt, a 
severe restriction on the achievable parallelism. 

The direct method outlined in §4 has a lower parallel complexity than any 
of the multigrid methods described in §2. Its application, however, is restricted 
to simple linear problems on rectangular grids. (See [22, p.66] for conditions on 
the applicability of an algorithm similar to FFT feR.) Waveform relaxation and 
parabolic multigrid have been shown to be applicable to a much wider class of linear 
and nonlinear problems. Moreover, they can be extended immediately to non­
rectangular domains. Although current experience with the space-time multigrid 
method is limited to the model problem, we expect it to be applicable also to more 
difficult problems. 

Further work will include the implementation of each method on a massively 
parallel computer and the investigation of non-linear problems. In addition we 
intend to gain experience with the methods on MIMD machines and demonstrate 
the improvements in efficiency obtainable when time-parallelism is introduced into 
an otherwise standard multigrid scheme. 
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Multilevel Solution of Integral 
and Integro-differential Equations 
in Contact Mechanics and 
Lubrication 
C.H. Venner1 and A.A. Lubrecht2 

1 Introduction 

Since their introduction multilevel techniques have influenced many fields in sci­
ence. Wherever large scale computations are needed, e.g. fundamental research, 
applied research and design and development of technical equipment, they have 
reduced computational cost and/or created the ability to solve increasingly com­
plex and extensive problems. In this paper we present an example from the field of 
tribology, i.e. the science and technology of interacting surfaces in relative motion, 
or, to use a more popular definition, the science of friction, lubrication and wear. 
In particular we will describe the essential steps leading to an efficient multilevel 
solver for the simulation of lubricated concentrated contacts. However, the tech­
niques described in this paper are neither restricted to this problem, nor are they 
restricted to the field of contact mechanics and lubrication. In fact, they can be 
of interest for any problem described by Fredholm integral and integro-differential 
equations. 

This paper is organized in the following way. First section 2 introduces lubri­
cated concentrated contacts and provides some background of the research. Sub­
sequently, section 3 presents the equations describing the two characteristic modes 
of operation of such a contact generally considered in theoretical studies. In sec­
tion 4 the discrete equations are given for both cases. In section 5 the multilevel 
solution of the equations is addressed. First it is explained how to obtain stable 
relaxation schemes that efficiently smooth the error. Subsequently several aspects 
related to the coarse grid correction cycle are discussed. With this coarse grid cor­
rection cycle, even for extreme operating conditions, a solution can be obtained 
with an error smaller than the discretization error, employing a 2-FMG algorithm. 

1 University of Twente, Enschede, The Netherlands 
2 University of Twente, Enschede, The Netherlands & SKF Engineering Research Cen­

tre B.V., Nieuwegein, the Netherlands 
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However, when taking a close look at the algorithm it becomes obvious that the 
efficiency, although greatly improved compared to single grid solvers, is still far 
removed from the O(h-d ) (d being the dimension of the domain) efficiency usu­
ally obtained for elliptic problems. This is due to a multi-summation (Fredholm 
integral) appearing in the equations, the evaluation of which requires O(h- 2d ) 

operations. In section 6 a multilevel algorithm "Multilevel Multi-Integration," is 
explained that enables an evaluation in O(h-d ) operations while maintaining ac­
curacy, as is demonstrated. Merging this algorithm with the techniques explained 
in section 5 yields a multilevel solver with overall complexity O(h-d ). The paper 
is concluded with a characteristic calculational result for a concentrated contact 
and an outline of directions for future research. 

2 Concentrated Contacts 

Lubricated concentrated contacts are common in technical equipment and every­
day life. An example is the contact between the rolling element (ball) and the 
inner or outer raceway in a rolling element (ball) bearing. In general these con­
tacts are lubricated with oil in order to separate the opposing surfaces by a thin 
oil film, transferring the load from one surface to the other. In that case, friction 
will be small (minimum power-loss) and wear of the surfaces will be nearly absent. 
The shape and the thickness of this lubricant film generally depend on the surface 
velocities, the contact load, and the geometry of the surfaces. In the case of con­
centrated contacts, two additional effects have to be considered. The pressure in 
these contacts can range up to 2.0 GPa, and consequently both the elastic defor­
mation of the surfaces (even for steel components) and the pressure-dependence 
of lubricant properties, e.g. the viscosity, must be included in the analysis. 

The purpose of a numerical simulation of these contacts is threefold. Firstly 
to reveal the mechanisms determining the film formation and the pressure in the 
contact, both globally, (on the scale of the entire contact) as well as locally, i.e. what 
is the effect of particular local surface features, e.g. surface roughness. Secondly, 
for design purposes, to predict the thickness and shape of the lubricant film given 
the operating conditions. Finally, even an ideally lubricated contact eventually 
breaks down due to (sub)surface fatigue, i.e. due to the stresses in the material 
caused by the pressure at the surface. To obtain optimal service life, insight into 
the mechanisms initiating this failure is essential. 

Figure 1 shows the model of a concentrated contact generally used in theoret­
ical studies: two elastic bodies of paraboloidal shape in relative motion subjected 
to a certain contact load, and the equivalent reduced configuration, i.e. the contact 
between a single paraboloid and a flat surface. Displayed in figure 1 is a so-called 
"point contact" . A special case often studied separately is the "line contact" which 
is the simplification to infinitely wide bodies (R;'2 = R;'2 = 00, and F is replaced 
by a load per unit width). 
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FIGURE 1. The EHL point contact and the reduced geometry used in the theoretical 
analysis; RXi = reduced radius of curvature in Xi direction: 1/ RXi = 1/ RL + 1/ R;i. h = 
film thickness 

In theoretical studies two extreme modes of operation are distinguished: "dry 
contact" and "fully lubricated contact". In the first case the bodies are simply 
pressed together by the given load which causes them to deform elastically yielding 
a specific pressure distribution at the surface and stresses in the material. In the 
second case they are fully separated by a thin lubricant film and the pressure on 
the surfaces, (and the stresses in the material) is not only determined by elastic 
effects but also by the flow of lubricant through the gap. Of these problems, the 
lubricated contact is the more complex to solve numerically and, to understand 
some of the problems involved, it is advantageous to study the dry contact problem 
as a prelude. This approach is followed throughout this paper. However, the dry 
contact is also of interest in its own right, because, due to the very thin film 
in practical contacts, it already allows the prediction of contact stresses and the 
associated subsurface stress field to a good approximation. 

3 Equations 

In order to reduce the number of parameters, it is common practice to introduce 
dimensionless variables. This also applies to the equations presented here. The 
dimensionless variables used are based on the Hertzian theory of elasticity [4, 7, 5] 
and are denoted by uppercase characters, e.g. Xl, H. Their exact definition is not 
essential to the present paper and can be found in Lubrecht [8] and Venner [13]. 
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3.1 DRY CONTACT 

Let X E n <:;; ]Rd, (d=1,2) then the (dimensionless) gap between the two surfaces, 
can be given as: 

H(X) = Ho + G(X) + W(X) (1) 

where G(X) is a known function, containing the un deformed surface geometry e.g. 
the paraboloids in the case of perfectly smooth surfaces, Ho is a constant discussed 
below, and W(X) denotes the elastic deformation. Approximating both elements 
by elastic half-spaces, e.g. see Johnson [5], and Love [7]: 

W(X) = L K(X, Y)P(Y) dY, (2) 

The kernel K(X, Y) depends only on the dimension d of the problem and the 
distance IX - YI. For example for d = 2; K = l/IX - YI. This multi-integral 
plays an important role with respect to numerical solution of the problem as 
it determines the type of relaxation, see section 5.1. Furthermore, if no special 
measures are taken, the evaluation of its discrete counterpart will be very time 
consuming. This aspect is treated in detail in section 6. 

The (integration) constant Ho is determined by a socalled global constraint: 

L P(X) dX = c (3) 

where c is a constant depending only on the dimension d of the domain n. In 
physical terms (3) imposes the force balance between the integral over the pressure 
and the externally applied contact load. 

In the case of a dry contact the two elements are simply pressed together by 
the external load and, in its simplest form, it can now be described as: solve P(X), 
and the integration constant Ho from: 

H(X) = 0 X E n P = 0 on 8n (4) 

and the global constraint (3). However, this formulation is not suited for numerical 
solution, as the domain n is not known a priori. Furthermore, several physical 
constraints must be included, i.e. the surfaces cannot penetrate each other and 
the pressure cannot drop below the ambient pressure (P = 0). To incorporate 
these conditions and deal with the unkown domain, equation (4) is extended into 
the domain n' (n en') and written as a complementarity equation. As a result, 
the problem to be solved is: for a given geometry G(X), and the kernel as given 
above, determine P(X), i.e. solve the Fredholm integral equation of the first kind 
(5), subject to P(X) ::::: 0 and the global constraint (3). 

Ho + G(X) + 1 K(X, Y)P(Y) dY = 0 X E n' P = 0 on 8n' (5) 
n' 
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3.2 LUBRICATED CONTACT 

In the dry contact problem the pressure in the contact is determined by elasticity 
only. This is no longer true if lubrication is taken into account in which case 
the lubricant flow in the gap also plays an important role. The lubricated contact 
problem is described by two equations. The first equation is the so-called Reynolds 
equation [12]. This equation is the basic equation of lubrication and it relates the 
pressure in the lubricant to the geometry of the domain and the surface velocities: 

(6) 

For details the reader is referred to [6, 8, 12, 13] >. is a vector containing the 
dimensionless surface velocities A!, and A2. Furthermore, fj is the dimensionless 
lubricant viscosity (relative to the viscosity at ambient pressure) and p denotes the 
dimensionless lubricant density (also relative to the density at ambient pressure). 
Both viscosity and density depend on the pressure and are obtained from empirical 
equations. For details the reader is referred to [8, 13]. The dependance of the 
density on the pressure is relatively weak, however, the dependance of the viscosity 
on the pressure is very strong, i.e. it increases roughly exponentially with increasing 
pressure. 

For the description of the essential elements of the numerical solver we restrict 
ourselves to the steady state situation with the velocities of both surfaces aligned 
in the Xl direction. Furthermore, usually liquid lubricants are applied, i.e. the 
pressure cannot drop below the vapour pressure. As a result the problem must be 
solved as a complementarity problem and the domain 0 is not known. The problem 
is extended into a domain 0' adding the equation P 2: o. On the boundary of the 
domain (0') P = 0 is assumed (ambient pressure defined as P = 0). As a result 
the equation for the pressure reads: 

a(pH) 
v·(nlP)---=O aXI 

with P 2: 0 and E is defined by: 

The second equation is the equation for the film thickness, i.e. equation (1): 

(7) 

H(X) = Ho + G(X) + 10 K(X, Y)P(Y) dY, X E 0' (8) 

with K = In IX - YI if d = 1 and K = 1/IX - YI if d = 2. Finally, the global 
condition should be satisfied: 

( P(X) dX = c 
J~" 

(9) 
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Summarizing, given a specific contact case (defined by G(X), A, and two parame­
ters appearing in the viscosity pressure equation), the lubricated contact problem 
consists of solving P(X) and H(X) from (7), (8) and (9). 

With respect to the numerical solution of this system of equations it is im­
portant to note that, as a result of the roughly exponential viscosity pressure de­
pendance, E in (7) for realistic conditions varies many orders of magnitude over the 
domain. In the outer region it is very large, due to large H and small fj whereas in 
the central region it almost vanishes due to the large fj and small H. Consequently, 
in the outer region the problem behaves as a partial differential problem whereas 
in the central region the integral aspects dominate. Furthermore, if d = 2 there 
is an additional complication. With decreasing E, equation (7) becomes strongly 
"anisotropic", as the coupling in X 2 direction weakens and eventually nearly van­
ishes. In the limit only the weak indirect coupling via the multi-integral remains. 
This behaviour has an important consequence for the relaxation to be used in a 
multilevel solver. 

4 Discretization 

Let n' be given by {X E JRIIXa ::::: X ::::: X b} if d = 1 and by {X = (XI,X2) E 
JR2 1Xa ::::: Xl ::::: Xb 1\ -Ya ::::: X 2 ::::: Ya} if d = 2. This domain is covered with a 
uniform grid with mesh size h. Let i denote the gridpoint i = (iI, ... id), then the 
elastic deformation integral can discretized as: 

Wh(Xf)=Wih~f r K(Xf,y)ph(Y)dY=hd"LKtJPjh, (10) 
io j 

where ph is a piecewise polynomial function of degree 28 - 1 and ph(Yl) = Pjh, 
the coefficients KtJ are calculated such that equation (10) holds. The factor hd 

is introduced to ensure that both K and P are of comparable size on grids with 
different mesh sizes. The discretization error made in this process will be of the 
order h2s. For all results that will be presented in this paper 8 = 1. 

4.1 DRY CONTACT 

Using (10) equation (5) at any gridpoint i is discretized as: 

Ho + G(Xf) + Wih = 0 Xi E n' Pih = 0 On an' (11) 

subject to Pih ;::: 0 and the global condition reads: 

(12) 
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4.2 LUBRICATED CONTACT 

U sing a second order accurate central discretization for the first term of equa­
tion (7) and a first order upstream discretization of the second term leads to the 
following equation to be satisfied at each non boundary site i, (Xa + i1h, -Ya + i2h) 

(d = 2), subject to the cavitation condition: pt ~ o. 

h-2(E(il-1/2,i2)(P(~,-1,i2) - P(~"i2)) + E(i1+1/2,i2)(P(~dl,i2) - P(~"i2)) 
+E(i"i2-1/2)(P(~"i2-1) - P(~"i2)) + E(i"i2+1/2)(P(~"i2+1) - P(~"i2))) 

- h-l(p(i"i2)H~"i2) - P(il-1,i2)H~'-1,i2)) = 0 (13) 

where E(i,±1/2,i2) and E(i1,i2±1/2) denote the value of E at the intermediate locations 
and are approximated using for example: 

with: 

p( P(~, ,i2)) (H(~, ,i 2 ) )3 

E(i" i2) = ~(ph.),\ 
Ti (",'2) 

The discretized film thickness equation reads: 

H = Ho + G(Xh) + hd '" Khh ph , ,~ ',] ] (14) 
j 

and, as for the dry contact problem, the discretized global condition reads: 

(15) 

5 Multilevel Solution 

In this section emphasis is on solving the discrete equations employing the usual 
multigrid processes, i.e. relaxation to smooth the error, a coarse grid correction 
cycle (using the F.A.S. because of the non-linearity), to accelerate convergence, 
all embedded in the well known FMG structure. First the subject of relaxation is 
addressed, where, again the dry contact problem is used as a prelude to the more 
involved lubricated contact problem. Subsequently different aspects characteris­
tic for the present problems and essential for an efficient coarse grid correction 
cycle are discussed. The techniques explained here (added to the usual multigrid 
techniques) result in solution of the problems to discretization error in a 2-FMG 
algorithm, also for extreme conditions, where generally W cycles are needed to 
obtain optimal cycle convergence. 
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5.1 RELAXATION FOR THE DRY CONTACT 

The objective is to solve the Fredholm integral equation (11). Let ph denote an 
approximation to the solution and Wh the associated integrals. A straightforward 
approach to improve this approximation is to scan the entire grid, at each location 
applying changes to ph to satisfy (11) (with Wh). After all points have been visited 
the new approximation to ph is used to update the discrete integrals. 

Such a one point relaxation, either as a collective displacement scheme (Ja­
cobi) or as a simultaneous displacement scheme (Gauss-Seidel) is generally an 
effective error smoother for partial differential equations. However, it may be less 
suitable for integral equations. For example, when applied to the present equa­
tions it is unstable because of too large an accumulation of changes of ph in the 
integrals during one relaxation, (even when integrals are updated while relaxing) 
resulting in amplification of smooth error components. For the type of kernels ap­
pearing here, a local behaviour of the relaxation (and stability) can be obtained 
by means of distributive relaxation. At each point changes to the current solution 
are applied also at a number of neighbouring points, with certain pre-set distri­
bution weights such that the changed values satisfy a weighted sum (i.e. some 
pre-set linear combination) of several (sometimes just one) neighbouring discrete 
equations. The relaxation is called first order distributive if it will not change the 
sum "L, pr More generally a distribution order r leaves "L, Q(xf )Pih unchanged 
for any polynomial Q of degree less than r. For a 2 dimensional problem, on a 
uniform grid, r = 2 distributive relaxation has the following stencil of changes: 

1 [0 -8(· .) -1 4 t1,t2 

o 
-1 0 1 4 -1 
-1 0 

(16) 

For the present kernels, the influence of such distributed changes applied at point 
i on the discrete integrals at points j decays fast with increasing Ii - j I, i.e. pro­
portional to the second derivative (general rth derivative) ofthe kernel. Hence, the 
effect of changes at a given point is limited only to discrete integrals at locations 
in its immediate vicinity and the relaxation is effectively local. This can be shown 
with a local mode analysis. Disregarding the influence of the complementarity con­
dition and the global condition, such an analysis for the present problem (s = 1) 
yields an asymptotic smoothing rate (jl) of 0.40 for d = 1, and 0.45 for d = 2 relax­
ing (11) (for P) as a simultaneous displacement scheme (see Venner [13]), i.e. (re-) 
evaluating the multi-summation only after all sites i have been visited. Smaller 
values can be obtained if the integrals are locally updated. In that case the result 
depends on the order in which the points are visited, e.g. lexicographic, red-black, 
etc. This option was discarded from an integral evaluation point of view, as local 
updates are computationally expensive whereas evaluating them all at once can be 
done fast as will be explained in section 6. Furthermore, jl = 0.45 already enables 
solution to the discretization error in a 1-FMG or 2-FMG algorithm, with just a 
few pre/post relaxations, which is satisfactory from a practical point of view. 
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5.2 RELAXATION FOR THE LUBRICATED CONTACT 

In designing a relaxation for the problem we focus on solving ph from the discrete 
approximation to (7), (i.e. equation (13) if d = 2), alternated with recomputing or 
updating Hh using (14). This particular choice is again induced by the possibility 
to evaluate all integrals at once in a fast manner. As mentioned in section 3.2, the 
main problem when numerically solving the lubricated contact problem is that f 

in (7) varies many orders of magnitude over the domain. Obviously for a multilevel 
solver it is essential that the relaxation scheme effectively smooths the error over 
the entire domain, i.e. for both small and large f. As a first step in designing such 
a relaxation process, a linearized model, characteristic for the local behaviour of 
the full problem, was studied: 

8H 
ffl.P- - =0 

8Xl 
(17) 

with H given by (8) with a fixed Ho, f a given constant and P = 0 on the 
boundary. With the usual 5 point discretization for fl.P if d = 2, or 3-point if d = 1, 
a first order upstream discretization for 8H/8Xl , and using (14), a local mode 
analysis can be performed. This analysis shows that the smoothing rate of a given 
relaxation will depend on f/h2 . Obviously for large values of f/h2 this analysis 
yields asymptotic smoothing rates as obtained for the discrete Poisson problem 
(see ([1])), e.g. jj = 0.5 (d = 2) and jj = 1/V5, (d = 1) for lexicographic Gauss­
Seidel relaxation. However, for small values of f/h 2 such a relaxation becomes 
unstable. This instability is caused by the accumulation of changes in the integrals, 
which, via the film thickness, affect equation (17). As in the case of the dry contact 
problem, this accumulation can be limited by distributive relaxation. In fact, from 
equation (17), one might expect smoothing rates for the limiting case f = 0, to 
be as good as for the dry contact problem, already with a distribution that is one 
order lower. This is indeed true for d = 1 where a first order distributive relaxation 
has jj = 0.40. 

However, such a distributive relaxation has rather poor smoothing behaviour 
(when compared to the schemes mentioned above) for large f/h 2 . Therefore, the 
key to an efficient multilevel solver for (17) is a combination, i.e. to apply a different 
relaxation depending on the value of f/h 2 on the grid. Strictly speaking there is an 
optimal value of the switch limit between the two relaxations. However, as we are 
not after asymptotic convergence already a crude criterion serves well. The final 
step to an efficient relaxation for the full problem is then to realize that relaxation 
is a local process. Therefore, in the complete problem, the local ratio of f/h2 can 
be used as a criterion for the type of changes to be applied. For example, using 
simple one point Gauss-Seidel changes in regions of large f/h 2 , and Jacobi first 
order distributive changes in regions of small f/h2 , yields a stable and efficient 
relaxation for the one-dimensional problem. A detailed explanation can be found 
in [13]. 

The above reasoning also applies to the case d = 2. A simple Gauss-Seidel 



120 C.H. Venner and A.A. Lubrecht 

relaxation either pointwise or line-wise is an effective smoother for large E / h 2 , 

whereas for small E/h2 distributed relaxation is needed. However, there is the ad­
ditional complication of the vanishing coupling in X 2 direction. Therefore, for small 
E/h2 , a distributive line relaxation should be used, i.e. for each line of constant 
X2 solve all changes (to be applied distributively) simultaneously from equation 
(17) and (14). Subsequently, an effective smoother for the problem regardless of 
E is again best obtained by a combination of relaxations, e.g. by applying either 
simple Gauss-Seidel line relaxation or distributive line relaxation depending on 
the value of E/h2 . This approach can then be extended to a hybrid line relaxation 
scheme for the full problem, i.e. in regions of large E/h2 changes as prescribed by 
Gauss-Seidel line relaxation are solved and in regions of small E/h2 changes as 
prescribed by the distributive line relaxation are solved. For further details and 
analysis the reader is referred to [13]. 

5.3 GLOBAL CONDITION 

Equation (3) links the integral over P to the global constant Ho. This relation is 
treated similarly to global equations in multilevel solvers of differential equations, 
see [1]. The residual of the discrete global condition, i.e. (12), is calculated on 
every level, transferred to coarser grids, and the equation is only treated (relaxed) 
on the coarsest grid. As equation (3) does not directly link the Ho to the pressure 
integral, (the constant does not appear in it) equation (12) is relaxed by changing 
Ho in the direction driving the residual of this equation to zero. 

5.4 COMPLEMENTARITY CONDITION 

The complementarity condition (P ;::: 0) introduces a free boundary. As a result 
distributed changes may be computed which after application result in a viola­
tion of the complementarity condition. They are then forced to comply, thereby 
introducing long range disturbances, since the distribution is altered. For 'simple' 
boundaries between the domains fl and fl' the convergence is not adversely af­
fected. When the boundary becomes complex, convergence can be degraded. In a 
similar way the boundary of fl' requires special attention. The simplest option is 
to not apply the neighbouring changes for i near the boundary. Alternatively one 
can modify the distribution. The complementarity condition also requires special 
attention in the coarse grid correction cycle. The transfer of residuals to coarser 
grids should be done carefully, i.e. it should be ensured that the residual of the 
equation valid at the given location, i.e. (11) or Pi = 0, is transferred. Further­
more, in the vicinity of the free boundary injection must be used to avoid mixing 
information from cavitated and non cavitated points in one coarse grid right hand 
side. For a detailed discussion on the multigrid treatment of a free boundary the 
reader is referred to Brandt and Cryer [2] 
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5.5 FILM THICKNESS EQUATION 

A special point of attention in the coarse grid correction cycle for the lubricated 
contact problem is the treatment of equation (14). Given an approximation to 
ph, this equation can be solved exactly at any time. Hence, if the integrals are 
recalculated or updated after relaxing for ph, equation (14) will have zero residuals 
at the time of transfer to the coarse grid. However, this by no means implies a zero 
coarse grid right hand side. To deal with the non linearity the Full Approximation 
Scheme is used which naturally must apply to all equations, i.e. also to equation 
(14). Further details regarding the treatment of this equation can be found in 
[8, 13J. 

6 Multilevel Multi-integration 

Implementing the techniques explained in the previous section in a FMG algorithm 
yields stable solvers that are indeed fast compared to single grid solvers. However, 
their efficiency is still far removed from the usual O(h-d ) efficiency obtained for 
simple elliptic problems as the O(h-2d ) operations needed for the evaluation of 
the discretized multi-integral, equation (14) will determine the computing time. In 
this section we briefly explain how the O(h-d ) can be restored and describe "mul­
tilevel multi-integration", a fast algorithm for evaluation of the multi-integrals. An 
extensive treatment of the subject can be found in [3J. 

The time consuming nature of numerical evaluation (solution) of integral 
equations as (2) has long been recognized, and traditionally far field assumptions 
have been applied to speed up computation in parts of the domain 0' where the 
kernel K is relatively small (thus the name: far field). Here, however, we will make 
use of the smoothness properties of these kernels, thereby replacing the values 
of K in some points by interpolations in order to reduce the complexity. When 
the kernel is sufficiently smooth the work can be reduced to O(h-d ) operations, 
using integration (summation) on coarser grids. For potential-type kernels, which 
exhibit a non-smooth (singular) behaviour for X = Y, the complexity can be 
reduced to O( h -d log( h -d)) operations, given the requirement that the additional 
error made in this process should be smaller than the error made in discretizing 
the equation (2). 

6.1 DISCRETIZATION 

Recalling the discretized integral: 

Wh(Xf) = wt ~f 1 K(Xf, y)ph(y) dY = hd L K~J Pjh, (18) 
n j 

For convenience we will introduce only one coarser grid, with mesh size H = 2h 
and N ~ n/2d points; the indices on this coarse grid will be denoted by uppercase 
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characters. The two grids will be arranged such that XfI = X f. Furthermore, 
it is necessary to define transfer operators between the two grids, such as the 
coarse-to-fine interpolation operator 1I'H. The index on which such an operator 
works is denoted by a dot and the new index appears after the square bracket: 
KtJ = [1I'HKt~k In later sections we will use more than two grids and it will be 
convenient to refer to them as levels, starting with the coarsest level which will be 
called level 1. 

6.2 SMOOTH KERNEL COARSE GRID INTEGRATION 

In this section, the fine grid integrals are approximated by coarse grid integrals in 
order to decrease the computational work involved in performing the integration. 
We will require that the error made in this coarse grid integration process is 
smaller than the fine grid discretization error. As a first step we will approximate 
the values of Wih where the point with index i also belongs to the coarse grid 
(i = 21). Whenever the kernel K(X, Y) is smooth with respect to the variable Y, 
we can approximate K by K: 

Khh = [IIHh KhH]J' 
~,J '1.,. (19) 

with KfIJ given by KfIJ = Kf~J' hence equation (10) can be approximated by: , " 

w.h C:o:' Wh ~f hd ", Khh p~ = hd "'[lIh KhH].ph 
Z Z 6 Z,J J 6 Hz,. J J 

j j 

= hd 2: KfIJ[(ll'Hfphl J = Hd 2: KfIJp!/ (20) 
.J .J 

On the coarse grid, some of the values of K are replaced by interpolations. This is 
implemented by letting the adjoint interpolation operator work on ph in defining 
the coarse grid function pH: 

(21) 

where (1I'H f is the adjoint operator of 1l'H and p~J C:o:' p!/ when ph is a smooth 
function. 

As a second step the values of the integrals in the fine grid points that do 
not belong to the coarse grid (i = 2I + 1) are calculated by interpolation from the 
fine grid points (i = 21) (equation (20)). Again, this can be performed whenever 
K(X, Y) is also smooth with respect to X. 

where 
(22) 

W H <!!:.f w:-h _ Hd '" KHH pH 
I - 2I - 6 I,J J (23) 

J 

and therefore Kf,!/ = KfF,2J· 
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The problem of calculating equation (10) has thus been reduced to a simi­
lar problem (23) on a coarser grid. Since the number of points on this grid will 
be N ~ n/2d, the total work of the multi-summation (23) relative to the fine 
grid work will be much smaller. This process of coarsening is then repeated, using 
even coarser grids, until a grid with N' = O( y'n) points is reached. On this grid 
the integration (summation) is actually performed, since further coarsening would 
not reduce the overall complexity, because the work involved, for instance, in the 
fine-to-coarse grid transfer, is already of the order of n operations. Note that the 
number of levels required to reach a grid with N' = O( y'n) is inversely propor­
tional to the dimension d. 

6.3 NON-SMOOTH KERNEL COARSE GRID INTEGRATION 

Until now, the kernel K was assumed to be sufficiently smooth over the entire 
domain n; for a more quantitative description of the smoothness required, the 
reader is referred to [3]. A number of kernels of practical interest, however, does 
not fulfil this requirement; for instance, the potential-type kernels of interest in the 
dry contact problem, K(X, Y) = In IX - YI and K(X, Y) = IX - YI-1 are non­
smooth (singular) in the neighbourhood of X = Y. Fortunately, their smoothness 
increases rapidly with increasing distance IX - YI. Since the kernel is smooth in 
a large portion of the domain we will approach this problem in the same way 
as outlined above. In order to keep the additional error, made in the coarse grid 
integration process, below the required level we will do some extra (correction) 
work in the neighbourhood of the singularity. We will start by deriving an exact 
expression that will replace equation (20) for the case that the fine grid point i 
belongs also to the coarse grid (i = 21). 

(24) 
j 

In this derivation equations (19), (20) and (23) have been used. 
Now it can be sh~wn that the correction term (KtJ - ktJ) ----> 0 as Ii - jl ----> 00. 

Remember that K is obtained by interpolation from K itself and that K becomes 
smoother with increasing Ii - jl. To be more precise: 

(Khh _ k':'h) = {O for i = 21, j = 2J; 
',J ',J O(h2pK(2p)(~)) fori=21,j=2J+1. (25) 

where 2p is the order of interpolation used (only even orders are considered here) 
to obtain k (equation (19)) and K(2p)(~) is the 2p'th derivative of K at some 
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intermediate point. Thus, whenever this derivative of K becomes small, the cor­
rection term will become small and can be neglected. Clearly this is no longer true 
for i ~ j in the case of the singular smooth kernels mentioned above and thus we 
will have to carry out the corrections in a neighbourhood of i = j (Ii - it ::; m or 
i - m ::; j ::; i + m if d = 1). The precise shape of this neighbourhood in higher 
dimensions is discussed in [3]. Equation (24) can therefore be simplified to: 

w!t ~ WH + hd " (Khh _ khh)p,! 
t I ~ .,] ',]] (26) 

Jj-il:'O:m 

If point i is not in the coarse grid (i = 21 + 1), another coarse grid approximation 
k to K is defined: 

I l II k = l I k = l - 1 I k = l - 2 I k = l - 3 I k = l - 4 I k = l - 5 I 
2 2.3 10 -1 2.3 10 "1 - - - -

1.1 10-1 1.0 10+0 - - - -

3 7.710 -2 7.610-2 7.610-2 - - -

1.4 10+0 2.6 10+0 *2.2 10+0 - - -

4 1.5 10 -:l 1.5 1O-:l 1.5 10 -:l 1.5 1O-:l - -

1.9 10+1 9.9 10+0 6.3 10+0 6.010+0 - -

5 "-' 4 10-::1 4.610 -::I 4.510-::1 4.4 10 -::I 4.710 -::I -
"-' 3 10+2 5.710+1 2.110+1 *1.8 10+1 1.7 10+1 -

6 "-' 110 -::I 1.3 10 -::I 1.0 10 -::I 9.5 10 -4 1.6 10 -::I 

"-' 5 10+3 1.0 10+2 6.7 10+1 6.4 10+1 6.3 10+1 

7 "-' 3 10-4 4.0 10-4 3.4 10-4 3.810-4 

,,-,810+4 2.810+2 *2.5 10+2 2.5 10+2 

Table 1: Error and computing time (sec) in multi-integral on level l, while per­
forming the multi-summation on level k. 
Two-dimensional problem, s=1, K = l/tX - YI, employing sixth order transfers 
(see [3, 13]). k = l is direct summation, * denotes summation level with .;n points. 

(27) 

where kfjh = K~;'". In terms of this new kernel we can derive an expression 
similar to equation (24) for the integrals in points with index i = 2I + 1. 

j j j 

= hd "[IIh KHh]iPh + hd "(Khh _ khh)ph 
~ H ",]] ~ .,] .,]] 

j j 

~ [IIh W H]" + hd "(Khl~ _ khh)ph 
H ". ~ ',J .,] J 

(28) 
j 

Far from the singularity the correction terms become small and are neglected. 
Equation (28) then reduces to: 
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ph 

FIGURE 2. Contour plots of pressure and film thickness in an EHL point contact. 

Wh '" [lIh WH] . + hd ~ (Khh _ khh)ph 
t - H . t 6 t ,) t,)) (29) 

Jj-i l:<:;m 

If K(X, Y) has similar smoothness properties in X and Y, and identical inter­
polation operators are used in equations (19) and (27) , the correction term in 
equation (28) is similar to (25), but since the interpolation is carried out with 
respect to the i index, it will be non-zero for all j. 

('</j,i = 2I + 1) (30) 

This will result in larger errors (approximately three times as large) in the points 
i = 21 + 1, as compared to the points i = 21 (a factor of two comes from equa­
tions (29) and (30) , a factor of one comes from the approximation in equation (28)). 
In [3] the optimal values of m and 2p are derived in order to minimize the total 
work. It is shown that for the potential-type kernels mentioned above, a total work 
proportional to h-d log h- d can be obtained, as can be seem from table 1, taken 
from [3]. 

7 Results 

The multilevel evaluation algorithm explained in section 6, can be straightfor­
wardly merged with the techniques explained in section 5, yielding multilevel 
solvers for the problems considered here with complexity O(h- d log h-d ). Note 
that this is effectively the optimal O(h-d ) complexity, as log(h- d ) increases only 
slowly with decreasing mesh size. These solvers have subsequently been applied 
to a wide variety of contact situations. For detailed engineering applications the 
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reader is referred to [8, 9, 10, 11, 13, 14, 15]. In this paper, due to space limitations 
only one set of results is presented in Figure 2: a contour plot of the pressure and 
the film thickness for a lubricated stationary contact with a ridge (local surface 
feature), solved on a grid of 513 * 513 points. 

8 Further Developments 

The incentive behind the application and development of these numerical tech­
niques is the requirement to obtain a tribological model that can predict suc­
cessful operation or failure of highly loaded concentrated contacts. Such a model, 
which must be transient by nature, should be capable of describing rheological and 
thermal effects, and it has to accomplish locally a very detailed analysis. Current 
research is directed along two avenues: Improvement of the physical mathematical 
model, and further algorithmic development. The latter involves extension to tran­
sient situations, and to higher order approximations using double discretization. 
Furthermore, research has started to incorporate local grid refinement techniques, 
which, due to the multi-integral raises interesting fundamental algorithmic ques­
tions to be answered. 
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A Multi-Grid Method for 
Calculation of Turbulence and 
Combustion 
x.s. Bai and L. Fuchs1 

ABSTRACT The application of the Multi-Grid (MG) method to the calculation 
of turbulent reacting flows is considered. Turbulence is handled by using the k - E 

model. The eddy-dissipation concept based on a reduced global chemical reaction 
scheme is used for modeling the chemical reactions. For low Reynolds number lami­
nar flows the MG efficiency is best, with the convergence rate in the order of 0.8. For 
uniformly spaced grids the convergence rate can be better, and for highly skewed 
grid, slower. The introduction of turbulence and combustion generally slows down 
the converging process. However, the MG method still demonstrates considerable 
acceleration over the single grid solver. 

1 Introduction 

Turbulent reacting flows involve many different processes, such as, advection, diffu­
sion, turbulence, chemical reactions and heat transfer. The different processes are 
described by a system of partial differential equations (PDE), an ordinary differ­
ential equation and some algebraic relations. These equations are highly coupled, 
corresponding to the interaction between the different physical processes. A key 
issue in calculating turbulent reacting flows is therefore the numerical efficiency, 
so that numerical prediction will be appropriate for engineering design. 

Efficient solvers for elliptic partial differential equations could be tailored 
using Multi-Grid (MG) methods [1]. Previously, variants of MG methods have 
been applied to incompressible laminar flows [2] and isothermal turbulent flows 
[3,4]. In this paper, the application of MG method to turbulent reacting flows in 
cylindrical coordinates is discussed. 

Turbulent reacting flows are unsteady. They can be calculated by Direct Nu­
merical Simulation (DNS) [5]. However, DNS is applicable only for low or moderate 
Reynolds number (Re) situations and rather simple geometries. For non-trivial ge-

1 Department of Mechanics/ Applied CFD 
Royal Institute of Technology, S-100 44 Stockholm 
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ometries and flows of practical interest, DNS are not applicable. If one is interested 
in the (time-) averaged properties rather than the turbulent fluctuations, one can 
use some simple modeling technique, such as k - f model to handle turbulence [6]. 
If one is not interested in intermediary and low concentration species, one may ne­
glect some elementary chemical reactions [7-8]. Turbulence-chemistry interaction 
can be handled by using simplified models such as the Eddy- Dissipation Concept 
(EDC) [9]. Previous research [10-13] had shown that such simplified models yield 
reasonably good results in many cases. 

The MG calculation is performed on a modeled annular gas turbine combus­
tion chamber. The basic solver shown in this paper is very efficient for low Reynolds 
number flow calculations. Extension to the calculation of turbulent reacting flows 
has shown that variable density field (gas expansion process) and eddy viscosity 
calculation make the convergence slower compared to the optimal laminar case. 
The calculation shows, however, that MG method reduces computational time by 
up to two orders of magnitude when compared with the single grid relaxations, in 
the calculation of high Reynolds number turbulent reacting flows. 

2 Mathematical models 

2.1 GOVERNING EQUATIONS FOR TURBULENT REACTING 

FLOWS 

When the mean properties of the flow field are of interest, as in many engineer­
ing applications, the Reynolds averaged equations have to be used. For" closing" 
these equations one has to use a turbulence model, (e.g. the k - f equations). 
Let the averaged pressure and density be denoted by p, p. Let u, v, w denote the 
velocity components in axial, radial and azimuthal directions, respectively. The 
conservation of mass and momentum are as follows. 

opu lopruv lopuw opuu op lorrrx 10Tex OTxx at + ~ a;:- + ~ ae + ----a;: = - ox + ~. ----a;:- + ~ Be + ox (2) 

opv loprvv lopvw opuv pw2 op lorrrr 10Tre - + --- + --- + -- - - = -- + ---+--
ot r or r of) ox r or r or r of) 

OTrx Tee +---
ox r 

(3) 
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Trn Trx , ... are the components of the stress tensor. 

au av 
Trx = /-leff[ar + axl 

aw 1 au av 2 
Tox = /-leff[ ax + -;;: ael Trr = /-leff[2 ar - 3" V' . vl 

awlr lav law v 2 
Tro = /-leff[r----a;- + -;;: ael TOO = /-leff [2(-;;: ae + -;;:) - 3"V" vl 

where /-leff = /-lL + /-It and /-It = pC/J-k2 IE. /-lL, /-It are the laminar viscosity and 
turbulent eddy viscosity, respectively. k is the turbulent kinetic energy and E its 
dissipation rate. The two-equation k - E model is given by 

(5) 

apE + ~ aprvE + ~ apWE + apUE = ~~(r/-leff aE) + ~~(/-leff aE) 
at r ar r ae ax r ar P, ar r ae r P, ae 

~(/-leff aE) S 
+ ax P, ax + , (6) 

where Sk, S, are the source terms in the k and E equations, respectively. 
We define the specific enthalpy h as h = J~ CpdT, (To = 25C), then: 

aph + ~ aprvh + ~ apwh + apuh = ~~(r/-leff ah) _ ap 
at r ar r ae ax r ar Ph ar at 

~~(/-leff ah) ~(J.Leff ah) H O R- S 
+ r ae r Ph ae + ax Ph ax + , ,+ r 

(7) 

Ri is the reaction rate of species i, Hp is the enthalpy formation of i. Sr is the 
source term due to thermal radiation (which is neglected in this calculation, so 
that Sr = 0). 

For species i the mass fraction mi - equation is: 

apmi + ~ aprvmi + ~ apwmi + apumi = ~~(r/-leff ami) 
at r ar r ae ax r ar Pm ar 

+ ~~(/-leff ami) + ~(/-leff ami) _ R 
r ae r Pm ae ax Pm ax ' 

(8) 

The reaction rate, R i , is a function of mass fractions, temperature, and influenced 
by turbulence: 

(9) 
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This relation will be discussed later in the next section. 
The system of equations above (1-9) is completed by the equation of state. 
At inlet the boundary conditions for u, v, ware given by a certain profile and 

the inlet mass flux. At outlet they are given by setting the second derivatives of the 
velocity vector to zero. At walls u, v, w vanish. The boundary conditions for k and 
f are as follows: at inlet, the turbulent kinetic energy is taken to be proportional 
(a few percents) to the inlet kinetic energy. At solid walls, we use the so called 
"wall functions" [6]. At outlet, we force the second streamwise derivatives of k and 
f to vanish. 

The boundary conditions for h can be specified as follows: at inlet they are 
given by certain values, at outlet the zero second derivative is used. At wall they 
are given by specifying certain heat flux or the temperature itself. The boundary 
conditions on mi at inlet and outlet are treated in a similar way as h. At wall we 
set the normal derivative of mi to zero. 

In the equations above, the following parameters values are used: C J1. = 
0.09, Pk = 1.0, PE = 1.22, Ph = 0.7, Pm = 0.7; [13]. 

2.2 CHEMICAL REACTION SCHEME 

For a hydrocarbon fuel (such as C3HS), one may use the following two-step global 
reaction scheme [7]. 

C3HS + 3.5(02 + 3.76N2) ----> 3CO + 4H20 + 13.16N2 

3CO + 1.5(02 + 3.76N2 ) ----> 3C02 + 5.64N2 

For each of these steps, the reaction rate is computed by: 

R' . (RA B . ( mair ) f ) 
1 = mIn l' IP mIn mC3 H s , -- -k 

rl 

, . (RA . ( mair) f ) R2 = mm 2 ,B2P mm mco, -- -k 
r2 

where Rt, Rt are reaction rates computed by Arrhenius Law [7]. rl = 10.92, r2 = 
2.451 are stoichiometric constants of the reaction steps and Bl = B2 = 2.0 are 
model constants. The reaction rate for species C3H s, CO, O2 can be computed by: 

where r3 = 1.909. 

RC3 H S = R~ 

Rca = R~ - r3R~ 

R02 = rlR~ + r2R~ 

(10) 

(11) 

(12) 
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3 Solution Method 

3.1 MASS FLUX CONSERVING TRANSFORMATION 

The continuity equation is written in a strong conservation form. This formula­
tion simplifies the handling of the axial singularity and also ensures global mass 
conservation in the MG process in a straightforward manner. Let 

pru = U prv = V pw = W 

then the continuity equation in conservative form becomes: 

(13) 

(14) 

The momentum equations and the transport equations for a scalar f (f = k, 
E, h, mi, ... ), in terms of the new dependent variables, can be written as: 

au auv / (pr) awu / (pr) auu / (pr) _ _ ap arTrx aTox arTxx (15) 
at + ar + ae + ax - r ax + ar + ae + ax 

apfr + aVf + aWf + aUf = ~(rtLeff af) 
at ar ae ax ar PI ar 

a (tLeff af ) a ( tLeff af ) s 
+ ae r PI ae + ax r PI ax + r I (16) 

3.2 DISCRETISATION 

The discretisation is done on a staggered grid. The components of the velocity 
vector are defined at the center of the corresponding cell side. Scalars are defined 
at the cell center. All terms with the possible exception of the convective terms 
are approximated by central differences. The convective terms in all the equations 
are approximated by the first order scheme. When only steady state is sought, 
as in the cases considered here, one may use a quasi-time marching technique for 
the relaxation of the equation. By analogy to a time dependent term we define a 
"correction" term: 

(17) 

The superscript n represents a pseudo, n-th time step, while b..¢ represents 
the correction during each iteration. U* is the characteristic velocity, usually taken 
as the maximum of the inlets velocities. b..x is the characteristic spatial mesh size. 
(J ~ 0 acts as a relaxation parameter (Usually, the smaller the value of (J is, the 
faster the convergence. However, occasionally when (J is too small, the relaxation 
process may diverge). 
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3.3 MULTI-GRID SOLVER 

The discretized equations result in a system in which all the dependent variables 
are coupled together. The SIMPLE scheme [14] is used for" decoupling" velocity 
and pressure. Since we use the mass flux conserving transformation, the coupling 
between density and velocity is only through source terms. The energy equation 
and the other transport equations are updated after updating the velocity and 
pressure ("sequential" relaxation [13]). The relaxation is linewise, in the radial 
direction, for all the equations. 

To accelerate the convergence of the basic line by line solver, a MG method 
is used. The solution procedure starts on a coarse grid doing several V-cycle MG 
relaxations in the fully approximate storage (FAS) mode [2,3]. After converging 
to a certain level, the variables are transferred to a finer grid. This procedure is 
repeated until the finest grid is reached and the converged solution is obtained. 
The transfer of scalars to coarser grids is done by volume averaging, whereas the 
components of the velocity vectors are transferred by area (flux conserving) aver­
aging. Mass flux conserving restriction is a necessary condition for the convergence 
in the coarse grid. The corrections are interpolated to fine grids by trilinear inter­
polations. 

L=2 

l Ai, inlet 
L 

TR 

[ Fuel inlet 

Outlet 

Tr 

FIGURE 1. A sketch of the model annular gas turbine combustion chamber 

4 Numerical Examples 

The above solver is tested on a cylinder combustion chamber (a simplified model 
of annular gas turbine combustor). As shown in Fig.l, the inner radius T can 
be changed. The outer radius is R = 1 + T. The chamber length is L = 2. We 
compute only a sector of the chamber, assuming periodicity (with the sector angle 
a = 34.4°). Two inlets supply air and fuel (C3 Hs), respectively. The fuel/air 
equivalence ratio is 0.88. The coarsest grid is 5x3x3, which is refined by 3 levels 
(Grid 1) and 4 levels (Grid 2). 
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4.1 ANALYSIS OF THE BASIC SOLVER 

In order to achieve high MG convergence efficiency for turbulent reacting flow 
calculation, it is necessary to obtain high efficiency for a single convection-diffusion 
equation calculation. In the following, instead of illustrating a single equation 
calculation, we show the behaviour for calculation of Navier-Stokes equations for 
laminar flow. 

As depicted in Fig.2, the grid has important influence on the convergence 
process. When the grid is refined, e.g., with 4 levels (Grid 2), the single grid 
relaxation becomes less efficient. The convergence rate of the MG scheme, on 
the other hand, is almost "grid-independent". Another feature is that the MG 
convergence process is monotone, while single grid relaxations converge in a non­
uniform manner. 
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FIGURE 2. Convergence history for Grid 1 and Grid 2 

COO 

In this calculation Re = 1.8. The inner radius is r = 1.0 which keeps the 
mesh spacing ratio close to unity. The mesh spacing ratio (aspect ratio) varies from 
hx : hr : he = 1 : 0.83 : 1 to 2 : 1.66 : 1. Such near-uniform grid distribution yields 
a rather fast convergence rate (0.8). The MG efficiency deteriorates when the inner 
radius r decreases. As seen from Fig.3, when the inner radius is r = 0.06, the grid 
aspect ratio varies in the range from 2 : 1.66 : 1 to as much as 33.3 : 27.6 : 1. On 
this grid both MG and single-grid relaxation become less efficient. The "smoother" 
has to be modified in order to retain the previously attained MG efficiency. 

Next consider larger values of Reynolds numbers (Re = 1.8 to Re = 18800) . 
In the former case the flow is laminar, but is not in the latter. As long as the 
convective and diffusive terms are of comparable order of magnitude, and the 
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FIGURE 3. Convergence history for r = 1.0 and r = 0.06 on Grid 1 

mesh spacing allows the resolution of all possible scales, one is able to compute 
the flow with rather good efficiency (Fig. 4). Naturally, for larger values of Re one 
has to use a time-dependent solver, to account for the unsteadiness of the flow. 
Attempting to solve a steady-state flow, results in a "non-converging solution" 
(see Fig. 4). Once the local mesh Reynolds number (Reh) (based on the local 
speed and local mesh spacing) is large (in fact for Reh > 2), the grid cannot 
support the smallest scales and hence, one has to add "viscosity" artificially, so 
that the resulting scales can be supported on the grid. The increase in the effective 
diffusivity in turbulent flows is an expression of this type of " viscosity" . Thus, at 
higher values of Re, one has to introduce a turbulence model. These models has 
the effect of restoring the (high-frequency) ellipticity of the system, allowing the 
computation of converged solution by a MG solver. 

4.2 CALCULATION OF TURBULENCE AND COMBUSTION 

To compute turbulent flows, one may use the k-E turbulence model. The turbulent 
transport is modeled by an eddy viscosity, which is considerably larger than the 
molecular viscosity. Therefore it is possible to obtain a stationary, time-averaged, 
solution. 

For turbulent flow calculations, one has to handle the coupling between k, E 

and the velocity- and the pressure-fields. The coupling is essentially through the 
eddy viscosity. The sequential (" segregated") relaxation method described earlier 
[13] is more stable, though it may be less efficient (in comparison with a local, 
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FIGURE 4. Convergence history for different Re 

.00 

"block", Newton's solution of the system). A calculation based on Grid 1 and 
r = 0.06 is shown in Fig.5. As seen, the MG solver is more efficient and stable. 

In the calculation of turbulent combustion, the effect of hot gas expansion 
(i.e. density variations) introduces further coupling among the dependent variables 
(velocity, pressure, k, E, /--It, enthalpy and mass fractions). Fig.6 and Fig.7 depict 
the convergence behaviour for combustion chambers with r = 1.0 and r = 0.06, 
respectively. The calculations are carried out on Grid 1 (with 3 MG levels). In the 
former case the single grid relaxation is more efficient than in the latter case, due 
to the relatively uniform grid distribution and better smoothing properties on less 
skewed grids. The situation is similar also when MG is used. However, in both 
cases the MG solver improves the convergence rate considerably. When compared 
with Fig.5, the gas expansion process make the convergence of the k - E part less 
efficient. The non-monotonicity of the convergence can be seen from these figures. 
A possible way of improving the total convergence rate would call for a coupled 
relaxation of the k - E equations, as these two dependent variables are linked in a 
highly non-linear manner. 

5 ConcI uding Remarks 

The Multi-Grid method has been applied to the calculation of turbulent react­
ing flows. The mathematical equations are the Reynolds averaged Navier-Stokes 
equations together with two-equation k - E model and a two-step hydrocarbon 
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FIGURE 5. Convergence history of turbulent flow calculations 

oxidation mechanisms. The calculation is done on a modeled annular gas turbine 
combustion chamber. The basic MG scheme and single grid relaxation scheme 
are studied for simple cases (low Reynolds number flow) and further extended to 
complex turbulent reacting flows. The results have shown that: 

(1). The basic MG solver is nearly independent of grid resolution, while single 
grid relaxation is very slow for fine grids. The mesh aspect ratio has considerable 
influence on the MG efficiency. 

(2). The MG method is efficient compared with single grid relaxation for 
calculation of turbulent reacting flows. However, the present segregated coupling 
strategy is non-optimal. The introduction of eddy viscosity and gas expansion 
slows down the convergence process. Also, the non-monotone convergence of k 
and E indicates that the system has to be handled in a different way. One such 
possibility would be the coupled relaxation of these two variables. 
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On a Multi-Grid Algorithm for 
the TBA Equations 
Alfio Borzl1 and Anni Koubek2 

ABSTRACT We analyze a multi-grid algorithm [1] in order to solve numerically 
the thermodynamic Bethe ansatz equations. This solution method for the system of 
these non-linear integral equations is particularly important for the investigation 
of the ultraviolet limit, described by a conformal field theory. 

1 Introduction 

Massive relativistic field theories can be described on-shell by their scattering ma­
trix. This approach is specially fruitful in two dimensions, where there exists a 
large class of models which are integrable, and their S-matrix can in principle be 
computed exactly, being factorizable [2]. Unfortunately there is no general direct 
method in order to compute the S-matrix of a theory, but usually it is conjectured 
from general axioms and the underlying symmetries of the corresponding Hamil­
tonian. 
The thermodynamic Bethe ansatz (TBA) was developed in order to provide a 
means to link a conjectured scattering theory with the underlying field theory [3]. 
It describes the finite temperature effects of the factorized relativistic field theory, 
using the S-matrix as an input. If one studies the high temperature limit of the 
TBA equations, one can identify the conformal field theory (CFT) which governs 
the ultraviolet (UV) behaviour of the underlying field theory. One should though 
note, that it is not guaranteed that every consistent S-matrix describes the scat­
tering in some field theoretical model. Therefore the axiomatic bootstrap approach 
is only of limited value if not linked to field theory by some means, wherefrom the 
TBA is one of the most powerful ones. 
Given the scattering data one can in most cases extract analytically the central 
charge of the CFT reached in the conformal limit, and in some cases the dimension 
of the perturbing operator, if the symmetry of the problem is known. Numerical 

lSISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34013 
Trieste, Italy. Address after Nov. 1993: OUCL, Wolfson Building, OX1 3QD Oxford, UK. 

2 Address after Nov. 1993: DAMTP, University of Cambridge, Silver Street, CB3 9EW 
Cambridge, UK. 
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calculations on the other hand can solve the TBA equations and therefore extract 
any measurable quantity. 
In [3, 4] the TBA equations were resolved by an iterative method. We propose 
here a multi-grid algorithm, which is considerable faster particulary if the UV 
limit is investigated, an important fact if many particles are involved. The heart 
of the program is the resolution of the coupled integral equations. We specialize 
our application to the case of diagonal S-matrices, see e.g. [3, 4, 5]. As physical 
quantities we extract the central charge, the dimension of the perturbing field and 
the conformal perturbation expansion. 

2 The TBA Equations 

We briefly review the framework of the TBA, referring to the literature for details 
([3] - [6]). Let us investigate an integrable massive scattering theory on a cylinder. 
Integrability implies factorized scattering, and so one can assume that the wave 
function of the particles is well described by a free wave function in the intermediate 
region of two scattering. Consider n particles, and move the kth particle of mass 
mk and rapidity 13k, such to scatter all particles and come back to the initial 
configuration. This implies the following periodic boundary condition, 

n 

eiLmksinh,8kITSkj(f3k-f3j)=-l for k=1,2, ... ,n. (1) 
j# 

We introduce the phase 8kj ({3k - (3j) == -i log Skj ({3k - (3j). In terms of these the 
equation become 

Lmk sinh 13k + L 8kj (13k - f3j) = 27rnk for k = 1,2, ... ,n , (2) 
j# 

nk being some integers. These coupled transcendental equations for the rapidities 
are called the Bethe ansatz equations. One tries to solve these equations in the 
thermodynamic limit introducing densities of rapidities for each particle species 
and transferring the equations into integral equations. That is, let p~a) (13) = ;:,8' 
where we assume that there are n particles in the small interval tl.f3, be the particle 
density and p(a) (13) = ~ be the level density corresponding to the particle a, then 
(2) becomes 

n 100 
maL cosh 13 + ~ -00 'Pab(f3 - f3l)p~a)(f3l)df3' = 27rp(a) (3) 

In order to compute the ground state energy one needs to minimize the free energy 

(4) 
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where HB = L:a ma J cosh(3p~a)d(3 and S denotes the entropy. The extremum 
condition for a fermionic system3 takes the form 

(5) 

(a) 

where we introduced the so-called pseudo-density e-Ea == (~l (a)' the scaling 
P a -Pl 

length r = Rml and the rescaled masses Ma = ma; ml is the lightest particle mass. 
ml 

These coupled integral equations are called the TBA equations. The extremal free 
(a) 

energy depends only on the ratios ~ia) and is given by 

n 100 
f(r) = -~ LMa cosh (3 log(1 + e-Ea (f3))d(3 

27f a=l -00 

(6) 

One can extract several physical quantities from the solution of the TBA­
equations ([3, 6, 4]). Since few exact results are known about non-critical systems, 
it is interesting to examine the equations in the ultraviolet limit, which corresponds 
to r --+ 0, where the underlying field theory should become a CFT. The central 
charge is related to the vacuum bulk energy, and is given by 

3r n 100 

c(r) = 2" L Ma cosh (3 log(1 + e- Ea (f3))d(3 
7f a=l -00 

(7) 

Having calculated the central charge one would like to extract the conformal di­
mension of the perturbing operator. For small r, one expects that f(r) reproduces 
the behaviour predicted by conformal perturbation theory, which in terms of c(r) 
reads as 

3/1 00 

c(r) = c - -;!r2 + L fkryk (8) 
k=l 

The exponent y is related to the conformal dimension of the perturbing field ~ by 
y = 2(1 - ~) if the theory is unitary and by y = 4(1- ~) if it is non-unitary. The 
coefficients are related to correlation functions of the CFT [3, 4], and even if one 
cannot read them off directly, this is an ultimate important check of the theory. 
Note that also non-diagonal S-matrices (see [7]) can be treated, since once one has 
diagonalized the transfer-matrix also in that case the numerical problem reduces 
to solving (5). Further quantities to measure can simply be added, and also one 
can study any range of r. 

3We use the fermionic TBA equations since in diagonal scattering up to now they 
turned out to be the relevant ones, see e.g. [3] for the general theory 
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3 The Multi-Grid Method 

Although multi-grid (MG) schemes were originally introduced to solve elliptic 
problems, the same strategy can be applied successfully to many other types of 
equations, like integral equations [8, 9]. The system of non linear Fredholm in­
tegral equations (5) has been solved using iterative methods [3, 4]. However, the 
number of iterations and corresponding computer process (CPU) time required by 
these methods to reach a specified precision can become excessively large as the 
number of grid points N increases. Typically a simple one level relaxation would 
require O(N2 10g N) operations. With a multi-grid solution technique the comput­
ing time for integral equations is reduced to O(N2) [9], and in particular cases to 
O( N log N) [8], thus justifying the extra effort in programming. 

Now we define our numerical problem and we explain how the multi-grid 
scheme works for solving it. In discretising the TBA equations (5), we use the 
trapezoidal rule on a grid with mesh size h so that our system yields 

a = 1,2, ... , n, f3 E Oh, where Oh is the set of grid points with grid spacing h. 
The weights are w(f3) = 1 unless on the boundary where w(f3) = 1/2. Now let 
us introduce a sequence of grids with mesh sizes hI > h2 > ... > hM, so that 
hf-l = 2hf. The system (9) with discretisation parameter hf will be denoted as 

(10) 

where a summation over b is intended and where 

(11) 

Following [9] we have applied one Gauss-Seidel iteration to (10), and obtained the 
approximated solutions E~, a = 1,2, ... , n. We then transfer them onto the next 
coarser grid, E~-1 = i:-lE~, where i:-1 is a restriction operator. The coarse grid 
equations become 

'£-1 K f - 1(,f-l) ;f-l 1 2 
Ea = ab Eb + Ja ,a = , , ... , n (12) 

where 

;f-l = If-1 if + -f-l _ Kf-1(-f-l) _ I f - 1(-f _ Kf (-f)) 
J a f J a Ea ab Eb f Ea ab Eb (13) 

and with li- 1 another fine-to-coarse grid transfer operator not necessarily equal to 
ii-I. Having obtained the solution of the coarse grid equation E~-1 the difference 
E~-1 - E~-1 is the coarse-grid (CG) correction to the fine-grid solution 

(14) 
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hM = 0.02 hM = 0.01 
Iter. (v) Residual Obs. red. (Pv) Iter. (v) Residual Obs. red. (Pv) 

1 0.92.10 '0 - 1 0.27.10 -0 -
2 0.11 . 10-10 0.66.10-7 2 0.95.10- 12 0.58.10-8 

3 0.49.10- 14 0.14.10-5 3 0.24. 10-14 0.95.10-6 

P = 0.31 . 10 -t> p=0.74·1O"( 

TABLE 1. The FAS method. 

a = 1,2, ... , n, and iLl is a coarse-to-fine grid interpolation operator. Finally 
we perform one relaxation at level £, in order to smoothen errors coming from 
the interpolation procedure. To solve the system of equations (10) we employ a 
coarse-grid correction recursively, i.e. equation (12) is itself solved by iteration 
sweeps combined with a further CG correction. 

4 Numerical Investigation 

The algorithm described4 ([1]) above is a non-linear multi-grid (NMGM) method 
([9]) with full adaptive scheme (FAS) ([10]). The convergence properties of this 
scheme can be analyzed using local mode analysis [10]. For, let us consider a 
simple case where n = 1 (and we omit the particle index) and denote with 
e(v)((3) = E(v)((3) - E((3), (3 E Ch = {jh,j E Z}, the solution error after v GS 

iterations. On Ch we have the decomposition e~v) = L:o E~v) eiOj . If we consider 
the iterative scheme in terms of the error we find the following reduction factor of 
the () component 

(15) 

denoting, let us say cp((3) at (3 = j h simply by CPj· In particular 'Pkj = 'P((3k - (3j). 
We find that for each k, maxVL((}h, 0::::; I(}I ::::; 7r} = JL(Oh, the largest value being 
approximately ~ 0.2 (r = 0.1, M1 = 1, and h = 0.01). In the same way, using (15) 
we obtain a good approximation of the smoothing factor JL ~ 10-3 . Hence after 
one GS iteration for both pre- and post-smoothing we expect that the convergence 
factor of the MG cycle is given by p* = JLV! +V2 ~ 10-6 . This result is confirmed by 
numerical experiments as we observe from Table 1, where we report the observed 
reduction and the mean reduction factor p (w.r.t. the maximum norm). Notice the 
agreement with the predicted [9] behaviour p = O(h8 ), {) = 2 in this case. 

4The fortran code is available from: CPC Program Library, Queen's University of 
Belfast, N. Ireland. 
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FIGURE 1. Evolution of residual error norm with CPU time for a I-particle system at 
r = 0.1 for different hM : solid line for MG, dashed line for iteration only. 

In the NMGM scheme with nested iteration, we use an initial approximation 
which behaves like rMa cosh,8, wherefrom the program determines the numerical 
boundary at which the kernels vanish and verifies that the conditions for the 
existence of (at least) one solution given by the Schauder's fixed point theorem 
are satisfied [11]. 

We compare the performance of the MG and of the Gauss-Seidel iterative 
schemes in terms of CPU time in Figure 1, there the different initial residual error 
for MG and iterative scheme is due to the set up of the initial approximated 
solution in the MG cycle, that is a non-linear nested iteration which uses a MG 
cycle itself (see [9]). We denote the residuals as Ta(,8) = (Ea - Kab(Eb) - fa)(,8), 
,8 E OhM' and define the norm 

(16) 

In order to outline how the multi-grid algorithm becomes important as the number 
of particles increases we give in Table 2 the CPU time required by the two methods 
to solve the discretized problem to a value of the residual norm II T 11M::; 10-14 . 
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no. equations CPU time Jsecs) 
Relax I Multi-Grid 

1 4 3 
2 34 22 
3 508 331 
4 1230 712 
5 2530 1320 

TABLE 2. A comparison of CPU time required to reach a particular value of the norm, 
for r = 0.1, hM = 0.1. 

5 Numerical Results: An Example 

We specifically designed the program for diagonal scattering theories, that is we 
are concerned with scalar 5 matrices which in general have the form 

II sinh ~({J + i1l'a i) 
5ab = . h 1 ({J . ) sm - - Z1l'ai 

QiEXab 2 

Xab is the set of factors Ix appearing in the 5-matrix 5ab (for a recent review 
on this subject see [12]). The set of the numbers a, and the masses of the theory 
are sufficient to resolve the TBA-equations. For example, let us consider the two­
particle system M1 = 1 and M2 = 2 cos(1l'/5) , with the 5-matrix 5 11 = hh, 

5 5 

5 12 = 521 = h h h h, 522 = h rdh h)2, which has been conjectured to 
5555 5555 

correspond to the (non-unitary) minimal model M 2,7, i.e. c = ~, perturbed by the 
field with dimension ~ = - ~. 

Using the algorithm [1] we solve the corresponding TBA equations for a set 
of r close to zero. The above information (masses and indices a) are the only input 
required by the program. For each r we compute c(r) and using (8) we extract the 
exponent y = 2.85714287 which confirms the conjectured scaling dimension of the 
perturbing field. 

6 Conclusions 

We presented a multi-grid scheme for the resolution of the thermodynamic Bethe 
ansatz equations. The TBA is a means to describe the finite temperature effects 
of relativistic factorized scattering theories. Our program is specifically designed 
for theories having a scalar 5-matrix. These theories exhibit a unique form, and 
the only input needed in order to carry out the TBA are the locations of the poles 
and zeros of the single 5-matrix elements. 

We calculate the central charge and in the ultraviolet limit the dimension of 
the perturbing field and the coefficients of the perturbation expansion. These are 
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the most crucial tests in verifying a conjectured S-matrix. 
In order to get sensible results for the physical quantities one needs to resolve 

the integral equations with the highest possible accuracy. Therefore the use of an 
efficient Multi-Grid algorithm gives the possibility to reach high accuracy in the 
computation together with a sensible reduction of the CPU time, in confrontation 
with standard iterative techniques. 
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A Multidimensional Upwind 
Solution Adaptive Multigrid 
Solver for Inviscid Cascades 
L. A. Catalano, P. De Palma, M. Napolitano and 
G. Pascazio1 

ABSTRACT A recently developed multidimensional upwind multigrid method is 
combined with an adaptive grid refinement strategy in order to provide a numerical 
technique for computing two-dimensional compressible inviscid steady flows accu­
rately and efficiently. A locally nested sequence of mesh refinements is constructed 
by a quad-tree data-structure, which easily incorporates the multi grid method using 
compact-stencil space discretization and explicit multi-stage smoother. Computa­
tions of flows through channels and cascades are presented which demonstrate the 
capabilities of the proposed approach. 

1 Introduction 

Two issues play an ever increasing role in current CFD research: the development 
of methods suitable for vector and parallel computers, and the application of local 
refinement strategies as a means for obtaining high quality results for complex 
flow problems at reasonable costs. Both trends have increased the interest towards 
employing explicit schemes as smoothers in multigrid methods, as well as towards 
developing space discretizations based on compact stencils. 

Recently, a procedure has been developed for optimizing the coefficients and 
time step of explicit multi-stage schemes, in order to design an efficient smoother 
to combine with a multigrid method for multidimensional advection equations [1]. 
Thanks to its generality, this approach, based on a two-dimensional linear Fourier 
analysis, has been applied to the optimization of some recently developed gen­
uinely multidimensional upwind schemes [2] characterized by low cross-wind dif­
fusion and thus capable of capturing discontinuities oblique to the mesh very ac­
curately. The efficiency of the resulting smoother combined with the standard 
FAS multigrid strategy [3], has been proved first for a nonlinear scalar advection 
equation, using both the finite volume [4] and the recently developed fluctuation 

1 Politecnico di Bari, via Re David 200, 70125 Bari, Italy 
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splitting [5] schemes. The latter space discretization has been crucial to the de­
velopment of genuinely multidimensional methods for compressible inviscid flows, 
based on decomposing the Euler system into an equivalent set of scalar equations 
with solution-dependent propagation directions, as originally proposed by Roe [6]. 
Successful applications and improvements of such a methodology [7,8] have been 
obtained, thanks to a conservative linearization which can be performed analyt­
ically [9]. A major step towards making such a numerical technique robust and 
efficient has been performed in [5, 10]: the explicit multigrid strategy of [4] has 
been extended to the Euler equations, using a new wave decomposition model and 
the fluctuation splitting N-scheme; multigrid acceleration showed to be effective 
for subsonic, transonic and supersonic flows through channels; and convergence to 
machine accuracy has been achieved for the first time. 

In this paper, the method developed so far is combined with a local grid­
refinement strategy in order to solve complex flow configurations at very reasonable 
computational costs. 

2 The multidimensional Euler solver 

The governing equations for two-dimensional inviscid non-conducting flows are 
written in terms of the conservative variables, q = (p, pu, pv, pEf, as: 

qt = -V· F = Res(q), F= (F,G), (1) 

where F = (pu, pu2 + p, puv, puH)T and G = (pv, puv, pv2 + p, pvH)T are the 
flux-vectors in the x and y directions, respectively, and Res(q) is the steady-state 
residual of equation (1). 

Classical upwind methods for the solution of the multidimensional Euler 
equations (1), based on the application of one-dimensional Riemann solvers along 
grid dependent directions, experience a loss of resolution in presence of discon­
tinuities not aligned with the mesh. For such a reason, a large effort has been 
recently devoted to the development of numerical methods which contain truly 
multidimensional features in modelling the propagation phenomena which domi­
nate the behaviour of compressible flows [11, 12, 6]. The approach of [6], of interest 
here, is based on the application of simple-wave theory and consists in selecting a 
number N of waves (acoustic, entropy, shear), each having strength a k and prop­
agation direction nk. The gradient of the primitive variables ij = (p, u, v, p f can 
be decomposed as: 

N N 
Vij = LVijk = Lakrknk, (2) 

k=l k=l 

rk being the right eigenvector of the Jacobian (oF joij) ·nk with eigenvalue Ak; and 
the steady-state residual, namely, the time derivative of the conservative variable 
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vector, can be obtained by summing up all wave contributions, as follows [6]: 

N 

qt = - L (irk).k = Res(q). (3) 
k=l 

An analytical decomposition can be obtained when employing four orthogonal 
acoustic, one entropy and one shear waves [6]. Depending on the flow data, namely, 
Vij, the intensities of all waves and the propagation directions of the acoustic 
and entropy ones are provided by equation (2), whereas the direction of the shear 
remains arbitrary and is the distinctive feature of the various wave models proposed 
so far in the literature [6, 7, 10, 13]. All results presented in this paper have been 
obtained by assuming the shear wave front to be parallel to the velocity vector, a 
choice which has proved robust for a wide range of applications [10, 14]. 

Concerning the spatial discretization, the use of a cell-vertex grid with linear 
triangular elements appears to be the most suitable choice for a wave decomposi­
tion model based on the flow gradients. Here, in order to combine the basic solver 
with the quad-tree data-structure used to create locally refined grids [15], the tri­
angular mesh is obtained from a structured quadrilateral one, by subdividing each 
quadrilateral cell into two triangles. For each triangle T, the global fluctuation, 
defined as <PT = Is qt dS, is split into its simple-wave contributions, as follows: 

N N N 

<PT = -is L akrk).k dS = -S L firkJ..k = L <P~. 
k=l k=l k=l 

(4) 

In equation (4), the cell-averaged values iik, rk, J.. k can be evaluated analytically, 
provided that the parameter vector z = JP(l, u, v, Hf is assumed to vary linearly 
over each triangle, a feature which is crucial to ensure conservation [9]. A multi­
dimensional upwind residual distribution scheme is then employed to split each 
wave contribution to the flux balance in each cell, <:p}, among its three vertices, 
according to the propagation velocity vector ).k. In this way, the discrete residual 
of equation (1) at each cell-vertex v of the grid h is reconstructed as: 

N 

(q~)v = Resv(qh) = ; L L f3~,v<:P~· 
v T k=l 

(5) 

In equation (5), f3~ v are the coefficients which define the distribution of the k-th 
wave component to 'the vertex v of the triangle T, the area Sv is only a suitable scale 
factor in the case of steady-state calculations (see, e.g., [2]), and the summation 
is extended over all triangles having the vertex v in common. Obviously, in order 
to ensure conservation, for every triangle T and for each wave k, the following 
condition must be satisfied: 

3 

Lf3L = l. (6) 
j=l 
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The upwind residual distribution scheme used in this paper is the compact-stencil 
fluctuation splitting first-order-accurate N-scheme [2]. 

Boundary conditions, being critical to the accuracy of the solution, have 
been imposed with particular care. Characteristic boundary conditions are used 
at subsonic-inlet gridpoints, where the total enthalpy, entropy and flow angle are 
specified and at subsonic-outlet gridpoints, where the pressure is prescribed. Im­
permeability at solid boundaries is enforced by extending the symmetry technique 
with curvature correction, proposed in [16], to the present cell-vertex space dis­
cretization: one row of auxiliary cells is used for evaluating the residual at the 
wall gridpoints, the state at each mirror-image node being computed by imposing 
no-injection and isentropic simple radial equilibrium [10]. 

An explicit three-stage Runge-Kutta scheme is used for discretizing the time 
derivative in equation (5), the predictor coefficients and the time step being cho­
sen so as to optimize the smoothing properties of the scheme. A standard FAS 
multigrid strategy [3] is used to accelerate convergence to steady-state. See [14] 
for a more detailed description of the method. 

3 Adaptive multigrid strategy 

A local refinement technique for the cell-vertex residual distribution method devel­
oped so far is proposed in the present section. Starting from a regular structured 
quadrilateral grid, nested levels of local refinement are created and managed by a 
quad-tree data-stucture [15], so that the standard multigrid FAS scheme can be 
applied, with minor changes in the grid transfer operators. 

At each level l, the grid nl is composed of an unrefined part n~ (cells with 
no kids) and a refined part nj (cells with kids on level l+ 1), so that nj and nl+ 1 

cover the same region. In such a way, the physical domain is discretized by a grid 
composed of all unrefined parts n~, l = 0, ... , N (composite grid with N levels of 
local refinement). 

In order to describe how the conservation property of the basic solver is 
mantained on the composite grid, a grid with only two nested levels, land l+ 1, 
shown in figure 1, is considered, for simplicity: the boundary points of nl+1 which 
do not lie on the physical boundary are called green nodes and are denoted by 
crosses, whereas the internal nodes of nl+1 are referred to as interior nodes and 
are denoted by dots. The solution at grid level l+ 1 is firstly obtained by bilinear 
interpolation of the solution at level l, as done in the standard nested iteration; 
the fluctuation splitting scheme, namely equations (4) and (5), is then applied 
on the grid l+ 1 to reconstruct the residual at all interior nodes; only incomplete 
contributions are sent to the green nodes, which therefore are not updated in the 
time integration. In order to apply the coarse grid correction, the solution is then 
injected from levell+ 1 to level l, namely: 

1 1+1 
qi,j = q2i,2j' (7) 
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Figure 1: • interior and x green 
nodes on a composite grid 
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Figure 1!: residual collection on th.e 
composite grid 

A first condition to be satisfied for ensuring conservation on the composite grid 
is that the flux through each side of ao.~ coincides with the flux through the two 

corresponding sides on ao.l+1, exactly, or to its local order of accuracy. For the 
present linear-element cell-vertex discretization, the latter requirement is clearly 
satisfied when using injection for the restriction of the solution and bilinear in­
terpolation of either the primitive or the conservative variables for the solution at 
green nodes. Futhermore, thanks to the analytical linearization, the flux conser­
vation can be satisfied exactly by interpolating the parameter vector, which has 
already been supposed to vary linearly over each cell. Clearly, after integration 
along ao.j and ao.l+1, this first condition results in: 

J F. nds - J F· nds = 0 or O(h2), Janl+1 Jan~ 

n being the outward normal; after application of Gauss' theorem, one has: 

r V. FdS - r V· FdS = 0 or O(h2). Jnl+1 Jn~ 

(8) 

(9) 

In the discrete domain, equation (9) corresponds to the following conservation 
property: 

N N 

L L L!3~,v<P~ - L L L!3~,v<P~ = 0 or O(h2). (10) 
TEn!+l vET k=1 TEn~ vET k=1 

Equation (10) can be rewritten in terms of the contributions received by each 
node, as: 

L Rv - L Rv = 0 or O(h2 ), (11) 
vEnl+1 vEn~ 
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Rv being defined as: 
N 

Rv = L L,6~,viI>~. (12) 
TEn k=l 

In equation (12), the first summation is extended over all triangles of the discrete 
domain n having the vertex v in common. 

When using multigrid, the residual computed on the coarser levell has to be 
corrected by means of the relative local truncation error, Ti+l' so that a second 
condition has to be satisfied for ensuring conservation on the composite grid: 

L Rv - L (Rv + (Ti+l)VSV) = 0 or O(h2). (13) 
vEn1+1 vEnj 

Equation (11), combined with equation (13), provides the condition that the rel­
ative local truncation errors, Ti+l' have to balance each other over the refined 
domain, n~, so that no spurious source terms are introduced at levell: 

L H+1)v Sv = 0 or O(h2). 
vEn~ 

(14) 

Equation (14) can be satisfied by choosing the residual collection operator prop­
erly: figure 2 provides a sketch of the contributions of each node at level l+ 1 
to the residual collection at coarser-level nodes, denoted by dots. For example, 
the contribution of the node (2i - 1,2j) to the residual collection in (i,j) is 
C{+1[R2i_1,2j(ql+l)] = 1/2 R 2i_1,2j(ql+l). Just like in the standard FAS cycle, 
the coarse grid correction consists in solving the following equation on levell: 

(15) 

In equation (15), the source term rl corresponds to the local relative truncation 
error on the refined part of grid l, whereas it is always null on the composite grid: 

r' = { ~f+1 = ;! {Of+, [R(q'+I) + r'+18;+I] - R,,(q')} 

Rv(ql) is defined again by equation (12), with n = n~. 

(16) 

The correction of the solution in n~ is then prolongated bilinearly and added 
to the solution in the nodes of nl+ 1 ; since the same operator is used for the 
interpolation of both the solution and the correction, the flow variables at the 
green points need to be interpolated only once, namely in the nested iteration, so 
that no special treatment is required in the FAS cycle. 

Concerning the local refinement strategy, the pressure gradient has been used 
as the sensor which detects whether a cell must be refined or not. The percentage 
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of cells to be refined on the composite grid is assigned by the user, the threshold 
value being automatically computed using a subdivision of cells into classes [10]. 
Thanks to the good capturing properties of the wave decomposition method even 
on rather coarse grids, the positions of the shocks on the refined grid were always 
close enough to those on the initial one and, thus, coarsening the grid during the 
computation has not been found necessary. 

4 Results 

Subsonic flow through a cosine bump channel (inlet Mach number Mi=0.5 and 
20% restriction) [17] has been computed at first, in order to verify if the accuracy 
of the solution computed on a composite (locally refined) grid (CG) is close enough 
to that obtained on the standard grid with equal spacing on the finest level (SG). 
Computations have been performed on four composite grids obtained by adding 
one to four locally refined grid levels to a 16 x 4 base grid, 50%, 30%, 25% and 
22% of the cells being refined at each level, respectively. Figure 3 provides the 
value of the Mach number at the top of the bump, Mmax, and the Loo-norm 
of the entropy - computed on the locally refined grids (symbols) and on the 
corresponding standard ones (lines) - versus the finest mesh size, h. The numerical 
entropy generation is shown to be almost proportional to the grid spacing for both 
sets of grids and Mmax tends to its exact value, as h ~ 0, more regularly for 
the composite grids than for the standard ones. Figure 4 shows the convergence 
histories for the four-level composite grid (CG4) - shown in figure 5 - and the 
corresponding 256 x 64 standard one (SG4): the logarithm of the L1-norm of the 
residual of the mass conservation equation is plotted versus the computational 
work, one work unit being defined as one residual calculation on the finest level of 
the standard grid. The computer time is almost proportional to the total number 
of cells employed. 
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Figure 5: composite grid for the subsonic flow through the co­
sine bump channel (4 levels - £080 quadrilateral cel/s) 

Transonic flow through a cascade of NACA-0012 airfoils with pitch to chord 
ratio equal to 3.6 has been then considered, with Mi=O.8 and incidence angle i=1°. 
A composite grid with 1689 cells, shown in figure 6 has been obtained at first , 
starting from a 48 x 8 base grid after two local refinements. The corresponding 
Mach contours are provided in figure 7, where the shocks are well captured in two­
to-three cells. However, a more accurate description of the stagnation point region 
and a sharper capturing of the shocks are needed. Therefore, a finer composite grid, 
with 8853 cells, has been obtained by means of two additional local refinements. 
Such a grid and the corresponding Mach contours are shown in figures 8 and 9, 
respectively. The marked improvement in the description of the shocks is clearly 
seen. 

Figure 6: composite grid for the 
transonic flow through the NAGA-
001£ cascade (£ levels - 1689 cel/s) 

Figure 7: Mach contours for the 
NAGA-001£ cascade (grid of fig­
ure 6 - f:l.M = .05) 
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Figure 8: composite grid for the tran­
sonic flow through the NACA-0012 cas­
cade (. levels - 8859 cells) 

Figure 9: Mach contours for the 
NACA-0012 cascade (grid of fig­
ure 8 - 6.M = .05) 

The solution on the 192 x 32 standard grid was also obtained for comparison. 
Figure 10 provides the surface Mach number distributions computed on such a 
grid (SG2) as well as those obtained on the composite grids with two (CG2) and 
four (CG4) refinement levels. The accuracy of the first two solutions, SG2 and CG2, 
having the same finest-grid size, are almost identical , demonstrating the validity of 
the proposed adaptive grid approach once more. In this respect, it is noteworthy 
that the solution on the SG4 grid with 768 x 128 cells, supposedly as accurate as 
the present CG4 solution, was beyond the available computer resources . 
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Furthermore, the convergence histories for the SG2 and CG2 calculations, given 
in figure 11, demonstrate the reduction in computer time obtained by employing 
the local refinement strategy. 

Finally, the subsonic flow through a high turning cascade (VKI-LS59) has 
been computed as a rather severe test for the proposed methodology. The outlet 
isentropic Mach number is equal to 0.81 and the inlet flow angle is 30 degrees. 
A composite grid with 8383 cells, shown in figure 12, has been obtained from a 
128 x 8 standard grid after three local refinements; the computed Mach contours 
are presented in figure 13. A comparison between the numerical results (Mach 
number along the blade profile) and the experimental data provided in [18] , is also 
given in figure 14, and demonstrates the accuracy of the method as well as its 
capability of handling complex geometries. 

Figure 12: composite grid for the 
subsonic flow through the VKI-LS59 
cascade (S levels - 8S8S cells) 
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Figure 1S: Mach contours for the 
VKI-LS59 cascade (grid of figure 12 
- tl.M = .025) 
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Figure 14: surface Mach distribution for the VKI-LS59 cascade 
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5 Conclusions 

A multidimensional upwind multigrid method recently proposed by the authors has 
been combined with an adaptive local refinement strategy to provide an efficient 
tool for computing rather complex two-dimensional compressible inviscid steady 
flows. The approach has been validated for well-documented channel and cascade 
flows. The accuracy on the locally refined grids is comparable to that obtained on 
uniformly refined ones and the gain in efficiency is equal to, or better than, the 
total reduction of nodes. 
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4 

Parallel Steady Euler 
Calculations using Multigrid 
Methods and Adaptive Irregular 
Meshes 
J. De Keyser and D. Roose1 

ABSTRACT 2 Solving the Euler equations requires a high spatial accuracy, thus 
imposing strong demands on the quality of the discretization technique, the numer­
ical solver and the implementation. In this paper we describe the parallel aspects 
of a steady Euler solver based on solution-adaptive irregular meshes and multigrid. 
The emphasis is on the run-time load balancing problem that arises in this context, 
and its solution with a parallel Partitioning by Pairwise Mincut heuristic. 

1 Introduction 

A nonlinear hyperbolic problem with applications in aerodynamics is defined by the 
Euler equations. The computation time required to solve such a problem accurately 
can be reduced by 

- irregular mesh discretization and adaptive mesh refinement, to achieve a pre­
scribed accuracy with a discrete problem that is as small as possible 

- multigrid methods, giving fast convergence irrespective of problem size 
- distributed memory parallelism, allowing a high computation rate 

Below a steady 2-D Euler solver is described that combines these three acceleration 
techniques. In order to do so a particular load balancing problem has to be tackled. 
To this end we construct a cost function describing the multigrid cycle execution 
time. A parallel Partitioning by Pairwise Mincut heuristic allows to solve the load 
balancing problem at run-time. 

lComputer Science Department, K. U. Leuven, 
Celestijnenlaan 200A, B-3001 Leuven, Belgium 
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2 Discretization 

The state of a compressible fluid in 2-D flow is defined by the conservative variables 
q = [p pu pv pelt : density p, momentum in both coordinate directions pu and 

2 2 

pv, with u and v the velocity components, and energy E = pe = I'~l + Pf, 
with p the pressure and 'Y the ratio of specific heats. Other state variables are the 
enthalpy h = e + l!. and the entropy difference with respect to a reference state (Po, 

p 

To, 80) : 8 - 80 = CplnT/To - Rlnp/po. The fluid is assumed to be an ideal gas 
with constant thermal capacities Cp and Cv : p = pRT, R = Cp - Cv , 'Y = Cp/Cv 

(R is the gas constant and T the absolute temperature). The equations of motion 
for an inviscid flow field q(x, t), x E ~,t E [to, 00) are: 

[ 
pu 1 [PU 1 f _ pu2 + p _ puv 

- puv ' g - pv2 + p 

puh pvh 

An initial flow field q(x, to) is given and boundary conditions are defined on a~. 
In our finite volume discretization, 9 = {~;} is a collection of polygonal cells 

covering the domain ~. Cells ~i and ~j are said to be adjacent if they share a 
common border. A(~j) is the set of neighbors of cell ~j. The area of cell ~i is 
denoted by Ai. The interface a~ij has length 8ij. Two grids g(k) and g(l), k < l 

are nested if 'V~jl) : 3~~k) : ~jl) C ~~k). Cell ~~k) is the parent cell of ~;l); S(~~k)) 
denotes the set of its subcells. We will only consider nested grid hierarchies. 

N is a first-order operator that maps flow field q(x) from the state space 
E to the residual space E. The l-th discrete problem in subspaces E(l) c E and 
E(l) C E is - in a first-order approximation with piecewise constant (per cell) 
grid functions - obtained with the projections: 

(l) . - -1-1 (R qMt) - (l) q(x, t) d~, 
A. n(l) , , 

- (I) . - -1-1 (R r), - (l) r(x, t) d~. 
Ai n(l) 

In this finite volume discretization, the flux fij through an edge is approximated by 
the van Leer flux vector splitting [1]. The discrete conservation property f ij = -fji 

allows to compute this flux once per edge. The conservation laws for ~i are: 

l.e. 

With constant prolongation and with the restriction operators 

(R(l--+k)q(l)). = _1_ "A(l)q(l) 
, (k) L J J 

Ai njll ES(n;k») 

(R(l--+k)r(l)). = _1_ " A(l) (l) 
, A(k) L J r J 

i njll ES(n;k») 
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a Galerkin sequence is obtained : N(l~l) = R(l---+I~l)N(I)p(I~l-+I). 

A border cell nB along each edge of an allows imposing information about 
state qB and flux f* at the border. 

A parallel polygonal mesh refinement strategy [8] is used. As in the exact 
Euler solution entropy is constant along streamlines in smooth flow regions and 
increases over a discontinuity, the streamwise entropy gradient u . 'V s is a robust 
refinement criterion, reflecting the error made in the operator discretization. 

3 Multigrid based on explicit time-marching 

The spatial semi-discretization described above yields a system of ODEs in time, 
which can be solved with either explicit or implicit time-integration schemes. We 
restrict our attention to explicit methods, as they pose the same load balancing 
challenge as implicit methods, but require less memory. 

A first-order explicit time-marching scheme is Forward Euler (FE) : 

Multi-stage Runge-Kutta methods have been developed by choosing the coeffi­
cients a j, j = 1, ... , n in an n-stage method 

so as to improve smoothing properties, e.g. RK4 (al = 1/4, a2 = 1/2, a3 = 0.55, 
a4 = 1) [6]. Local timestepping variants (LT, as opposed to global timestepping, 
GT) use a different timestep in each cell, giving up time-accuracy in favor of 
convergence speed. Although explicit time-marching works best in combination 
with a local preconditioner [9], we do not consider such techniques here as they do 
not affect the load balancing problem. 

Timesteps are expressed by the Courant-Friedrichs-Lewy-number C F L = 
6.t/6.tCFL with 6.tCFL = minSli Ai(LSljEA(Sl,) SijAij)~1 and Aij = max{O, Ui . 

nij + cd. The stability limit of FE lies at CFL ~ 0.7, that of RK4 at 1.25. 
Several methods employ a grid hierarchy to accelerate explicit time-marching. 

The method proposed by Jameson has been used for both regular and the irregular 
grid applications [6, 3]. It consists of the FAS-scheme in which the smoother is 
replaced by a multi-stage RK method. Jespersen showed that it can be regarded as 
a timestepping method allowing a larger aggregate timestep with less computation. 
In our approach the refined meshes cover the entire problem domain [3, 5], as 
opposed to the FAC and MLAT techniques which employ fine grid patches in the 
refinement regions. 
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4 Distributed memory parallel implementation 

For non-adaptive grid hierarchies a data distribution exists that guarantees load 
balance and efficient communication, both for the regular and irregular grid case [2, 
3]. Adaptive refinement however can result in unpredictable load changes requiring 
load redistribution at run-time [5]. We have used the two-step approach to load 
balancing: first the data set is partitioned, subsequently the parts are mapped onto 
the parallel machine. 

4.1 DISTRIBUTED DATA STRUCTURES AND PARTITIONING 

The data parallel or Single Program Multiple Data programming model was adopted. 
In this approach the term phase is used for each data parallel calculation step. A 
phase is characterized by a process interaction graph describing the communication 
pattern. In the multigrid method there are phases acting on one grid (e.g. smooth­
ing) and phases acting on subsequent grid levels (e.g. prolongation, restriction). 

The partitioning depends on the nature of the data dependencies and on the 
particular data structures used in the multigrid application. We will use a nested 
partitioning of the grid hierarchy. Each grid is partitioned in parts p(l) = {p~l)}. 
Partitionings p(I-I) and p(l) on subsequent levels are nested if all subcells of 
Ok E g(l-I) belong to the same fine grid part, and if two fine grid cells with 
parents in different coarse grid parts do not belong to the same fine grid part. 
This nestedness property ensures that there is at most one message per fine grid 
part required during inter-grid operations. 

Hierarchical recursive bisection (HRB) is a heuristic that generates nested 
partitions [5]: the partitioning p(i) of g(i) is derived from p(i-l) by bisecting each 
part of the latter, and collecting the corresponding subcells. If g(i) = g(i-l) = 
... = g(O) HRB coincides with recursive bisection for single grid partitioning [10]. 
Hierarchical inertial recursive bisection (HIRB) implicitly tries to minimize the 
intra-grid communication. 

In general, the partitions of a mesh at a given level are not of equal size, as 
the number of cells depends on the adaptive refinement. There should be suffi­
ciently more parts than processors to allow the mapping step to find a good load 
distribution. On the other hand, parts should not be too small to avoid a large 
intra-grid communication volume. 

4.2 FORMULATION OF THE MAPPING PROBLEM 

A balanced workload distribution is obtained by mapping : distribute the parts 
among the processors such as to minimize the execution time for the phase [4]. 
This problem is known to be NP-hard. Several heuristics have been developed for 
solving this problem. As the number of processors in the parallel computer and 
the number of tasks in the task interaction graph increase, such heuristics take 
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progressively more time. Especially in the case of run-time load balancing, one has 
to resort to parallel heuristics. 

This mapping problem is often formulated in terms of graph-theoretic model 
problems. There are two graphs involved: 

- the process interaction graph representing the dependencies between parts, 
- the machine graph, representing the processor interconnection topology. 

The graph partitioning problem (GPP) [7, 10] for a digraph (G, -+) with weight 
matrix A ( Aii = 1, Aij = 1 if gi -+ gj and Aij = 0 if gi -+ gj) consists of finding 
a P-way partitioning {Sd ofG such that l#G/PJ :S #Sk:S i#G/Pl and: 

e = L AijDij 
9i,9jEG 

is small, with Dij = 0 or 1 depending on whether gi and gj belong to the same 
partition or not. Such a partition containing all graph nodes that are mapped onto 
the same processor is a cluster. e is a cost or penalty junction, forcing the creation 
of P equal-sized clusters with minimal inter-cluster connectivity. 

The GPP has two limitations. First, all parallel tasks have equal calculation 
weights A ii , and all data dependencies are of equal strength A ij . Additionally, the 
machine architecture is not taken into account, i.e. it is assumed to be fully con­
nected (in that case partitioning and mapping are identical). These limitations may 
be overcome as follows. Let the speed of the processors be defined by parameter 
tcalc (e.g. floating point multiplication time). Further, assume that the commu­
nication time is proportional to message length and communication distance ~, 
with a constant of proportionality tcomm (e.g. the time to communicate a floating 
point number). Let 7 = tcomm/tcalc. Additionally, we associate arbitrary calcu­
lation and communication weights with the graph nodes. Reasonable estimates 
of these weights are available in many applications. The resulting generalization 
of the GPP is equivalent to the mapping problem: for a symmetric A, a P-way 
partitioning must be found such that 

p p 

e~c = 2) L Aii)2 + 272 L 
k, l = 1 gi E Sk 
k < l gj E Sl 

is minimal. ~kl denotes the distance between the processors with clusters Sk and 
Sl. 

The load balancing problem encountered in applications which require remap­
ping at run-time is not always of the nature modeled by esc. One then looks for 
a new mapping which is related to the current mapping. A typical example occurs 
in the parallel implementation of multigrid [5]. Assume that in a full multigrid cy­
cle a solution has been obtained at a given level. After performing adaptive mesh 
refinement and after partitioning the newly defined fine grid, a mapping of the fine 
grid must be computed. There is an inter-grid communication penalty associated 
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with not mapping a part of a fine grid onto the same processor as its parent part. 
Let G denote the set of graph nodes which have to be remapped (parts on the fine 
grid), with weights A. Let G' denote the set of graph nodes whose mapping is given 
(parts of the coarser grid). With each graph node gi E G one associates a graph 
node g' j = t(gi) E G' with a penalty Ti for not allocating gi to the same processor 
as t(gi). With i::lk,t(i) the distance of processor k on which gi resides to the one 
holding t(gi), this is expressed by : 

p p p 

eirc = I) i:Aid2+2T2i: i: Aiji::lkd2+T2i:(i:Tii::lk,t(i))2 

0.30 

0.25 -

0.20 -

Time (s) 0.15 -

0.10 -

0.05 -

0.00 

k, l = 1 gi E 5k 

k < l gj E 51 

I I I 

1 2 4 
I 

8 

N umber of processors P 

16 

FIGURE 1. Parallel PPM remapping time for the ring problem 

4.3 THE PARTITIONING BY PAIRWISE MINCUT HEURISTIC 

The Partitioning by Pairwise Mincut heuristic (PPM), originally developed for 
the GPP [7], is extended here for the generalized problem. PPM yields good so­
lutions as it examines many configurations; nevertheless its parallel complexity is 
favorable. It is also attractive because it takes advantage of a given initial mapping. 

The min cut procedure 

The PPM heuristic is based on a mincut-procedure, which is applied to every pair 
of clusters. It examines the effect on the cost function of moving a graph node 
from one cluster to the other one, and of exchanging graph nodes between both. 
Move and exchange operations are performed until no further improvement can be 
obtained. Csc and CMC are such that the effect of moves and exchanges is easy 
to compute. 
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The PPM algorithm 

The PPM heuristic starts from an initial partitioning and tries to improve it in 
a number of passes. In each pass the min cut procedure is applied once for every 
possible pair of partitions. This process continues until no further improvement 
is achieved. The computational complexity of PPM for P-way partitioning of a 
graph of degree G with N nodes is determined by : 

- the number of passes QpPM, depending on the initial solution and on G 
- the number of mincut operations executed in each PPM pass: P(P - 1)/2 
- the average number of passes in the mincut procedure Q m 

- the average number of graph nodes involved in each min cut operation: 2N / P 
- the complexity 0 of evaluating a move or exchange, depending on G 

The sequential complexity is given by : 

seq _ P(P - 1) 2N _ () 
TpPM - QpPM 2 Q m pO - QpPMN P - 1 Qmo . 

It has been shown that it is possible to rearrange the pairwise mincut invoca­
tions on a P-processor hypercube, such that always P /2 mincut operations are 
performed simultaneously (cf. the algorithm given in [7]). Assuming that commu­
nication is negligible, the parallel complexity is : 

par P-1 
TpPM = QPPMN -p 2Qmo 

In the context of run-time remapping the size of the graph is proportional to the 
number of processors N = (3P. The constant (3 is the average number of tasks per 
processor. In typical applications G is independent of the number of processors. 
The time consumed by run-time parallel PPM remapping is : 

TRemap(P) = QPPM(3(P - 1) 2Qmo = QPPM(3(P - 1)J-l 

in which J-l depends on the graph degree. The remapping time increases linearly 
with the number of processors, in spite of the use of parallel remapping techniques. 

In order to validate the assumptions on QpPM and Qm, three tests have been 
performed (with Gsa). Let the process interaction graph be a ring of N units, so 
G = 2. We put (3 = 10. The initial distribution has precisely N / P units in each 
processor. As the calculation costs were chosen to increase linearly along the ring 
from 1.0 to 2.0, the optimal load balance A = l:p l:9iESp Aid p. maxp l:9iESp Aii 
is 100 %. The communication costs were (a) zero (b) small (c) of the same order as 
the calculation costs. We measured the times T and T' to perform Parallel PPM 
including resp. excluding communication on an Intel iPSC/860 hypercube. 

Table 1 demonstrates that PPM finds a perfect load balance in cases (a) 
and (b) or a good trade-off between calculation and communication in case (c), 
indicating that the penalty function is well-chosen. Both QpPM and Q m are small. 
As predicted by the complexity analysis, J-l is almost constant. Figure 1 shows 
for case (c) that the communication overhead takes about 25 % of the parallel 
remapping time. 
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P N A T'(ms) apPM am J.l(ms) 
a: Aij = 0 

1 10 100 0.0 0 0.0 -
2 20 100 3.1 2 2.0 0.15 
4 40 100 8.2 2 1.5 0.14 
8 80 100 46.2 4 1.4 0.17 

16 160 100 132.1 4 1.5 0.22 
b: Aij < Aii 

1 10 100 0.0 0 0.0 -

2 20 100 3.0 2 2.0 0.15 
4 40 100 8.5 2 1.5 0.14 
8 80 100 56.4 5 1.4 0.16 

16 160 100 150.9 5 1.4 0.19 
c : Aij ~ Aii 

1 10 100 0.0 0 0.0 -
2 20 96.4 2.3 2 1.5 0.12 
4 40 98.5 16.3 4 1.4 0.14 
8 80 94.5 41.5 4 1.3 0.15 

16 160 95.5 156.1 6 1.1 0.17 

TABLE 1. Analysis of the Parallel PPM algorithm for the ring problem 

5 Experimental results 

We have implemented the Jameson multigrid algorithm using the data parallel 
programming library LOCO [4] on the Intel iPSC/860 hypercube. We computed 
the flow through a channel (horizontal inflow at Mach 2, p = 1.271kg/m3 , p = 
101300Pa); figure 2 shows the iso-mach lines. The initial grid was taken sufficiently 
fine to prevent the adaptation process from being misguided. A mesh ratio p = 
#9(1) /#9(l-1) ~ 2 to 3 was used, typical of 2-D irregular mesh hierarchies [3] . 
The initial mesh contained 444 cells; the fourth multigrid level consisted of 4536 
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FIGURE 2. Supersonic flow through a channel: iso-mach lines 
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FIGURE 3. Mesh and partitioning at the 4th multigrid level 

Method seconds/iteration digits/iteration relative speed 
FE 0.189 0.00052 1.0 
MG-FE 1.760 0.036 7.5 
MG-RK4 3.387 0.038 4.2 

TABLE 2. Relative convergence speed at the fourth multigrid level 

cells. HIRB partitioning was used (d. figure 3 for P = 4). The same flow problem 
solved with a logically rectangular mesh with the same number of cells gave a 
spatial accuracy which was a factor of 2.5 worse. 

Figure 4 compares the convergence of FE (LT, CFL = 0.7) , a multigrid 
V-cycle with FE (LT, CFL = 0.7, 5 relaxations per cycle), and a multigrid V­
cycle based on RK4 (LT, CFL = 1.25, 3 relaxations per cycle). Note that the 
computational cost of an iteration is different for each method. The multigrid 
methods have a convergence speed which slightly depends on the number of levels 
as the mesh ratio is not exactly constant , while single-grid convergence slows down 
as the discrete problem gets larger. A similar behavior was observed for subsonic 
flow problems, be it that convergence is a lot slower. Table 2 lists the (sequential) 
asymptotic execution speed r elative to FE t ime-stepping. At the fourth level the 
V-cycle with FE is ~ 70 times faster than FE in terms of number of iterations, and 
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FIGURE 4. Convergence history of explicit multigrid methods 

P N G A apPM am 
1 1 1 100 - -
2 9 6 97 2 1.6 
4 17 8 95 3 1.2 
8 26 11 94 5 1.4 

16 33 11 91 4 1.3 

TABLE 3. PPM parameters at the 4th multigrid level 

7.5 times faster in terms of sequential computation time. The relative performance 
of multigrid will even be better for larger problem sizes. 

The remapping procedure took substantially less time than the grid refine­
ment process. Table 3 lists the PPM parameters for solving the load balancing 
problem at the fourth multigrid leveL The remapping procedure is based on the 
weight matrix A, giving information about the time involved in calculation and 
communication operations : 

ai is the number of floating point operations required for part Pi during one multi­
grid cycle (proportional to the number of cells in Pi and to the number of smoothing 
steps). Intra-grid communication requires exchanging bij numbers between Pi and 
Pj (proportional to the number of edges along the interface between both parts, 
and to the number of smoothing steps). The intergrid transfer message length to 
or from parent part Pj is Cj (proportional to the number of cells in parent Pj, 
and to the number of coarse grid corrections). Based on these cost estimates, a 
load balance between 90-100 % is always obtained when N / P > 4. A difficulty is 
the inaccuracy of the estimates : e.g. imposing boundary conditions may take an 
unpredictable amount of time. Note that CMG does not try to optimize A, but is 
prepared to accept a worse load balance if this can save intergrid communication 
overhead. This. is the case on the coarsest multigrid levels, where there may be only 
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enough work to keep a few processors busy (an effect known as agglomeration). 
The parallel efficiency of an algorithm is defined as: Ep = T(l, S) / P . T(P, S), 

in which T(P, S) denotes the time to apply the algorithm to a problem of size S on 
a machine with P processors. For the V-cycle with FE, our current implementation 
achieved Ep ~ 75 % for P = 16. Parallel efficiency losses are due to load imbalance 
(0-10 %), data exchange communication (5-10 %), and the double calculation of 
fluxes for edges along part interfaces (5-15 %) : these are calculated twice, once for 
each cell on either side of part interfaces. Communication and double calculation 
losses decrease as the problem size per processor is larger. 

6 Conclusion 

Three acceleration techniques have been combined in one Euler solver. Incorpo­
rating adaptivity and multigrid in a distributed memory parallel code poses a 
particular load balancing problem. We have extended the original Partitioning 
by Parallel Pairwise Mincut algorithm to allow the solution of this problem. For 
this application, mappings of good quality are obtained in a reasonable time. The 
time taken by parallel PPM increases approximately linearly with the number of 
processors. In spite of this asymptotic behavior, the remapping overhead in our 
application remains small compared to the time invested in grid refinement. 

The proposed code proves to be effective on medium-sized parallel computers. 
For a model problem on a 16 processor machine, a global acceleration factor of 
the order of (2.5)2 x (7.5) x (16 x 0.75) ~ 600 has been observed for Jameson 
multigrid with Forward Euler time-stepping. When larger problems are solved, 
each of the three acceleration techniques will be more effective, leading to a larger 
global acceleration factor. 
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Multigrid Methods for Steady 
Euler Equations Based on 
Multi-stage Jacobi Relaxation 
Erik Dick and Kris Riemslagh1 

1 Introduction 

First order accurate upwind methods of flux-difference type applied to steady 
Euler equations generate a set of discrete equations of positive type. This set can 
be solved by any classic relaxation method in multigrid form. The set of discrete 
equations generated by a higher order accurate form does not have this property 
and cannot be solved in the same way. The common approach is then to use defect 
correction [1, 2, 3]. In this procedure the multigrid method is applied to the first 
order accurate form and constitutes an inner iteration for a higher order correction 
only made on the finest grid. The defect correction proves to work well in many 
applications. The speed of convergence is however largely determined by the outer 
iteration and sometimes is found to be rather dissapointing, especially when the 
first order and the higher order solutions differ significantly. It can be expected 
that if the higher order approximation also could be used in the multigrid itself a 
better performance could be obtained. A second difficulty is that often convergence 
cannot be obtained unless a suitable initial flow field is specified, i.e. there is a risk 
of choosing an initial approximation which is out of the attraction region of the 
iterative method. 

In principle, both difficulties can be avoided by using time stepping methods 
on the unsteady equations instead of relaxation methods on the steady equations. 
The higher order accurate discretization can then be used on any grid so that 
the defect correction becomes unnecessary and convergence is guaranteed starting 
from any initial field due to the hyperbolicity of the equations with respect to 
time. Many multi-stage time stepping methods with optimization strategies for 
the smoothing have been proposed for this purpose in recent years. We cite the 
methods of Van Leer et al. [5], Catalano and Deconinck [6], among others. 

The drawback of time stepping is that, even if local time stepping is used, 

1 U niversiteit Gent 
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium 
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FIGURE 1. Control volumes in the interior and on a solid boundary. 

the smoothing only can be tuned well for the fastest wave components in the flow­
field. This results in a rather poor multigrid performance. As a remedy to this, we 
propose to use Jacobi relaxation as a basic algorithm, equivalent to single stage 
time stepping, and to bring in multi-staging in the same way as single stage time 
stepping is transformed into multi-stage time stepping. This procedure has the ad­
vantage that all wave components are first scaled so that, so to speak, they move 
all with the same CFL-number. This guarantees optimal tuning for all wave com­
ponents. Nevertheless, the hyperbolicity with respect to the relaxation direction, 
i.e. the ficticious time, is not lost. The principle of combining Jacobi relaxation and 
time stepping was first suggested by Morano et al. [7], but not worked out. The 
present authors made a preliminary analysis of the possible multigrid performance 
in [8] and an analysis of the performance for the linear K = 1/3 scheme in [9]. 
Here, we analyse the performance for the non-linear TVD-scheme. 

2 The flux-difference splitting method 

The discretization is based on the vertex-centred finite volume method. Figure 
1a shows a control volume centred around a vertex (i, j) in the grid. The control 
volumes are formed by connecting the centres of gravity of the surrounding cells. 

The flux-difference over the surface 5 i +1/ 2 is written as 

(1) 

where U stands for the vector of conserved variables, 8i+1/2 is the length of the 
surface and Ai+1/2 is the discrete flux-Jacobian. The first order upwind flux is 
defined by 

1 1 > + _ 
Fi+1/2 = 2(Fi + Fi+1) - 2.'ii+1/2(Ai+1/ 2 - Ai+1/2) (Ui+l - Ui), (2) 

where A;+1/2 and A;+1/2 are the positive and the negative parts of Ai+l/2' The 



5. Multigrid Methods for Steady Euler Equations 177 

upwind flux can also be written as 

(3) 

This flux expression shows the incoming wave components. To determine the flux­
Jacobians, we use here the polynomial flux-difference splitting. Details on this 
method are given in [3, 4]. The technical form of the splitting is however not 
relevant for the method we describe here. The second order accurate flux is de­
fined using the flux-extrapolation technique. Details on this technique, using the 
min mod-limiter , are again given in [3, 4]. 

The resulting flux expression is 

(4) 

where F.C. denotes the flux-correction for higher order accuracy. 

3 Boundary conditions 

The examples to follow are channel flows. These internal type flows have solid 
boundaries, inlet and outlet boundaries. For inflow and outflow boundaries, the 
classic extrapolation procedures are used. At solid boundaries, impermeability is 
imposed by setting the convective part of the flux equal to zero. This requires a 
modification of the flux expression (4). For (i, j) a point on the boundary, the point 
(i + 1, j) does not exist (see figure 1 b ). This can be introduced in (4) by setting the 
term F.C. to zero and by taking the values of the variables in the ficticious node 
(i+ 1, j) equal to the values of the variables in the node (i, j). The matrix A;+1/2 in 

(4) is then calculated with the values of the variables in the node (i,j). Of course, 
since the difference of the variables is zero, the first order difference part in (4) is 
also zero. The impermeability is introduced trough replacing Fi by Fi - Fi!, where 
Fi! is the convective part of the flux. The term - Fi! can be seen as a new flux 
correction term F.C. As will be discussed in the next section, the matrix A;+1/2 
at a solid boundary plays an important role in the relaxation method, although it 
is multiplied with a zero term. 

4 The multi-stage Jacobi relaxation 

In earlier multigrid formulations for steady Euler equations the Gauss-Seidel re­
laxation method was always used [3, 4]. Gauss-Seidel relaxation was preferred to 
Jacobi relaxation because of its much better smoothing properties (effectiveness 
associated to the coarse grid correction) and much better speed of convergence (ef­
fectiveness associated to the relaxation method itself). A simultaneous relaxation 
method, like the Jacobi relaxation has the advantage of being easily vectorizable 
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and parallelizable. The only drawback is that a simultaneous relaxation method, 
at least in its basic form, is much less effective than a sequential method. 

To repair this, we bring multi-staging into the Jacobi method in the same way 
as multi-staging is used for time stepping methods and we use the optimization 
results known for time stepping schemes. 

For the time-dependent Euler equations, the discrete set of equations associ­
ated to the node (i, j) reads 

(5) 

where the index k loops over the faces of the control volume and the surrounding 
nodes. A single stage time stepping method on (5) gives 

( VOli,j) ~A-( n n) ~ n --;s:t 8Ui,j + ~ k Uk - Ui,j Sk + ~ PC. = O. 
k k 

(6) 

The Jacobi-relaxation applied to the steady part of (5) reads 

LAk(Ur - Ui~t)Sk + LPC.n = O. (7) 
k k 

Using increments 8Ui,j = Ui~t - Ui~j' this gives 

( - LAkSk) 8Ui ,j + LAk(uJ: - U[,'j)Sk + LF.C.n = O. (8) 
k k k 

The 4x4 matrix coefficient of 8Ui ,j in (8) is non-singular. In the expressions (6) to 
(8), the matrices Ak are on the time or relaxation level n. The difference between 
(single stage) Jacobi relaxation (8) and single stage time stepping (6) is seen in 
the matrix coefficient of the vector of increments 8Ui ,j. 

In the time stepping method, the coefficient is a diagonal matrix. In the 
Jacobi method, the matrix is composed of parts of the flux-Jacobians associated 
to the different faces of the control volume. The collected parts correspond to 
waves incoming to the control volume. In the time stepping, the incoming waves 
contribute to the increment of the flow variables all with the same weight factor. In 
the Jacobi relaxation the corresponding weight factors are proportional to the wave 
speeds. As a consequence, Jacobi relaxation can be seen as a time stepping in which 
all incoming wave components are scaled to have the same effective speed, i.e. all 
have a CFL-number equal to unity. Using terminology already in use nowadays, 
time stepping can be referred to as scalar time stepping while Jacobi relaxation 
can be referred to as matrix time stepping. 

For a node on a solid boundary, an expression similar to (8) is obtained 
provided that for a face on the boundary the flux expression (4) is used and that 
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the difference in the first order flux-difference part is introduced as Ui~j - utt, 
similar to the term Uk - Ui~t which is used for a flux on an interior face. So, in 
order to avoid a singular matrix coefficient of the vector of increments in (8), this 
treatment at boundaries is necessary. A boundary node can then be updated in 
the same way as a node in the interior. The solid boundary treatment is different 
from the treatment used earlier [3, 4]. 

To bring in multi-staging is now very simple. For instance, a three-stage 
modified Runge-Kutta stepping is given by 

UO Un 
',J 

U1 UO + 0'1 bUD 

U2 UO + 0'2 bU I 

U3 UO + 0'3 bU2 

Un+! 3 
',J U, 

where bU is the increment obtained from single stage time stepping or single stage 
Jacobi relaxation. The last coefficient in the stepping series (here 0'3) has the 
significance of a C F L-number for time stepping. We refer to this coefficient as the 
step size or simply as the C F L-number. 

5 Optimization of the multi-stage parameters 

We follow here the Fourier-representation method for operators and solution meth­
ods used e.g. by Van Leer et al. [5]. 

Figure 2a shows the Fourier-symbols of the first order upwind scheme (Ul), 
the second order upwind scheme (U2), the second order central scheme (C2) and 
the K, = 1/3 scheme (K3). Figure 2b shows the contours of the amplification 
factor for three-stage stepping with optimum smoothing for the first order upwind 
scheme, according to Van Leer et al. [5]. Figure 2c shows the contours for the K3-
scheme, optimized in the same way. Figure 2d shows the contours corresponding 
to three consecutive single stage steppings with relaxation factor 0.5. Interpreted 
as a three stage stepping, the corresponding coefficients are 1/6, 1/2, 3/2. The 
three stage steppings illustrated in figure 2b, c and d are designed to optimize 
the smoothing of a particular linear discretization scheme. We consider now also 
steppings suitable for use with the non-linear TVD-scheme. For these steppings, 
stability for both the central discretization C2 and the upwind discretization U2 is 
necessary. Figure 2e shows contour levels of a three stage stepping stable for both 
the C2- and U2-schemes and with maximum step size. Figure 2f shows the contour 
levels of a similar five stage stepping. Figure 2g shows the contour levels for a five 
stage stepping stable for the U2- and C2-schemes and with optimum smoothing 
for the U2-scheme. Figure 2h shows a three stage stepping scheme stable for the 
K3-scheme, but not for the U2- and C2-schemes, with maximum step size. 
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FIGURE 2. a: Fourier symbols of the basic schemes. Symbols from 8 = 0 to 8 = -Jr. 

The dot corresponds to 181 = 'if /2; b: Amplification factor for three stage stepping with 
optimized smoothing for Ul (coefficients 0.223, 0.60, 1.50) [5]; c: Idem for the K3-scheme 
(coefficients 0.382, 0.664,1.325) [5]; d: Idem for a three stage scheme lineary equivalent 
to three consecutive Jacobi relaxations (coefficients 0.167, 0.50, 1.50); e: Amplification 
factor for three stage stepping stable for U2 and C2 and with maximum step size (co­
efficients 0.185, 0.443, 0.712); f: Idem for five stage stepping (coefficients 0.102, 0.248, 
0.476, 0.893, 1.55); g: Amplification factor for five stage stepping stable for U2 and C2 
and with maximum smoothing for U2 (coefficients 0.0867, 0.202, 0.366, 0.633, 1.14); h: 
Amplification factor for three stage stepping with maximum step size for the K3-scheme 
(coefficients 0.521,0.857,1.82); Amplification levels shown: 1,0.5,0.2,0.1,0.05,0.02, ... 
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The results shown in figure 2 apply to the one-dimensional convection equa­
tion. As is known, the set of Fourier symbols for a two-dimensional convection 
equation lies inside the Fourier symbol of a one-dimensional equation. So, two­
dimensional stability is guaranteed for the equation when one-dimensional stabil­
ity for the equation is obtained. It is difficult to make precise statements about 
smoothing. 

6 Performance analysis 

6.1 TEST PROBLEMS 

A channel with a circular perturbation in the lower wall is used. The grid has 32 by 
96 cells. Four consecutive grids are used. The coarser grids have 16 x 48,8 x 24 and 
4 x 12 cells. The height of the channel is equal to the length of the perturbation. 
The height of the circular perturbation is 4.2% of its length. The grids used have 
an almost uniform distribution of the mesh-size. The test geometry is the same as 
in [8,9] 

The same multigrid structure as in [3, 4, 8, 9] is used. The W-cycle is em­
ployed. On each level there is one pre- and postrelaxation consisting of either 
three Gauss-Seidel relaxations or a multi-stage Jacobi relaxation. The defect re­
striction operator is full weighting. The computation starts on the coarsest grid. 
To evaluate the work, the number of relaxation steps or stages are counted and 
the number of defect corrections and defect calculations. One basic operation on 
the finest grid is considered as 1 work unit. So the work unit corresponds to 3201 
point-relaxation operations. A defect correction or a defect calculation is some­
what less expensive than a relaxation operation. Nevertheless these operations are 
given the same weight to compensate for the neglect of the work involved in the 
grid transfer. Since precisely the defect operations arc connected with grid transfer 
this is believed to be fair. A relaxation operation for the first order (Ul), for the 
third order (K3) and for the TVD operator are counted to be equivalent. This is 
not completely correct. The third order and the TVD operator are slightly more 
expensive. 

Two flow fields are considered : a transonic flow field corresponding to an 
outlet Mach number of 0.79 and a supersonic flow field corresponding to an inlet 
Mach number of 1.39. The quality of the solutions is not particularly good due to 
the rather low resolution in the shock-regions (results not shown). 

6.2 DEFECT CORRECTION 

Figure 3 shows the convergence results for the transonic and the supersonic test 
cases using defect correction. Gauss-Seidel relaxation is compared to multi-stage 
Jacobi relaxation. Convergence results are expressed by the /oglO of the Loo-norm 
of the defect as function of the number of work units. For the Gauss-Seidel, three 
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FIGURE 3. Convergence behaviour for defect correction. Transonic (left) and supersonic 
(right) test cases. Gauss-Seidel relaxation (GS). Three stage Jacobi relaxation with Van 
Leer coefficients (VL1.5) and consecutive coefficients (CS2 and CS2.5). 

relaxations are done per level. The relaxation factor is 0.95 for the transonic case 
and 1.0 for the supersonic case. The ordering is lexicographic. In the first sweep 
the relaxation starts in the left bottom corner, goes up in the first column, then in 
the second column and so forth up to the right top corner. In the second sweep the 
ordering is reversed. The third sweep has again the ordering of the first sweep. The 
convergence history is also shown for the three stage stepping with the Van Leer 
coefficients (set of figure 2b) and with the consecutive coefficients with different 
step sizes. With a consecutive scheme we mean a three stage Jacobi relaxation 
lineary equivalent to three consecutive single stage Jacobi relaxations. We denote 
such a scheme by CS followed by the step size. The amplification factors for the 
CS1.5 scheme are shown in figure 2d. The coefficients are (1/9, 1/3, 1) multiplied 
with step size. 

The three stage Jacobi schemes with optimum smoothing (the convergence 
behaviour of CS1.5 is not shown but is almost identical to the behaviour of VL1.5) 
do not perform as good as a three stage scheme with a somewhat larger step size. 
A step size around 2 seems to be the best. This proofs that sm90thing is to be 
sacrificed a bit in favour of convection speed. Sufficient smoothing is necessary but 
not optimum smoothing. A step size of 3 is the stability limit. Even a step size of 
2.5 performs better than the step size of 1.5 for optimum smoothing. 

6.3 MIXED DISCRETIZATION 

By mixed discretization we mean that the second order TVD-operator is used in 
all relaxations on the finest level but that an other (linear) operator is used on the 
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FIGURE 4. Convergence behaviour for mixed discretization. Transonic (left) and super­
sonic (right) test cases. TVD on finest level, U1 or K3 on coarser levels. 

coarser levels. Figure 4 shows the convergence behaviour for the TVD-operator 
on the finest level with three stage stepping with maximum C F L (coefficient set 
of figure 2e) and with five stage stepping with maximum C F L (coefficient set of 
figure 2f) combined with several three stage steppings for the first order operator. 

The performance is not very sensitive to the choice of the coefficient set on 
the coarser levels. So, again optimum smoothing is not necessary. The five stage 
stepping performs best. 

In the transonic case the best obtained performance, i.e. TVD5+CS2.5, does 
not compete with the performance of the Gauss-Seidel defect correction (figure 3), 
but in the supersonic case the mixed discretization TVD5+CS2.5 performs better 
than the Gauss-Seidel defect correction. This easily can be understood. In the 
transonic test case the shock is largely aligned with the grid. As a consequence, the 
second order TVD-solution does not differ very much from the first order solution. 
For the supersonic test case the difference between the second order and the first 
order solutions is rather large. This makes defect correction a much more effective 
procedure in the transonic test case than in the supersonic test case. The better 
performance of the mixed discretization in the supersonic test case also shows 
that it pays off to bring the second order operator in the multigrid formulation in 
those cases where second and first order solutions differ significantly. We further 
illustrate this on figure 4 where also the convergence behaviour is shown for mixed 
discretization but with the K3 operator on the coarser levels. The convergence 
improves somewhat, since the K3 operator is closer to the TVD operator than the 
first order upwind operator Ul is. 
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FIGURE 5. Convergence behaviour for full second order formulation (FULL) with the 
TVD operator on all levels. Transonic (left) and supersonic (right) test cases. Convergence 
behaviour for mixed discretization with the K3 operator on coarser levels, explicit and 
implicit residual weighting. Comparison with Gauss-Seidel (GS). 

6.4 FULL SECOND ORDER WITH IMPLICIT RESIDUAL WEIGHTING 

We illustrate now the performance for the TVD-operator used on all levels. Since 
the TVD-operator changes from the central to the upwind scheme and vice versa, 
depending on the solution, no smoothing can be obtained for this operator. In 
order to make the multigrid method possible, the restriction of a smooth residual 
must be obtained by supplementary means. The technique of explicit and implicit 
residual smoothing is well known for use with time stepping schemes. In analogy 
with the residual smoothing we bring here implicitness in the weighting. The usual 
full weighting as restriction is already a residual smoother of explicit type. An 
implicit version of it can be much more efficient. In one dimension an explicit 
residual weighting (ERW) on the same grid gives 

(9) 

where f = 0 corresponds to injection and f = 1/2 corresponds to full weighting. 

ing. 
Figure 6 compares the amplification factor for both types of residual weight-

A corresponding implicit residual weighting (IRW) is given by 

(1 + 2f)Ri - f(k-l + RHl) = Ri . (10) 

The obtained weighted residuals Ri still have to be injected to the coarser grid. 
By enlarging the value of the weight f, the smoothing of the implicit residual 
weighting (IRW) increases. Maximum smoothing does not correspond to optimum 
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FIGURE 6. Amplification factor for explicit (left) and implicit (right) versions of residual 
weighting. 

multigrid performance. The optimum is a compromise between the reduction of 
high frequency components, i.e. diminishing of the alaising in the fine to coarse 
grid transfer, and leaving as much as possible intact the low frequency components, 
i.e. the components that have to be treated by the coarse grid. In two dimensions 
it was found that E = 2 was optimum for a nine point stencil of form 

(1 + 6E)k . ~,J E(Ri-l,j + Ri+I,j + Ri,j-I + Ri,HI) 
E - - - -
2"(Ri - l ,j-1 + Ri+I,j-1 + Ri-I,j+l + Ri+I,HI) = Ri,j. 

Figure 5 shows the convergence behaviour for a full second order formula­
tion, i.e. using the TVD operator on all levels, with implicit residual weighting, 
compared to mixed discretization using the K3 operator on the coarser levels. Five 
stage stepping with maximum C F L is used for the TVD operator (coefficients of 
figure 2f). Three stage steppings with optimum smoothing coefficients with ERW 
(coefficients of figure 2c) and with maximum step size with IRW (coefficients of 
figure 2h) are used for the K3 operator. 

In the full second order formulation, it does not payoff to change the coef­
ficient set from a set not corresponding to maximum step size. One could try to 
introduce smoothing for the U2-operator (coefficient set of figure 2g). This does 
not help since smoothing never can be obtained for the C2 operator. As can be 
seen in figure 5, the mixed discretization works better than the full second order 
formulation. The best mixed discretization is the one with the K3 operator on the 
coarser levels. It does not payoff to enlarge the step size for the K3 operator, since 
smoothing with the operator itself is then lost and has to be introduced by implicit 
residual weighting. The resulting performance is not better than the performance 
with a coefficient set corresponding to smoothing and explicit residual weighting. 
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7 Conclusion 

By the combination of Jacobi relaxation and multi-stage stepping, multigrid meth­
ods for Euler equations can be constructed that are more general than defect cor­
rection procedures. With implicit residual smoothing it is even possible to use the 
TVD operator on all grid levels. The best performance is however obtained with 
a mixed discretization formulation with the K3 operator on the coarser levels. In 
the case where the second order solution and the first order solution differ con­
siderably, this formulation is more efficient than a defect correction formulation 
based on Gauss-Seidel relaxation. 
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M ultigrid and Renormalization 
for Reservoir Simulation 
Michael G Edwards 1 and Clive F Rogers2 

ABSTRACT We present a new approach to multigrid for the case of strongly 
varying equation coefficients which arise in the reservoir simulation pressure equa­
tion. Renormalization (hierarchical rescaling) is incorporated into the cell centred 
multigrid method of Wesseling et.al. and the new method is applied to the pressure 
equation. Significant improvement in multigrid performance is obtained with the 
new scheme for typical cases of randomly varying permeability distributions of fi­
nite correlation length. A new 9-point scheme is described which is flux continuous 
both for diagonal and full permeability tensors. Results from the new scheme are 
presented. 

1 Introduction 

The flow equations of reservoir simulation are a coupled system of hyperbolic 
conservation laws for fluid transport and parabolic/elliptic equation for pressure 
(elliptic for incompressible flow). The coupling between the equations is provided 
by Darcy's law which defines the fluid velocity to be proportional to the medium 
permeability and pressure gradient. The pressure equation is generally of the form 
[2], 

V·(K V ¢) = f 

where K is a full matrix of tensor permeabilities and f is the source/sink 
distribution dependent on the wells. The solution of the pressure equation typically 
consumes between 50% and 90% of the net cpu time used in reservoir simulations. 
Thus the development of fast elliptic solvers remains an active area of simulation 
research. To date most commercial simulator pressure solvers employ some variant 
of a pre-conditioned conjugate gradient technique, where the pre-conditioning is 

1 Current address: Dept.of Petroleum Engineering, CPE, University of Texas at Austin, 
Austin TX 78712, USA. 

2BP Exploration Operating Co Ltd, BPX Technology Provision, Chertsey Road, 
Sunbury-on-Thames, Middlesex TW16 7LN, United Kingdom 
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based on an approximate LU factorisation. 
Multigrid for the reservoir simulation pressure equation with a diagonal per­

meability tensor has been investigated by several authors [3,4,5,6,7,8]. The main 
attraction of multigrid is the theoretical and observed convergence rate which is 
proportional to O(N), where N is the number of grid blocks. In contrast, conju­
gate gradient methods have a convergence rate O(Na), where a is greater than 1 
and depends on problem dimension, pre-conditioning and ordering of the unknown 
pressures. Superior performance of multigrid over conjugate gradient methods for 
two dimensional problems greater than 33*33 have been reported [3]. 

One of the difficulties of applying multigrid to reservoir simulation is in de­
terming how to treat the strongly varying coefficients which arise due to the perme­
ability distribution. The strategies described in the literature fall into two camps: 

(a) Cell vertex discretisations where multigrid interpolation must be operator 
dependent to ensure MG convergence, following Alcouffe et.al. [1] 

(b) Cell centred discretisations where polynomial interpolation is found to be 
sufficient, following Wesseling et.al. [9,10] 

In this paper we investigate the Wesseling method. 
The purpose of this paper is two fold; first to report a modification to Wessel­

ing's multigrid method which exploits spatial renormalization and demonstrates 
enhanced multigrid performance for some realistic permeability distributions. Sec­
ondly to introduce the notion of flux continuity for diagonal and full permeability 
tensors within a nine point scheme framework. While our focus here is in two 
dimensions, we do not anticipate any fundamental difficulty in extending our op­
erators to three dimensions. 

2 M ultigrid methods for reservoir simulation 

A key issue in the construction of reservoir simulation multigrid schemes is the 
development of operators which can cope with rapidly varying coefficients with 
large jumps of orders of magnitude and large numbers of interfaces which can 
occur in a randomly varying reservoir rock permeability maps. 

Reservoir simulation multigrid literature has in the main addressed the diag­
onal tensor pressure equation using either cell vertex or cell centred formulations 
[3-8]. 

Cell vertex multigrid schemes have been based on the work of Alcouffe et. al. 
The permeability is defined at cell centres and flow variables including pressure are 
defined at the cell vertices or corner nodes. A control volume is constructed around 
a node and a face value permeability (transmissibility) is defined by an appropriate 
average of the cell centred permeabilities. Definition of coarse grid transmissibilities 
involves weighted averages of fine grid face values using homogenisation theory 
[1]. Authors of other multigrid schemes based on this approach do not explicitly 
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discuss the definition of coarse grid transmissibilities, but leave it defined implicitly 
through the use of the Galerkin operator. 

A common key ingredient in these schemes involves the definition of the pro­
longation operator which is constructed such that flux continuity is maintained. 
This construction is crucial to obtaining multigrid convergence for cell vertex 
schemes according to Alcouffe et al. and is employed by [3-8]. While all authors 
use a Galerkin formulation, and construct restriction operators from the adjoint 
of the resulting flux continuous prolongation operator, significantly the adjoint of 
the standard polynomial interpolation is found to be sufficient for difficult cases 
by Alcouffe et al. [1]. 

Cell centred multigrid schemes for elliptic equations with diagonal tensors 
and large variations in coefficients have been proposed by Kahil & Wesseling. 
Permeability and pressure are both defined at the cell centre (control volumes are 
the actual grid cells), and the face coefficients are defined by harmonic means of 
adjacent permeabilities for the pressure equation ensuring flux continuity on the 
finest (top level) grid, which is precisely the standard reservoir simulator scheme. 
In this multigrid scheme, coarse grid pressure locations are not embedded within 
fine grid locations, which is an important distinction between this approach and 
the cell vertex formulation. Coarse grid transmissibilities are obtained by a simple 
mean of the fine grid face values figure 1(a) as part of the Galerkin formulation. 
Namely, 

KX. = ~(K2X' 2' + K2x, 2 '-1) 
2,) 2 z, ) z, ) 

The prolongation operator is defined by polynomial approximation (a fun­
damental difference to the cell vertex approach), and restriction is defined by the 
adjoint of bilinear interpolation. However, since a coarse grid value lies at the cen­
tre of the corresponding four fine grid cells, it is possible to use piecewise constant 
prolongation and not violate flux contiuity constraints, as no neighbour informa­
tion is required. We therefore conclude that this scheme is consistent with that of 
Alcouffe et al. since the prolongation operator does not violate flux continuity. 

3 Renormalization 

Fluid and rock properties such as permeability and porosity are measured on a 
very fine scale, generally ten orders of magnitude smaller than a typical reser­
voir grid block in two dimensions. The aim of renormalization is to replace fine 
scale properties by effective properties on a coarse grid cell. This is achieved by 
a hierarchical rescaling of the rock properties. The initial fine grid domain 0 is 
considered to comprise a set of local sub-domains Om with boundary 80m, where 
Om is of dimension m x m. Each subdomain Om is replaced by a single cell, by 
solving for the pressure field over Om, subject to local boundary conditions on 
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80m. The effective permeability for Om is defined such that the flux through the 
outlet boundary of 80m is equal to the product of the effective permeability and 
the global pressure gradient across Om. The process is repeated in a hierarchical 
fashion after identifying the next level of subdomains of dimension m x m. 

For a diagonal tensor the choice m = 2 corresponds to the closed form analytic 
solution derived by a resistor network analogy [11]. This method has been well 
tried and proves to be extremely economic in deriving effective permeabilities at 
the reservior grid block scale. This 2*2 cell renormalization technique provides a 
natural permeability restriction operator both for grid adaptivity [12] and for use 
in multigrid. 

4 Renormalisation coupled with multigrid 

The multigrid scheme of Wesseling is the natural choice for Reservoir simulation 
with a cell centred discretisation. Use of a harmonic mean of neighbouring perme­
abilities ensures flux continuity on the finest grid. Piecewise constant prolongation 
does not violate flux continuity and use of the adjoint of bilinear interpolation as 
restriction for the Galerkin operator ensures that the necessary regularity condi­
tion (mp + mr > 2m) for convergence is obeyed. A certain parallel can be drawn 
with the scheme of Alcouffe et al., where it is observed that only prolongation 
need be flux continuous. However, the performance of this scheme can sometimes 
deteriorate with complexity in the media permeability, although convergence is 
still obtained. 

Renormalization, with a Dm (2 x 2 subdomain), provides a natural mobil­
ity restriction operator, which fits neatly within the Wesseling scheme. By using 
renormalization prior to the multigrid solution algorithm effective permeability 
fields are determined on all grid levels. This facilitates the use of a flux contin­
uous discrete operator on all grid levels via a harmonic mean of the respective 
neighbouring cell permeabilities for each level figurel(b). Namely 

5 Diagonal tensor results 

Geostatistics and reservoir description are playing an increasingly important role 
in reservoir simulation. Well measurements, seismic and outcrop studies often pro­
vide the only hard facts, which are used as a basis for generating the most likely 
realization for a reservoir description via geostatistics technique. The resulting 
permeability fields are generated on a fine scale, far smaller than can be modelled 
by a reservoir simulator. Consequently, coarse scale effective permeabilities need 
to be derived by renormalization techniques and the test cases chosen are taken 
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from realizations on a range of length scales. 
The standard cell centred multi-grid scheme of Wesseling et al. is compared 

with renormalized multigrid employing local cell renormalization for a range of 
diagonal tensor test cases. Problems ranging from model reservoir simulation cases 
described in the literature to general cases generated by means of geostatitical 
techniques are presented. 

To aid comparison and avoid complications from different applied boundary 
conditions all the test cases are solved with two isolated sources or wells in a 
quarter five spot configuration. In some case the appropriate physical problem 
may more realistically correspond to a vertical cross-section with a different source 
distribution. A fixed rate production well at the top right hand corner grid block 
and a pressure constrained injection well at the bottom left hand grid block are 
used in each of the examples. Consequently, f takes the form: 

where Di and Dp are 1 in well blocks and zero elsewhere. A and ¢bh are param­
eters describing the well connection factor and pressure respectively. This converts 
the pressure equation into a helmholtz equation with A added onto the diagonal of 
the well block equation. The singular nature of the Neumann problem is lifted, but 
importantly for the success of the multi-grid method the implied global constraint 
must be implimented in discrete form. Since the discrete form of the diffusion op­
erator sums to zero over the whole grid, the constant to be added to the fine grid 
solution after each interation [1] is given by, 

In this way the solution level is fixed without frustrating the smoothing pro­
cess. The multgrid method used performs ten V-cycles with 1 pre-restriction and 
2 post-prolongation smoothing sweeps. In all cases alternating line Gauss-Seidel is 
used as smoothing process. 

The first two test cases are similar to standard test problems used for pressure 
solution comparisons [13,1]. Namely a modification of stones problem and the so­
called staircase problem. The permeability fields are represented by a number of 
discontinuous regions. Both cases are given below and are represented in figure2. 
Problem 1 : Stone's problem 

Problem 2 : Staircase problem 

1 0) 
o 5 
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A summary of the convergence behaviour for the standard cell-centred multi­
grid scheme compared with renormalised multigrid are given in figure 4. The per­
formance of both schemes is similar for Stone's problem. The simple variation in 
permeability offers little opportunity for renormalization to have any effect. For 
the staircase problem the renormalized multigrid offers an advantage. 

The next three problems are taken from geostatistical applications with a 
randomly varying permeability field. A summary of the statistical properties is 
given below, 

Problem 3 : Monet problem 

var(K) = (3.0002 0 ) 
2.596 

Problem 4 : Cross-bed problem 

Kav = 161.3 var(K) = 0.6107 x 105 

Problem 5 : Channel sand problem 

Kbackground = (~ ~) Kchannel = (100 100) net to gross = 0.6 

The permeability distributions are also represented in figure 3. Problems 
3 and 4 provide a useful comparison pair in that the permeability distributions 
correspond to a modest variance example and a more extreme choice. Problem 4 
is taken from a cross-bed application. 

The final example has been developed as a channel sand description and 
exhibits the features of meandering high permeability channels through a relatively 
low permeability background. 

Figure 4 reports the corresponding convergence histories for each of the fi­
nal problem examples. A significant improvement in convergence performance is 
achieved by the renormalization multigrid scheme compared to the standard cell 
centred scheme for problems 3 to 5. The permeability maps for these cases differ 
distinctly from each other while all involve a large number of discontinuities. 

6 Full tensor equation and a new 9-point scheme 

The need for a full tensor pressure equation arises since although at fine scales 
the permeability tensor is expected to be diagonal the process of re-scaling to 
practical reserviour simulation scales is expected to introduce off-diagonal terms 
in the effective permeability tensor representing fine scale cross flow in a coarse 
grid cell. Discretisation of the resulting cross-derivative terms in the general tensor 
equation requires an increase in the support of the scheme from five cells to nine 
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cells. Extensions to a full permeability tensor has been the subject of number of 
recent contributions [14,15,16]. Except for [16] these schemes reduce to a five-point 
scheme in the diagonal tensor limit. The latter case is an unconventional scheme 
with interface pressures as unknowns and reducing to a seven-point scheme in the 
diagonal case. 

Further motivation for a nine point scheme arises in the case of 

(1) a diagonal tensor pressure equation, when modelling unfavourable mobility 
ratio floods. Numerical predictions of the resulting unstable flow, computed 
with a five point scheme can exhibit grid dependence (grid-orientation), which 
has been shown to be reduced by use of more accurate nine point schemes 
[17,18,19,20]. 

(2) solving the diagonal/full tensor equation on an arbitrary nonorthogonal quadri­
lateral grid, where use of a standard five point scheme(for the diagonal tensor) 
introduces an 0(1) error in the flux for severely non-orthogonal grids. 

To date, a general flux continuous nine point scheme which embodies these cases 
has not been derived. The new scheme described below achieves flux continuity 
for both diagonal and full tensor pressure equation by imposing pointwise pressure 
and flux continuity in the framework of a locally conservative 9-point finite volume 
formulation. The scheme is applicable for an arbitrary nonorthogonal quadrilateral 
grid. Here we illustrate the construction only for a uniform grid. Rcfering to figure 
5(a) the scheme is derived by introducing four mean interface pressures at s, c, n 
and w at distances qx and qy (measured in local co-ordinate units hx/2 and hy/2) 
from the common vertex of the four neighbouring cells. The interface values are 
expressed in terms of the cell centred pressures cPl, cP2, cP3 and cP4, by introducing 
a piecewise linear approximation for pressure over each of the resulting triangle 
(shaded) in the figure and demanding pointwise continuity of flux and pressure at 
the four interface positions s, c, nand w. Since pressure gradients are piecewise 
constant with values in the notation of figure5(b) given by 

where d = 1 - (1 - qx)(l - qy). Each pointwise flux can be expressed as a linear 
combination of the four cell pressures. In practice, the elimination of the interface 
pressures is readily obtained by Gaussian elimination. Repetition of this procedure 
for each group of four cells in the grid leads to a nine point scheme which is flux 
continuous for both the diagonal and full tensor pressure equations. 

In general a family of 9-point stencils is obtained dependent on qx and qy, 
from which the standard five point scheme is recovered with the choice qx = qy = 1. 
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The choice qx = qy = 1/2 produces the optimal sixth order accurate approximation 
for Laplace's equation. 

[ 
1/6 2/3 
2/3 -10/3 
1/6 2/3 

1/6 1 2/3 
1/6 

The final numerical result illustates the multigrid solution of the pressure 
equation for a full tensor problem in figure 6. The permeability fields are obtained 
by rotating the Monet problem by 45°. For this symmetric permeability tensor 
case the standard cell centred scheme is used with the full Galerkin construction 
of the coarse grid equations. 

Renormalization must also be formulated to incorporate rescaling of the off 
diagonal components. A study of appropriate renormalization schemes for incorpo­
ration within a nine point multigrid scheme applied to the full tensor equation will 
be presented in a future paper together with further details of the flux continuous 
nine point scheme. 

7 Conclusions 

• Local cell renormalization is incorporated into the cell centred multigrid 
scheme of Wesseling et al, enabling flux continuity to be maintained on all 
grid levels. 

• Significant improvement in convergence is obtained by the new multigrid 
scheme combined with renormalization, for a wide range of randomly varying 
discontinuous permeability fields. 

• Piecewise constant prolongation preserves flux continuity and therefore pro­
vides some justification for use of polynomial interpolation in the cell centred 
multigrid method. 

• A new flux continuous locally conservative nine point scheme is presented 
which applies to both diagonal and full tensor pressure equations on an 
arbitrary quadrilateral grid. 
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Interpolation and Related 
Coarsening Techniques for the 
Algebraic Multigrid Method 
G. Golubovici and C. Popa1 

1 Introduction 

Let A be a symmetric and positive definite matrix and bERT. We consider the 
system 

Au=b, (1) 

with the (unique) exact solution u ERr. For q 2': 2 let GI , G2 , ... , Gq be a sequence 
of nonvoid subsets of {1, ... ,r} such that 

IGml = nm , rn = 1, ... ,q, 

(2) 

(3) 

(4) 

where by IGml we denoted the number of elements in the set Gm . Furthermore, 
for m = 1,2, ... , q - 1 we consider the matrices Al = A and Am+I and the linear 
operators 

with the properties: 1;;;:+1 has full rank, 

Im+l = (P" )t m m+l , 

We also define the coarse grid correction operators Tm by 

(5) 

(6) 

(7) 

1 University of Constantza, Department of mathematics, Ed. Mamaia, nr. 124, 
Constantza-8700, Romania 
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(8) 

and the smoothing process 

(9) 

where 1m is the identity and 

(10) 

are the systems corresponding to the coarse levels. 
With all the above defined elements we consider a classical V-cycle type 

algorithm (with one smoothing step performed after each coarse grid correcting 
step, see e.g. [5], [11]). 

In what follows, in order to simplify the notations, we shall write n, p, I;, 
1[;, Cp, A, Ap instead of nm, nm+1' 1~+l' 1~+1, Cm, Am, Am+1, respectively 
(where m E {I, ... , q - I} is arbitrary fixed). We shall also suppose (without loss 
of generality) that the 'coarse grid' Cp is given by 

Cp ={n-p+l, n-p+2, ... ,n} (11) 

Accordingly to (11) we consider the following block decomposition of A, 

(12) 

where we suppose that Al is symmetric and positive definite and A2 is symmetric 
and invertible. 

In the papers [1], [2], [12] methods are presented for preconditioning the sys­
tems (10), starting from a decomposition like (12). These methods use (at least 
at the end, when some conditions have to be fulfilled) the fact that the system 
(1) originates from a finite clement or finite difference discretization of a partial 
differential equation (i.e. some 'geometric' information like: the discretization of 
a domain, the finite element basis functions etc.). For this reason it is very hard 
or even impossible to apply them for general ('algebraic') systems (1). On the 
other hand it is very hard to construct an efficient preconditioning method (which 
modifies the condition number of the matrix A) for arbitrary 'purely algebraic' 
problems (1). In the present paper we will present a preconditioning method (for 
general systems (1)), which does not modify the condition number of the matrix 
A, but ensures the fulfillment of the approximation assumption (sec [3], [11] and 
relation (15) in the next section) in the algebraic multigrid V-cycle type algo­
rithm presented above. In Section 2 we describe the method and we present some 
theoretical results (under the additional condition (30)). In Section 3 we present 
three particular cases for the preconditioning matrix. In Section 4 we describe a 
coarsening algorithm which ensures the fulfillment of the condition (30). Section 
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5 presents numerical examples with a 5-grid, V-cycle type algebraic algorithm for 
plane Dirichlet, Helmholtz and anisotropic Poisson problems. Beside the classical, 
variational (Galerkin) variant (relations (6)-(7)) we also used a truncated (non­
Galerkin) version of the 5-grid algorithm, suggested by the fill-in process observed 
in the coarse grids matrices (beginning with the third level). 

2 The preconditioning method 

We shall consider on the level n (with the notation as in Section 1) the inner 
products 

< u, v >0=< Du, v >; < u, v >1 =< Au, v >; < u, v >2=< D- 1 Au, Av >; (13) 

together with their corresponding norms II . IIi, i = 0, 1, 2, (where D =diag 
(A), <, > is the Euclidian inner product and II . II the Euclidian norm). Let v 
be an approximation of the exact solution u and e = v - u the corresponding 
error. From [3], [11] we know that the convergence of the V-cycle type algebraic 
multigrid described in Section 1 (with a convergence factor, in the energy norm 
11·111, independent of the dimension of the initial system (1)), is governed by the 
following two assumptions 

IIGelli ~ lIelli - (Xllell~, 

IITeili ~ jJllell~, 

where constants (x, jJ exists independently of the level nand e. 

(14) 

(15) 

REMARKS 1. Condition (14) is called the smoothing assumption and is fulfilled by 
the classical relaxation schemes (see [3], [8], [11]). 

2. Condition (15), the approximation assumption, cannot be easily obtained 
(some results are known for M-matrices of positive type, see [3], [11]). 

Let us now start with the decomposition (12) of A and with another arbitrary 
symmetric and positive definite matrix ;P. Let 

(16) 

be the Cholesky decompositions of A1 and A1 (with L1, £1 lower triangular). We 
define the matrix 3.1 by 

(17) 

and we precondition the system (1) in the following way 
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(18) 

Thus, the system (1) becomes 

(19) 

where 

- i\-t 
U = L.l.l U, (20) 

and the (n - p) x p matrix f3 is given by 

(21) 

REMARKS 1. The preconditioned matrix A is also symmetric and positive definite; 
thus we can consider inner products like in (13) and the associated norms which 
we shall denote by 111·llli, i = 0,1,2. 

2. We shall use the notations h, 12 , U = [Ul' U2] for the identities on Rn-p, 
RP and for U E Rn = Rn-p EB RP, respectively. We shall also denote by p(S), 
Amin(S) the spectral radius and the smallest eigenvalue, respectively, for a positive 
definite matrix S. Defining the interpolation I; by 

(22) 

we observe that it has full rank and we obtain the following result. 

PROPOSITION 1. (i) The coarse grid matrix Ap is independent of the precondition­
ing matrix Al and is given by 

(23) 

(i.e. the Schur's complement of A). 
(ii) If e = [eb e2] is the error for the preconditioned system (19), after the 

correction step, then 

PROOF. (i) We first observe from (22), (20) and (6)-(7) that 

I!:,A = [0; A2 ], 

with 

(24) 

(25) 

(26) 
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and 

Then, using (16) and (21), the equality (23) follows from (26)-(27). 
(ii) For the error after the correction step we have (see e.g. [5]) 

(27) 

IhAe = O. (28) 
From (28), using (25) and (27), we obtain 

because Ap is invertible. Then (24) is obvious and the proof is complete. 0 

At this moment we shall formulate the following assumptation: there exists 
a constant, > 0, independently of the dimension n of A such that 

(30) 

THEOREM 1. If the conditions (30) are satisfied, for every vector e E R n we have 

IIITeilii ::; (3 '1IIelll~, (31) 

with (3 > 0 given by 

max aii mm aii 
1 <i<n-p 1 <i<n-p 

" mm aii n-p+l::;i::;n 
(31') 

where we denote by aij, aij the elements of the matrices AI, AI, respectively. 

PROOF. It is not hard to observe that, if (30) holds, then we have 

(32) 

with C > 0 given by 

C = [,. max )L.=n1 laij 1]-1 
i::;i::;n 

(33) 

Then, if 

(34) 

is the error after the correction step, using (24) and (29) we obtain 
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> (35) 

But, a simple calculation using the Cauchy-Schwarz inequality, yields (using 
again (29)) 

Illellli ::; IIIell12 ·lllelllo. (36) 
From (34)-(36) we obtain 

mm aii 

IIITeilii ::; l<i<n-p .IIITelll~. 
Amm(AJ) 

(37) 

From (8) and the symmetry of A we observe that 

(38) 

Then, if we denote [) = diag(A) and E is the matrix 

(39) 

we obtain 

(40) 

But, if K is the matrix 

( 41) 

we observe that 

E Et = [ h + OK Kt ~]. ( 42) 

Then, using (32)-(33), we have 

(EEt) < 1 + IIKW < max{aii, 1::; i ::; n - p} . C2. 
P - - min {aii' n - P + 1 ::; i ::; n} 

( 43) 

From (40) and (43) we obtain 

IIITelll~::; ~ax{aii' 1::; i ::; n ~ p} . C2 .lllelll§. 
mm{aii' n - P + 1::; z::; n} 

(44) 

From (37) and (44) results (31) with j3 from (31'). D 

REMARKS l. If (30) holds, we can see that j3 from (31') depends only on the 
elements of the matrices A and AI. Thus, the approximation assumption (31) for 
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the preconditioned system (19) holds. 
2. If A is weakly diagonally dominant, accordingly to the decomposition (12), 

condition (30) holds if we ask for in the case of the arbitrary matrix Jh and if A1 
is relatively sparse (see an algorithm for obtaining this in Section 4). 

3. According to (31) the approximation assumption (15) holds for the precon­
ditioned system (19). It can be proved (see [9]) that if the smoothing assumption 
(14) holds for the initial system (1) with a constant 0> 0, then it also holds (with 
the same constant 0) for the preconditioned one (19). 

3 Three particular cases 

CASE I. A1 = A1. In this case A = A, thus no preconditioning occurs. Condition 
(30) will hold if, e.g. A1 is strictly diagonally dominant, i.e. 

Vi = aii - 2)aij I > 0, i = 1, ... ,n - p. 
#i 

Then, "( from (30) can be taken as 

"( = min{vi, i = 1, ... , n - p}. 

The interpolation operator I; will be given by 

( 45) 

(46) 

(47) 

and it is possible to obtain the product All B without inverting the matrix A1 
(see [7]). 

CASE II. A1 = diag(d1, d2 , ... , dn - p ) with di > 0, i = 1, ... , n - p. (48) 

Then 

£1 = £i = diag( VIl;, vf([;, ... , Jdn - p ), ( 49) 

and 

In = 1 1 [ _£-1 L-- 1 B ] 
P 12 . (50) 

In order to obtain the product Ll1 B (with L1 the Cholesky factor of A1, 
from (16)) we make a Gaussian elimination (without pivoting and making 1 on 
the diagonal) on the first n - p rows of A. In this way we obtain the matrix 
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(51) 

where 

(52) 

is an LV-decomposition of Al (lL upper triangular and with 1 on its diagonal) 
and 

(53) 

Then, if ih = diag( Lt} = diag(lll, t22 , ... , tn-p,n-p) it is obvious that 

L t - D-1/ 2 A-
1 - 1 1· (54) 

The elements of the matrix ih can be recursively obtained by the formulas 

all = tll , i = 2, ... ,n - p, (55) 

(where iiij are the elements of AI)' Then we have 

(56) 

The constant 'Y from (30) can be taken as 

'Y=min{Vi,di , i=l, ... ,n-p}. (57) 

(58) 

is an incomplete Cholesky decomposition of Al (if Al is supposed to be an M­
matrix, cf. [6]). The factors L1 , Li are obtained during this decomposition. We 
know from [6] that 

(59) 

The constant 'Y from (30) will depend on the number p (the case p = 0 means 
Al = Al i.e. our particular case I). 
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4 The coarsening algorithm 

In this section we will come back at the decomposition (11)-(12) and formulate 
the following question: if the matrix A is weakly diagonally dominant, how to 
obtain the splitting (11)-(12) of A such that Al be strictly diagonally dominant 
and A2 be the matrix corresponding to the connections between the coarse grid 
points (satisfying the general rules formulated in [3]' [11]). In what follows we shall 
briefly describe an algorithm which tries to answer at this question. Details can 
be found in [10]. We shall use the following notations: for i E {I, ... ,n} 

N ( i, A) = {j E {I, ... , n} I j ;;f i, aij ;;f O}, 

Nt (i, A) = {j E {I, ... , n} liE N (j, A)}, 

and for ~ c {I, ... , n} a nonempty subset 

N(i,~, A) = N(i, A) n~, Nt(i,~, A) = Nt(i, A) n~. 

Then we have 

ALGORITHM C 

Step 1. Set k = 1 and ~ k = {I, ... , n}. 

Step 2. Set a = 1, Ck = 0, pk = 0, ~a = ~k. 

Step 3. For all i E ~a set 

Step 4. a. If A = 0 set pk = ~a and go to step 6. 
b. If A ;;f 0 define the set Ia C ~a by Ia = {i E ~a, Ai = A}. 
c. If Ia C pk set LS. = !::J.. k , k = k + 1,!::J..k = !::J..\Ck and go to step 2. 

d. If Ia r:t. pk set Ia = Ia \pk and for each i E Ia do: 
-if i E pk go to another index from Ie". 
-if i tj. Pk set 

Step 5. Set LS. = !::J..a , a = a + 1, ~a = LS. \Ck and go to step 3. 

Step 6. Set C = C 1 U C 2 U ... U C k 
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p=pk 

and Stop. 
After the application of the algorithm C we obtain a partition {C, P} of the 

set {I, ... , n}. If we reorder the indices in {I, ... , n} beginning with those from 
the set F, then the set C will become Cp from (11) and the submatrix of A defined 
by the connections between the F-points will be Ai from (12). 

REMARKS l. We have to observe (see also [10]) that no information concerning 
the symmetry of A was needed. Thus we can apply the algorithm C to arbitrary 
matrices and we can use the idea of strong - connections (from [3]' [11]). 

2. We used the above algorithm (with some improvements) for obtaining the 
coarse grids in the examples presented in Section 5. 

5 Numerical examples. The non-Galerkin approach 

We consider the following plane problems 

D· . hI {-fJ.u = f in n, 
mc et: u = 0 on an, 

{ fJ.u + k 2u = f zn 
Helmholtz: 

u = 0 on 
n, 
an, 

Anisotropic Poisson: { -E ~:~ - ~:~ = f zn 
u = 0 on 

n, 
an, 

with n = (0,1)2 C R2, discretized by classical 5-points stencils (see e.g. [5]). We 
used two different initial (finest grid) discretizations (corresponding to mesh sizes 
h=1/14 and h=1/32) and a 5-grid V-cycle type algebraic multigrid. We applied 
the preconditioning from cases I and II (Section 3) with coarsening made by al­
gorithm C (Section 4) with some improvements (see [10]). Initially we used the 
Galerkin approach (6)-(7). The results are presented in tables for TOL=O.O. We 
observed a fill-in process starting at the 3rd -Ievel. Thus, we decided to change the 
Galerking approach in the following way: for coarsening on level 3 we only took into 
account 'connections' (in absolute value) ~ 0.1. After that we truncated the ma­
trices Ai and B from (12) (corresponding to the 3rd level) such that we kept only 
the elements (in absolute value) larger than a parameter TOL. We constructed 
the 'truncated' interpolation operator (in cases I and II see Section 3) using this 
'truncated' matrices. After that we defined the fourth level matrix by (7) but with 
the above 'truncated' version of interpolation and restriction. The fifth level ma­
trix was constructed in the same way starting with the 'truncated' version of the 
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fourth level matrix. The results are presented in Tables 1-6 for different values of 
the truncation parameter TOL. We also indicated the worst step reduction factor 
p for obtaining a desired precision (Euclidean norm of the error :S 10-6 ). 

TOL 0.0 10 -4 10 -J 10 -:l 10 -1 0.5 l. 
P for case I 0.051 0.051 0.051 0.055 0.1 0.34 0.35 
p for case II 0.19 0.19 0.19 0.195 0.22 0.4 0.4 

TABLE 1. The Dirichlet problem, h=1/14. 

TOL 0.0 10 -4 10 -.1 10 -~ 10 -1 0.5 l. 
P for case I 0.078 0.078 0.078 0.16 0.53 0.82 0.82 
P for case II 0.40 0.40 0.41 0.46 0.65 0.84 0.84 

TABLE 2. The Dirichlet problem, h=1/32. 

TOL 0.0 10 3 10 2 10 

P=4 0.054 0.054 0.058 0.13 
P for case I P = 19 0.058 0.059 0.061 0.8 

P =25 0.09 0.09 0.06 0.81 
P =30 0.37 0.37 0.38 0.39 

P=4 0.21 0.21 0.22 0.26 
k" = 10 0.27 0.27 0.27 0.35 

P for case II P =25 0.48 0.49 0.5 0.51 
P =30 0.74 0.74 0.77 0.68 

TABLE 3. The Helmholtz problem, h=I/14. 
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Parallel Point-oriented Multilevel 
Methods 
Michael G rie bell 

ABSTRACT Instead of the usual nodal basis, we use a generating system for 
the discretization of PDEs that contains not only the basis functions of the finest 
level of discretization but additionally the basis functions of all coarser levels of 
discretization. The Galerkin-approach now results in a semidefinite system of linear 
equations to be solved. Standard iterative GS-methods for this system turn out to 
be equivalent to elaborated multigrid methods for the fine grid system. 
Beside Gauss-Seidel methods for the level-wise ordered semidefinite system, we 
study block Gauss-Seidel methods for the point-wise ordered semidefinite system. 
These new algorithms show basically the same properties as conventional multi­
grid methods with respect to their convergence behavior and efficiency. Addition­
ally, they possess interesting properties with respect to parallelization. Regarding 
communication, the number of setup steps is only dependent on the number of 
processors and not on the number of levels like for parallelized multigrid methods. 
The amount of data to be communicated, however, increases slightly. This makes 
our new method perfectly suited to clusters of workstations as well as to LANs and 
WANs with relatively dominant communication setup. 

1 Introduction 

Recently, see [4], [6], a new concept for the development of multigrid and BPX-like 
multilevel algorithms has been presented. There, instead of a basis approach on the 
finest grid and the acceleration of the basic iteration by MG-coarse grid correction 
or a BPX-type preconditioner, a generating system is used to allow a non-unique 
level-wise decomposed representation of the solution. The degrees of freedom are 
associated to the nodal basis functions of all levels under consideration. With 
this non-unique multilevel decomposed representation of a function, the Galerkin­
approach leads to a semidefinite linear system with unknowns on all levels. Its 
solution is non-unique but in some sense equivalent to the unique solution of the 

lInstitut fUr Informatik, Technische Universitiit Miinchen, ArcisstraBe 21, D-80290 
Miinchen, email: griebel@informatik.tu-muenchen.de 
This work is supported by the Bayerische Forschungsstiftung via FORTWIHR - Bay­
erischer Forschungsverbund fUr technisch- wissenschaftliches Hochleistungsrechnen. 
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standard problem on the finest grid. 
Furthermore, it has been shown that traditional iterative methods for the 

semidefinite system are equivalent to modern elaborated multilevel methods ap­
plied to the standard system which exhibit optimal convergence properties. The 
conjugate gradient method (with appropriate diagonal scaling) for the semidefi­
nite system is equivalent to the BPX-conjugate gradient method for the fine grid 
system. Gauss-Seidel-type iterations for the semidefinite system are equivalent to 
certain multigrid methods. For details, see [4], [6]. These methods are grid- or 
level-oriented and can be considered as level block techniques. An outer iteration 
switches from level to level, and an inner iteration operates on the specific grid. 

Now, we consider the semidefinite system from a different point of view. 
We group together all unknowns which are associated to the same grid point. 
This results in a point-oriented method and can be considered as a point block 
technique. Now, an outer iteration switches from grid point to grid point. The local 
system that belongs to all basis functions of different levels centered in the same 
grid point can be solved either directly or by an inner iteration that runs over all 
levels that are associated to the grid point under consideration. Furthermore, grid 
points can be grouped together to form subdomains. In this sense, we get some 
sort of simple domain decomposition method which exhibits MG-like convergence 
properties. Compare also [3], [5], [6]. 

In contrast to the parallelization of a multilevel method where communication 
has to take place on all levels, our point block approach needs substantially less 
setup steps for the communication due to its domain decomposition qualities. In 
this sense, our new method is superior to other parallel multigrid and multilevel 
methods and very well suited to clusters of workstations or LANs and WANs with 
relatively dominant communication setup. 

2 The semidefinite system 

In this section, we introduce a generating system that replaces the usual finite 
element basis in the discretization of a boundary value problem of a partial dif­
ferential equation. We then derive the associated semidefinite linear system and 
discuss its properties. 

Consider a partial differential equation in d dimensions with a linear, second­
order operator L on the domain 0 = (0, l)d, d=1,2, ... , 

Lu = f on 0, (1) 

with appropriate boundary conditions and corresponding solution u. For reasons 
of simplicity, we restrict ourselves to homogeneous Dirichlet boundary conditions. 
Given an appropriate function space V, the problem can be expressed equivalently 
in its variational form: Find a function uEV with 

a(u,v) = (j,v) V v E V. (2) 
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(In the case of homogeneous Dirichlet boundary conditions, V would be the Sobolev 
space HJ(n).) Here, a: V x V ----1R is a bounded, positive-definite, symmetric bi­
linear form and (.,.) is the linear form for the right-hand side. Let 11.lla := ~ 
denote the induced energy norm. We assume that V is complete with respect to 
11.lla, which is true if a(.,.) is HJ-elliptic. The Lax-Milgram lemma then guaran­
tees the existence and uniqueness of the solution of (2). If we consider directly the 
functional J(u) := 1/2· a(u, u) - (/, u), the problem can be stated alternatively as 
minimization of J(u) in V. 

2.1 SPACES, BASES, AND THE GENERATING SYSTEM 

Assume we are given a sequence of uniform, equidistant, and nested grids 

(3) 

on n with respective mesh sizes h1=2-1, l=l, .. ,k, and an associated sequence of 
spaces VI of piecewise d-linear functions, 

(4) 

with dimensions 
nl := dim(VI) = (21 - l)d, l = 1, .. , k. (5) 

Here, 1 denotes the coarsest and k the finest level of discretization. Consider also 
the sequence 

(6) 

of sets of inner grid points Nl={Xl,''''Xnl } of the grid n1, l=l, .. ,k. 
The standard finite element basis, that spans VI on the equidistant grid nl, 

is denoted by B1. It contains the nodal basis functions ¢~l), i=l, .. ,nl, which are 
defined by 

¢}ll(Xj) = {ji,j, Xj E N 1• 

Now, any function UEVk can be expressed uniquely by 

(7) 

(8) 

with the vector Uk:=( U</»</>EBk of nodal values associated to some given ordering 
of the functions of Bk. 

In contrast to this conventional basis approach we now consider the set of 
functions Ek defined as the union of all the different nodal bases Bl for the levels 
l=l, .. ,k, 

(9) 

Obviously, being a linearly dependent set of functions, Ek is no longer a basis for 
Vk, but merely a generating system. See Figure 1 for a simple 1D example. 
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1=1 

+ 

+ 

FIGURE 1. Functions of the generating system E3 in the 1D case. 

In any case, an arbitrary function uEVk can be expressed in terms of the 
generating system by 

(10) 
</>EEk 

with the vector wf=( W</»</>EEk associated to some given ordering of the functions 
of Ek. 

Here and in the following, we denote representations in terms of the gener­
ating system Ek by the superscript E. The length of w[ is 

k 

n[ = Lnl, (11) 
1=1 

which is in the 1D case about twice, in the 2D case about 4/3 times, and in 
the 3D case about 8/7 times as large as the length of the vector u for the basis 
representation (8). This is due to the geometric rate of decrease of the number of 
grid points from fine to coarse levels with factors of 1/2, 1/4, and 1/8 for 1D, 2D, 
and 3D, respectively. The generalization of this concept to higher dimensions is 
straightforward. 

Note that the representation of u in terms of Ek is not unique. In general, 
there exists a variety of level-wise decompositions of u E Vk. However, for a given 
representation w[ of u in E k , we can easily compute its unique representation Uk 

with respect to Bk. This involves in 2D the bilinear interpolation which can be 
expressed and implemented by MG-prolongation operators. For details, see [6], [7]. 

2.2 GALERKIN-APPROACH AND LINEAR SYSTEMS 

Using the nodal basis B k , the Galerkin-approach results in the discrete variational 
problem for u E Vk 

(12) 
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and the equivalent linear system of equations for the vector of nodal values 

LkUk = ik, (13) 

where 
(Lk)i,j .- a( rPjk) , rP~k)), 1 ::; i,j ::; nk 

(14) 
(tk)i .- (t, rP)k)), 1 ::; i ::; nk 

for some appropriate ordering of the functions of Bk . 

For the generating system Ek, the Galerkin-approach leads to the discrete 
variational problem for U E Vk 

and, with representation (10), to the linear system 

where 

L E E IE k Wk = k' 

.- a( rPj, rPi), 
(t, rPi), 

1 ::; i,j ::; nf 
1 ::; i ::; nf 

for some appropriate ordering of the functions of E k . 

(15) 

(16) 

(17) 

The system Lfwf = If has the following properties. The matrix Lf is 
semidefinite and has the same rank as Lk. Thus nf-l = nf - rank(Lk) eigen­
values of Lf are zero. The system is solvable because the right-hand side is con­
structed in a consistent manner, i.e. rank(Lf) = rank(Lf, If). It has not just 
one unique solution, but a variety of different solutions. However, the evaluation 
oftwo different solutions W~,l and w~,2 with respect to their representation in Bk 
by means of MG-prolongation operators results in the unique solution Uk of the 
system LkUk = ik. Therefore, it is sufficient to compute just one solution of the 
enlarged semidefinite system to obtain, via interpolation, the unique solution of 
the system LkUk = Ik. Note that the enlarged matrix Lf contains the submatrices 
Ll that arise from the use of the standard basis B l , l = 1, .. , k. A similar property 
holds for the right-hand sides. 

3 Gauss-Seidel-type iterative methods 

Now, multilevel-type algorithms are easy to construct. In [4], [6]' it is shown that 
(after appropriate scaling) the conjugate gradient method for the semidefinite sys­
tem Lfwf = If is equivalent to CG with the preconditioner of Bramble, Pasciak, 
and Xu [1] for the system LkUk = Ik. Furthermore, the Gauss-Seidel iteration for 
the semidefinite system is equivalent to the multigrid-method with Gauss-Seidel 
smoother applied to LkUk = ik. Here, depending on the ordering of the unknowns 
of the semidefinite system, different MG-cycle strategies can be modeled easily. 
See the discussion in [4] and [6] for further guidance. 
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In the following, we focus on Gauss-Seidel-type iterations for the semidefinite 
system only. First, we consider level-oriented Gauss-Seidel iterations and state that 
they are equivalent to certain multigrid methods. An outer iteration switches from 
level to level, and an inner iteration operates on the respective grids. Then, we 
study point-oriented Gauss-Seidel iterations. There, the unknowns of the semidef­
inite system that belong to basis functions centered at the same grid point are 
grouped together. Now, an outer iteration switches from grid point to grid point, 
and an inner iteration or a direct solver works on the local subsystem of the 
semidefinite problem belonging to the respective grid point. In the same way, 
domain-oriented Gauss-Seidel methods can be constructed for the semidefinite 
system. 

Note that, in both cases, it is not necessary to assemble the matrix L~ and 
the right-hand side ft explicitly. It is possible to use MG-prolongation and MG­
restriction operators and the fine grid discretizations L k , fk to express L~ and 
ft in a certain product form. For an example for the level-oriented approach, see 
(35) in [4] or the more detailed explanations in [6]. Furthermore, by storing and 
updating certain parts of the current residual in (at least two) additional vectors, 
it is possible to realize, for appropriate traversal orderings, the implementation of 
level-, point- and domain-oriented Gauss-Seidel methods to need O(n~) = O(nk) 
operations per iteration step, only. Especially for the point- and domain-oriented 
block Gauss-Seidel methods, this is quite technical. A description of implementa­
tion details will be given in [7]. Altogether, the required storage and the number of 
operations to perform a Gauss-Seidel- or block Gauss-Seidel-step is proportional 
to the number of grid points employed. 

3.1 GRID-ORIENTED GAUSS-SEIDEL ALGORITHMS 

We consider Gauss-Seidel iterations for the semidefinite system L~w~ = ft. As 
usual, we decompose the semidefinite matrix L~ by L~ = D~ + Ft + (Ftf, 
where D~ and Ft denote the diagonal and strictly lower triangular parts of L~, 
respectively. Then, the Gauss-Seidel iteration (GS) is expressed by using C~,Gs := 

(D~ + Ft) -1, and its symmetric counterpart SGS is expressed by using C~,SGS := 

(Df + Ft)-T Df(Df + Ft)-l in the iteration 

(18) 

Note that D~ + Ft is generally not symmetric, but it is positive definite and 
invertible. 

Of course, the lower triangular part of L~ depends on the ordering of the 
unknowns. For practical reasons, i.e. to maintain O(nk) operations per iteration 
step, not all orderings are advisable. Here, we order the unknowns grid-wise (start­
ing for example with the finest grid). This leads to a grid-oriented block partition 
of Lf The unknowns of each level can be ordered lexicographically or, in the 2D 
case, in a four color manner. 
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Note that this level-wise ordering corresponds to a level-wise decomposition 

k k nl 

Vk = LVz = LLVz,xi 
(I) 

of Vk, where Vz,Xi = span{ ¢i }. 

1=1 1=1 i=1 

(19) 

In [4], [6], it was shown that, for a level-wise ordering of the unknowns, the 
Gauss-Seidel iteration for the semidefinite system corresponds to the multigrid 
method for the standard system. The switching from grid to grid in the multigrid 
method corresponds to an outer (block) Gauss-Seidel iteration for the semidefinite 
system, whereas the MG-smoothing steps resemble an inexact solver for each block 
by inner Gauss-Seidel iterations. Especially the multigrid V-cycle with one pre- and 
post-smoothing step by Gauss-Seidel iterations becomes the SGS-method, which is 
also known as Aitken's double sweep. But other MG-cycle types can be modelled 
by different orderings of the block GS-traversal. The case of multiple smoothing 
steps corresponds to multiple inner iterations. Furthermore, other smoot hers can 
be incorporated in the block GS-method as inner iterations. 

These algorithms on the semidefinite system (16) can be interpreted alterna­
tively as subspace correction methods [12]. The relaxation of an iterate u(t<) E Vk 

then takes place with respect to a ¢ E Ek by 

(20) 

The different MG-type GS-algorithms for the generating system involve the cyclic 
application of (20) for a corresponding sequence of functions of Ek . 

3.2 POINT-ORIENTED BLOCK GAUSS-SEIDEL ALGORITHMS 

Now, we partition the unknowns of the semidefinite system into groups and per­
form a block Gauss-Seidel iteration on the associated block-partitioned system. 
Thus, we decompose the semidefinite matrix Lf by Lf = Df + Ff/ + (Ff/f, 
where Df and Ff/ now denote the block diagonal and strictly lower block trian­
gular parts of Lf, respectively. Then, the block GS-iteration is expressed by using 
cf,GS := (Df + Ff/)~l, and its symmetric counterpart SGS is expressed by using 
CE,SGS .- (DE + FE)~TDE(DE + FE)~l in the iteration k .- k k k k k 

(21) 

Note that Df + Ff/ is invertible only for certain choices of partitions, where each 
group contains unknowns associated to linear independent functions. Nevertheless, 
if this is not fulfilled, an iterative method still produces a non-unique solution for 
the corresponding semidefinite subsystem. 

Alternatively, one block Gauss-Seidel step can be interpreted as a subspace 
correction method. The relaxation of an iterate u(t<) E Vk now takes place simul-
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taneously with respect to a set <I> C Ek by 

U(t<+l):= u(t<) + L Acp' ¢ with V¢ E <I>: a(u(t<+1),¢) = J(¢). (22) 
cpE<P 

For the computation of the values of A<p = {Acp : ¢ E <I>}, the system 

L<pA<p = r<p (23) 

with 
(L<p)i,j .- a(¢j, ¢i), ¢i, ¢j E <I> 

(r<p)i '- (f<P)i - a( u(t<) , ¢;) (24) 
(f <P)i .- (f, ¢i), ¢i E <I> , 

has to be solved. The block Gauss-Seidel method for the semidefinite system is 
the cyclic application of (22) for a given sequence of (disjoint) subsets of E k . This 
type of iteration is only convergent if the union of all involved sets of functions 
span Vk . Note that the case of non-disjoint subsets can still be denoted in terms 
of (22), but not more by (21). 

Of course, this approach is heavily dependent on the chosen sequence of 
subsets of E k . In the following, we suggest a point-oriented approach. We group 
all unknowns together that are associated to the same grid point. This results in 
point-oriented methods and can be considered as a point-block technique. Now, 
an outer iteration switches from grid point to grid point. The local system that 
belongs to all basis functions of different levels centered in the same grid point 
can be solved either directly or by an inner iteration running over all unknowns 
associated to the grid point under consideration. 

To be more specific, we consider as blocks the unknowns associated to all 
functions that are centered in the same grid point x E N k : 

Px := {¢ E E k : ¢(x) = I} (25) 

This corresponds to a point-oriented decomposition 

Vk = L L VI,x (26) 
xENk l:xENI 

of the space Vk . Note that in comparison with the level-wise decomposition (19) 
just the summations are exchanged. 

Now, we can step through the set Nk of grid points and relax simultaneously 
the unknowns that belong to the same grid point. This results in systems of linear 
equations (23) with <I> = Px , x E N k , that form the block diagonal matrix vt 
involved in (21). Note that the size of the systems belonging to x E Nl \ NI~l,l = 

k, '" 2, is k - l + 1. The size of the system belonging to the center point x = 
(0.5,0.5) is k. For the case of an operator with constant coefficients, the point­
block matrices L px are full, definite and symmetric Toeplitz matrices. It turns out 
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that their condition number is 0(1). See also the results in [6]. Thus, the solution 
of (23) for x E Nl \ Nl- 1 can be obtained by some appropriate iterative method 
in O((k -l + 1)2) operations. The number of operations necessary for solving all 
arising point-block subsystems is in 2D 

C 3 ("Y 1 "Y 1 "Y 1 4"Y 1 (k 1 l)"Y 1 k"Y) (27) 4nk 1 + 42 + 16 3 + 64 + ... 4k-l + - + ... + 4k-1 ' 

where 'Y = 2 for SGS and 'Y = 3 for direct solution by Gaussian elimination. 
Altogether, this results in O(nd operations. The coupling between two point­
blocks is described by the respective submatrix entries of F[, or, in (24), by 
a( U(K), CPi), i = 1, .. , IPx I, with a non-unique representation (10) of U(K). It is easy 
to see that by this coupling information is exchanged on all respective levels of 
discretization simultaneously. 

In practice, however, not all traversal orderings through the set of grid points 
Nk are advisable. We restrict ourselves to the sequence of point-blocks where the 
grid points of Nk \ Nk-1 are ordered first, for example in a three-color fashion. 
Second, the remaining grid points of Nk-1 are ordered recursively in the same 
way. Then, neither the point-block matrix nor the off-diagonal blocks have to be 
assembled explicitly, but can be expressed by means of prolongation and restriction 
operators. However, the efficient solution of the diagonal-block problems and the 
block Gauss-Seidel iteration is still tricky to implement. It can be shown that 
one point-block Gauss-Seidel step can be implemented to need O(nk) operations. 
Details will be reported in [7]. 

Note that it is in general not necessary to compute the exact solution for each 
point-block problem. Usually, a few GS- or SGS-iterations are sufficient. In the 
extreme case of one GS step only, we obtain the GS iteration for the semidefinite 
system (16) with just a special point-oriented ordering. 

3.3 DOMAIN-ORIENTED BLOCK GAUSS-SEIDEL ALGORITHMS 

The point-oriented approach can be easily generalized. We may allow an arbitrary 
domain decomposition of n into K non-overlapping subdomains with associated 
decomposition 

K 

Nk = U Nt Nk n N~ = {} for i # j (28) 
i=1 

of the grid points N k . Now, we group together the unknowns of the semidefinite 
system that are associated to functions of Ek whose center points are situated in 
the same Nk by 

PNk := U Px ' (29) 
XENk 

The resulting block Gauss-Seidel algorithm now switches from subdomain to sub­
domain in some prescribed order. Thus, we obtain some sort of simple domain 
decomposition method which exhibits MG-type convergence properties. 
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Note that, in contrast to the point block approach, the arising subproblem 
matrices are now in general not longer invertible, since they can be semidefinite. 
However, an iterative method still is able to produce a non-unique solution for the 
corresponding subsystem. Alternatively, a direct solver for any definite subsystem 
with full rank can be used. 

For practical purposes, a nested dissection-like decomposition [2] of the grid 
points into sub domains is advisable. Compare also Figure 7. Then, by using multi­
grid prolongation and restriction operators, the submatrices for the sub domains 
have not to be assembled explicitly, and one overall block Gauss-Seidel iteration 
can be performed with O(nk) operations. 

3.4 CONVERGENCE PROPERTIES 

Based on Xu [12], Zhang [14] and [6], it can be shown that the above mentioned 
plain Gauss-Seidel methods, the point-oriented Gauss-Seidel methods and to some 
extend also the domain-oriented Gauss-Seidel methods working on the semidefinite 
system converge independent of k or nf without any regularity assumption. 

In contrast to Xu [12], the use of the generation system gives us the possi­
bility to express the estimates for the convergence rate directly in terms of the 
semidefinite matrix itself, which is similar to conventional convergence estimates 
for classical Gauss-Seidel and SOR methods, c.f. [6]. 

Interestingly, the arising estimate for the plain Gauss-Seidel method (as well 
as for the point-oriented algorithm) is independent of the ordering of the gener­
ating system and gives an upper bound for all possible orderings. Thus, it also 
holds for plain Gauss-Seide! method with level-oriented traversal ordering, that 
corresponds to a multigrid V-cycle with either one pre- or one post-smoothing 
step with any Gauss-Seidel smoother (lexicographic, red-black, four-color) on each 
level. Furthermore, since the symmetric Gauss-Seidel method consists just of two 
Gauss-Seidel iterations with one in reversed order, we immediately obtain the 
estimate pSGS ::; (pGS)2 ::; C < 1. for the convergence rate of the symmetric 
Gauss-Seidel method (i.e. V-cycle with one pre- and one post-smoothing step), 
which is also independent of k and n~. 

In addition, not only level-wise orderings have to be considered. We can give 
up the level-fixed approach that is inherent in usual multigrid methods and gain 
the freedom to perform Gauss-Seidel relaxations in a point- or domain-oriented 
ordering as well without loosing the property that the convergence rate is inde­
pendent of k and nf. For example, the point- and domain-oriented Gauss-Seidel 
methods where the point- and domain-subsystems are not solved exactly but only 
iterated by one Gauss-Seidel step reduce to a simple Gauss-Seidel method for the 
overall semidefinite system with just a special point- or domain-oriented traversal 
ordering. Therefore, their convergence rate is also independent of k and n~. 

Similar observations can also be made for the point- and for the domain­
oriented methods with exact inner solver. For further details, we refer to [6]. 
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4 Parallelization properties 

So far, we have mentioned that point-oriented Gauss-Seidel methods or domain­
oriented Gauss-Seidel methods (with one Gauss-Seidel step in each subdomain) 
possess a convergence rate that is independent of k just like level-oriented Gauss­
Seidel methods (multigrid). Note that the convergence rates measured in numerical 
experiments for point- and domain-oriented methods, c.f. [5], are slightly worse 
than that for sophisticated level-oriented methods. We obtain convergence factors 
of 0.1-0.2. Furthermore, the amount of operations to perform one iteration step is, 
at least for the present implementation, somewhat larger. 

Thus, we can ask the question whether we need the point- and domain­
oriented method at all. The answer gets clear if we consider the parallelization 
properties of the different methods on most presently available MIMD computers 
and especially on networks of workstations or LANs and WANs. There, the time 
necessary to setup communication is often relatively large. Thus, it is advantageous 
to exchange a larger amount of data collectively in one step than to exchange only 
fractions of the data in many different steps. Otherwise it can happen that the 
overall execution time is dominated exclusively by the setup time. Then, the time 
necessary for data exchange and parallel computation is not important any more. 

This is where the level- and the point-/domain-oriented methods are different. 
For the level-oriented method, the number of communication steps is dependent 
on the number k of levels whereas for the point-/domain-oriented method it only 
depends on the number of processors P, i.e. it is of the order O(log P). How­
ever, in the point- and domain-oriented case, the overall amount of data to be 
exchanged is slightly larger. For practical situations with nk » P, this property of 
the point-/domain-oriented method is a crucial advantage that pays off on certain 
MIMD computers and especially on workstation networks or LANs and WANs 
with relatively dominant communication setup. In the following we will explain 
this difference between the level- and point- or domain-oriented approach in more 
detail. 

An efficient implementation of the level-oriented Gauss-Seidel method for the 
semidefinite system can follow the multigrid strategy. In general, it consists of the 
smoothing step, the computation of the residual, the restriction operator and the 
prolongation operator. For the parallelization of a multigrid method, the domain 
n is usually subdivided into P more or less equally sized subdomains. Then, each 
sub domain with his grid points on all levels (together with some overlapping border 
grid points) is associated to its specific processor. Usually array-, tree- or pyramid­
type processor topologies are used [9]. 

Following this domain decomposition principle, the different components of 
a multigrid method (smoothing, residual computation, restriction, prolongation) 
can be executed, at least to some extent, in every sub domain independent of each 
other. This holds especially for grid points that are situated, for each respective 
level, sufficiently in the interior of each subdomain. However, for grid points that 
are contained in the local boundary of the subdomains, or that are within one 
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mesh width distance from the local boundary, the situation looks different. In 
general, for the computation of the multigrid components in these points, data 
is necessary from adjacent grid points, that can be situated in some adjacent 
subdomain and is stored on another processor. Therefore, the exchange of data 
between adjacent processors is necessary. This is usually performed collectively for 
all border points that belong to two adjacent processors in one communication 
step. Since the multigrid methods works level by level, this makes clear, that in a 
parallel multigrid method data has to be exchanged on each level of the multigrid 
hierarchy. For further details, see [8], [9]. 

Another bottleneck for the parallelization of multigrid methods occurs on 
the coarser grids. These grids contain relatively few grid points. Thus, only few 
processors can work here in parallel and the remaining processors have to stay idle. 
Additionally, in an array-like processor topology, certain adjacent grid points on 
coarse grids are not longer associated to adjacent processors. Then, communication 
has to take place sequentially between distant processors and is therefore more 
costly. Furthermore, processor load on these coarser grids can in general not be 
distributed equally. Therefore, so-called agglomeration techniques [8] have to be 
applied. 

Altogether, for the parallelization of level-oriented methods, communication 
is necessary on every level. Furthermore, the computations on coarser levels can 
not employ all available processors, they are usually not well balanced and, addi­
tionally, it can be necessary to exchange data between distant processors. Theo­
retically, it is possible to obtain a parallel complexity of O(log nk) if a sufficiently 
large number of processors is available. Practically, however, this is often not the 
case. There, P « nk usually holds, and the overall computation time of a parallel 
multigrid method is strongly dependent on the number of communication steps 
and the communication properties of the parallel computing system. It can even 
happen that the communication setup time dominates both the data exchange 
time and the computation time and spoils the speed up and the efficiency. 

For the simple one-dimensional case with k = 5, we see in Figure 2 the 
hierarchy of grids employed in the multigrid method and its distribution to P = 3 
processors. Arrows indicate schematically the necessary communication steps. 

PI 

FIGURE 2. Distribution of the level-oriented method to 3 processors. 
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It is clear that due to the level-wise computation the number of necessary 
communication steps is of the order O(k) , whereas, at least in our 1D-example, 
the amount of data to be exchanged in each step is of the order 0(1). Thus, the 
number of communication steps is dependent on k ond not on P. 

Now, we turn to the parallelization properties of the point- and domain­
oriented methods. To explain the basic parallelization strategy and the require­
ments for communication and distributed storage and to show the main difference 
to the level-oriented methods, we restrict ourselves for reasons of simplicity to the 
one-dimensional case. In the point-oriented Gauss-Seidel method for the semidefi­
nite system, all unknowns that belong to different levels but to the same grid point 
are grouped together and treated collectively as block in the iteration procedure. 

For the parallelization of this method we apply the "divide and conquer"­
principle. In a first step, we assign the center point of the domain together with 
all its unknowns of wt and further data (like right hand side, certain parts of the 
residual) that belong to the center point to a processor PI. Then , the remaining 
grid points and all their degrees of freedom with respect to the generating system 
are split into two mutually independent subsets, that are assigned to two further 
processors (P2, P3). Altogether, we obtain the situation as shown schematically 
in Figure 3. Once again, arrows denote necessary communication steps. 

P2 PI P3 

• • 

FIGURE 3. Schematical distribution of the point-oriented method to 3 processors. 

First, the unknowns that belong to the left and right subsystem of the 
semidefinite system are relaxed simultaneously on the processors P2 and P3. Then, 
necessary data (the associated grid points are marked in Figure 3 by .) is sent to 
processor PI and the unknowns that belong to the center point can be relaxed or 
computed exactly. The resulting new values have to be sent to the processors PI 
and P2 and the iteration can continue. 

Now, a first difference to the level-oriented method of Figure 2 gets clear: 
Only the two processors P2 and P3 can work simultaneously and they have to 
stay idle if computations are performed on processor PI. However, there are only 
two (simultaneous) communication steps necessary which is independent of k. 
It can be seen directly that , at least for our simple 1D example with only three 
processors, the number of communication steps is only of the order 0(1). However, 
the amount of the data to be exchanged is now of the order O( k). In contrast to the 
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level-oriented method of Figure 2, the point-oriented approach allows to collect the 
larger amount of data belonging to different level and to exchange them collectively 
in one communication step. 

In the case of many processors, the left and right subproblem of the semidef­
inite system can be further subdivided in a recursive manner. In a natural way, 
we then obtain a tree-like parallelization structure. Each node of the tree contains 
the parts of the semidefinite system that are associated to the point block of the 
respective grid point. The leaves contain the subproblems that belong to the re­
spective subdomains. The point block algorithm sweeps through this tree level by 
level. Now, the processors of each level work in parallel. This is indicated in Figure 
4. 

FIGURE 4. Tree-like parallelization structure of the point-oriented method. 

To maintain the data supply of the processor nodes over many levels in the 
case of recursive subdivision, it is not more sufficient to exchange only the data 
between father- and son-processors, that belong to the points of Figure 3 that are 
marked bye. For example, for the computation on level I (here I = 2), data is 
necessary that belongs to the points of Figure 5 (below) that are marked bye. 
However, for the computation on level I - I, data is necessary that belongs to the 
points of Figure 5 (above) that are marked bye. 

Therefore, certain additional values have to be stored and updated in every 
node of the processor tree to maintain data supply over many levels. The corre­
sponding points on levell are shown in Figure 6. This additional data only doubles 
the amount of data to be stored in each processor and results in a factor 2 for the 
size of the data packages to be exchanged between father- and son-processors. 
The amount of storage as well as the amount of data to be exchanged remains 
proportional to k - l + 1 for each processor on level l. 

A short analysis (sum up over the processor tree) then gives a parallel com­
plexity of O( nk / P) + O( (log P -1) (log nk - (log P) /2 + 1)) for the number of opera­
tions, O( (log P -1) (log nk - (log P) /2 + 1)) for the amount of data to be exchanged 
and O(log P) for the number of communication steps of the overall algorithm. The­
oretically, with P:::::: nk, we obtain now a parallel complexity of O((log nk)2) only, 
whereas the parallelization of the multigrid method (on a multilevel-type processor 
topology but not on a binary tree processor topology!) even results in O(log nk). 
However, remember that the setup time is now not more dependent on lognk but 
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• • • 
• • • 

• • • 
• • • 
••• 

• • • • 
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FIGURE 5. Points per processor that correspond to data necessary for the computation. 

only on log P. Thus, mainly on networks of workstations as well as on LANs and 
WANs where the set up time contributes dominantly to the overall execution time, 
run time advantages can be expected for practical values of P and nk. 

• • • • 
• • • • • • 

• • • • • • • • • • 
• • •• • 

FIGURE 6. Points per processor that correspond to data necessary for the computation 
and communication. 

This "divide and conquer" -approach for the parallelization can be generalized 
to the two-dimensional case. Then, we decompose the domain n along a middle line 
and assign the corresponding part of the semidefinite system to a first processor. 
The remaining part of the semidefinite system is split into two independent parts 
that can be treated in parallel. These two subsystem can be further subdivided in 
a recursive manner. If this subdivision always takes place in the same direction we 
obtain a stripe-wise decomposition of the domain, see Figure 7 (left) . Furthermore, 
the direction of the subdivision can be altered with each step. In both cases we 
obtain a binary tree-type parallelization structure where the subproblems of the 
semidefinite system that correspond to a node of the tree can be treated on each 
level in parallel. The alternating subdivision is closely related to. the decomposition 
of the domain into four parts by means of a separating "cross" . Then, we obtain 
a tree-like parallelization structure, where each node possesses four sons, compare 
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7 (right). 
Now, similar to the ID case (compare Figure 5), data of adjacent points of 

each level is necessary for the computation of the separator-subproblems and has 
to be stored on the respective processors. Furthermore, to maintain data supply 
over many levels of the processor tree, certain additional values have to be stored, 
updated and exchanged in every node of the processor tree similar to the ID case 
(compare Figure 6). A more detailed discussion on this problem is found in [6]. 

Note at last that the iteration of the one-dimensional multilevel subsystems of 
the semidefinite system that belong to a separator-line or -cross can be further de­
composed in a second parallelization step, which is analogous to the parallelization 
strategy in the one-dimensional case. 

• • • 1 • • • • • 1 • 1 • 1 • • • • 
• • • 2 • • • • • 2 2 • • • • • • 
• • • 1 • • • • 1 1 1 • • • • • • • 
• • • 3 • • • • 3 • • • • • • • 
• • • 1 • • • • • 1 • 1 • 1 • • • • 
• • • 2 • • • • • 2 • • 2 • • • • 
• • • 1 • • • • 1 1 1 • • • • • • • 

FIGURE 7. Stripe- and box-wise nested dissection decompositions and their paralleliza-
tion structures. 

5 Conel uding remarks 

In this paper we presented different multilevel algorithms based on the gener­
ating system approach. We studied level-oriented techniques where Gauss-Seidel 
methods for the semidefinite system turn out to result just in standard multigrid 
algorithms. Additionally, we presented new point- and domain-oriented methods. 
There, block Gauss-Seidel iterations for the semidefinite system are obtained that 
exhibit a reduction rate independent of the grid size and the number of levels like 
conventional multigrid methods. Furthermore, these algorithms possess interesting 
properties with respect to parallelization. Especially the property that the number 
of communication steps, and thus the setup, is only dependent on P and not on k 
as for multigrid methods makes these algorithms well suited to networks of work­
stations. Meanwhile, first parallelization results have been obtained on different 
MIMD computers (IPSC/860, nCube2, Transputers), virtual shared memory ma­
chines (KSR-l), and networks of workstations (HP9000/720 with Ethernet) but 
this will be reported elsewhere. 

In [3], our level- and point-oriented approach is adopted to an extended gener­
ating system that additionally contains the basis functions of all grids that result 
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from semi-refinement steps with respect to both coordinate directions. Further­
more, the full and the sparse grid case [13] is considered. For the level-oriented 
methods, we obtain multigrid algorithms similar to that of N aik and van Rosendale 
[11] and Mulder [10]. For the point- and domain-oriented approach, analogous point 
block Gauss-Seidel methods as well as BPX-like preconditioners are derived. 
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Large Discretization Step (LDS) 
Methods For Evolution Equations 
Zigo Haras and Shlomo Ta'asan1 

ABSTRACT A new method for the acceleration of linear time dependent calcu­
lations is presented. It solves an extended system of equations on coarse spatial 
grids using large time steps yielding very accurate solutions. The method employs 
time stepping on different temporal and spatial scales visiting the finer grids once 
in many coarse level time steps. Most of the work is performed on the coarse lev­
els in time-space, while the resulting solution is practically the fine grid solution. 
The proposed method is very general, simple to implement and may be used to 
accelerate many existing time marching schemes. Numerical examples are given, 
demonstrating the effectiveness of the method which reduces computational time 
by more than an order of magnitude. 

1 Introduction 

Long time simulation of partial differential equations is a highly intensive com­
putational task. While progress has been made in the acceleration of parabolic 
equations computations [2], little improvement has been achieved for hyperbolic 
problems. 

The solutions of time dependent problems are often smooth and can be spa­
tially approximated on coarse grids. In long-time simulations, this smoothness is 
hard to exploit due to the fast accumulation of numerical errors. This error neces­
sitates the use of either finer grids or higher order schemes (provided such schemes 
are available), or a combination of both; resulting in a substantial increase of the 
computational cost. 

In such computations a large scale system of linear equations has to be eval-

lThis research was made possible in part by funds granted to the second author 
through a fellowship program sponsored by the Charles H. Revson Foundation and in 
part by the National Aeronautics and Space Administration under NASA Contract No. 
NASl-19480 and NASl-18605 while the authors were in residence at ICASE, NASA 
Langley Research Center, Hampton, Va 23681. 
Department of Applied Mathematics and Computer Science 
The Weizmann Institute of Science, and 
Institute for Computer Applications in Science and Engineering 
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uated or solved for many time steps until a prescribed final time is reached. For 
implicit schemes some improvement may be achieved by applying a multigrid solver 
at each time step. However, one is still confined to small time steps and the overall 
computational cost is very high. 

A more advanced multigrid idea, recently investigated in detail [1, 2, 3], ap­
plies multigrid in time as well. In that approach, the frozen T method, some cor­
rection terms are added to the coarse grid equations, enabling marching on coarse 
levels while maintaining the fine grid accuracy. This method has been successfully 
applied to parabolic equations [3]. 

The present work suggests a novel approach to long time integration prob­
lems. It identifies two grids, the coarse representation grid on which the solution 
appears smooth enough and a finer computational grid which is required to achieve 
a prescribed accuracy with a given time marching scheme at some final time. Our 
method performs most of the time marching on a grid finer than the representation 
grid, yet significantly coarser than the computational grid. It is a generalization of 
the frozen T method aimed at achieving a substantially more efficient technique 
not restricted to parabolic equations. In this approach a set of equations satisfied 
by the correction term T are derived and solved on the coarse grid at each time 
step, resulting in a time varying T. It visits the computational grid or intermedi­
ate grids, once in many coarse grid time steps to compute initial conditions for 
correction terms equations. An important feature of this method is its simplicity 
and generality which enables acceleration of many existing time marching pro­
grams provided they obey a few simple programming conventions. This method, 
named Large Discretization Steps, LDS in short, has been successfully applied to 
linear hyperbolic problems with periodic boundary conditions. These boundary 
conditions were chosen to investigate the method basic properties and estimate its 
expected efficiency. 

The organization of this paper: In section 2 the LDS-type approximation is 
introduced and an error bound for a simple case is obtained. Section 3 describes the 
LDS algorithm and its implementation details. Section 4 presents the numerical 
results, and Section 5 summarizes the work. 

2 Approximation Theorem 

The method presented in this paper was motivated by the observation that in 
many cases the truncation error satisfies approximately the same equation as the 
solution. Thus, if one could effectively compute the initial conditions for the error 
term equation, the solution of this equation could be used to increase the accuracy 
of the approximation scheme. Computing the initial data for the truncation error 
equation might be a very difficult task; fortunately, there is a simple way to find 
the initial conditions for the relative truncation error, Le., the error in a given 
approximation relative to a more accurate one. This idea can be applied iteratively 
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resulting in a system of equations each correcting the higher order terms of the 
error. 

In this section, this observation is demonstrated for the spatial discretization 
error and bounds on the global error in this type of approximation are derived in 
a simple case. 

Consider a semi-discretization of a linear initial value problem with constant 
coefficients 

dun(t) _ Lu (t) = 0 
dt n (2.1) 

with initial conditions un(O) = uo, where un(t) = u(n~x, t). 
Let L be an approximation to L, e.g., a coarse grid representation of the fine 

grid operator. Define the system 

with initial values 

(2.3) 

Henceforth, an approximation of a system of equations by an enlarged system of 
the form (2.2) will be called a LDS approximation of degree m. 

Assume that Land L commute. The solution of this linear system of ordinary 
differential equations is eAtvn(O), where A denotes the above system. Since the 
matrix A has a block Jordan form, an explicit expression for vno (t) is : 

- m (L L)ktk - ( - (L L)m+l cm+1 ) 
V (t) = eLt '" - u (0) = eLt e(L-L)t - - <" U (0) 

no L...J k! n (m + 1)! n 
k=O 

for some ~ E [0, t]. 
If e£tun(O) are uniformly bounded by some function K(t), then 

The commutativity assumption does not hold in general, however, we have ob­
tained similar bounds for the noncommutative case for both the continuous and 
discrete cases [4]. The bound (2.4) implies that for any fixed final time T the global 
error goes to zero as the number of equations m goes to infinity and vno (T) con­
verges to un(T) with convergence rate depending on the magnitude of the relative 
truncatior; error. It also suggests that if there exist Fourier components for which 

IIL(w) - L(w)11 is large, the LDS may preform poorly or even fail to work with 
these schemes. 
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It should be mentioned that although the LDS transformation allows a poly­
nomial growth of the solution, it maintains the stability properties [5] of the original 
equation [4]. 

3 Large Discretization Step (LDS) Methods 

This section presents an implementation of the LDS approximation for evolution 
problems. 

Consider a differential equations of the form 

au(x, t) 
at - A(x, t, D)U(x, t) = P(x, t) 

U(x,O) = Uo 

(x,t) E nx(O,to) 

x E n 

The problem may be multidimensional and possibly a system. 
The discretizations considered are of the form 

E(x, t, k, h)Un + S(x, t, k, h)pn 

(3.1) 

(3.2) 

where h, k denotes ~x and ~t, respectively, and un = Uj approximates U(jh, nk). 
E(x, t, k, h) is an explicit or implicit two level time marching operator. In the sequel 
the notation Ek,h will be used, omitting the possible dependence on (x, t). 

3.1 THE LDS METHOD OF GENERAL DEGREE 

The bound obtained in the previous section estimates the error in approximating 
a high accuracy scheme by a system of equations of lower accuracy. In the present 
work the two discrete operators are the same discretization of a differential opera­
tor on two different grids. The LDS method attempts to perform most of the time 
marching of the extended system of equations on the coarser levels, yet maintain­
ing the fine grid accuracy, by visiting the fine grid once in many coarse grid time 
steps for error terms computation. 

Consider two grids (in space-time), a fine one with spacing (h, k) and a coarse 
one with (H,K) where H = ah,K = ak. Given Uh(x,O) on the (h,k) grid, one is 
required to calculate the solution up to final time T. Assume appropriate intergrid 
transfers exist. 

The LDS algorithm is composed of two stages: initialization of the correction 
terms and time marching on the coarse grid for a predetermined number of steps. 
For presentation simplicity the algorithm will be described in the case P(x, t) = 0, 
it is further assumed that E, S commute, as is the case in many explicit or implicit 
integration formulas. The general algorithm has the following simple form. 
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LOS Method of General Degree - d 

Initialize V~d 

N=O 

While N ::; I k l Do 

Call Initialize(V~"",Vd~,d 

For i =1, ... ,Revisit Do 

End 

Solve V;N+1 EH,K VoN + VoN 
I,d I,d I+I,d' 

Set 

End 

1=0, ... ,d-1 

The result presented in the previous section does not suggest how to effec­
tively and efficiently compute the initial values for the correction terms. This can 
be easily done once observing that if the correction terms were accurately initial­
ized than at the first time steps the LDS solution on the coarse grid should coincide 
with the fine grid solution. 

For presentation simplicity, we first describe the initialization procedure for 
the case 1ft = 2. 

Set UN = Ih,k V;N 
H.K D,d 

For i =1, ... ,d Do 

Solve 

Set 

End 

Solve 

Set 

uN+!f} = 

V;N+1 
I,d 

V N + I 
i-I,d 

V~ 2, 

V;N+I 
I,d 

VN+1 
i,d 

N 

Eh,k u N + m - 1 
2 , m=1,2 

EH,K Vz~ + Vz~I,d ' 1=0, ... ,i-2 

EH,K V;~I,d 
V;N+I 

D,d 
IH,KUN + I 

h,k 

V;N+I 
I,d + V;~, 1=0, ... , i-1 

EH,K V~ 
" 

N + 1 

Note that the term V;~ incorporates in it the SK,H term; this and the com­
mutativity assumption explain the way the LDS integration is performed. 

This procedure can be easily adapted for the general case when 1ft = 0:. 

The simplest approach is to perform 0: time steps on the fine grid for each coarse 
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grid time step and initialize the T'S correspondingly. However, this would render 
initialization very costly and greatly reduce the LDS efficiency. In case a is a 
composite number, e.g., a = 21, a more efficient approach is available, exploiting 
the LDS high accuracy by employing intermediate grids. In this approach one uses 
the fine grid to initialize an LDS system of degree m on the grid HI = 2 h; since 
this approximation is very good it may be used to initialize an LDS of degree m 
on grid H2 = 2 HI. This process is repeated until the correction terms on grid 
HI = H are initialized. 

A more efficient procedure is to initialize the correction terms on all grids 
simultaneously, i.e., compute an initial condition for a coarse grid equation once 
enough time marching was performed on the finer grids. Consider, for example, 
the case a = 4 and m = 2; the above mentioned procedure would first perform 
four time steps on the fine grid and two on the HI grid to initialize a second 
degree LDS on that grid, then march with the LDS system four additional steps 
to initialize the coarse grid system. Since four fine grid time steps are sufficient 
to initialize the first term in the coarse grid LDS, one may initialize this equation 
already at this stage and perform only two addit.ional steps on grid HI to complete 
the coarse grid initialization. This way, the minimum number of time steps on the 
finer grids is performed (which takes a large fraction of the algorithm computation 
time) resulting in a more accurate initialization. 

Note that since initialization is performed by subtracting increasingly closer 
solutions, each initialized term is a few significant digits less accurate than the 
previous one. It follows that although the result in Section 2 applies for approx­
imation of any degree m, in practice m :::; 3. A simple way to predict the LDS 
performance is to look at the relative magnitude of the correction terms immedi­
ately after initialization. According to the result presented in Section 2, the ratio 

11~;~~(~~~llll should be roughly constant. Thus, a large variation in this quantity 
suggests a large error in the initialization of Tj, causing the LDS failure. For the 
above mentioned reason, high precision arithmetic is essential for good results. 

3.2 SCHEDULING 

The LDS system of equations is integrated mainly on the coarse grid, thus the ac­
curacy of the correction terms deteriorates at a rate determined by the integration 
operator on that grid. However, since the magnitude of these terms is significantly 
smaller than that of the solution, they can be effectively used for several coarse 
grid time steps. Once a large error had accumulated, the fine grid should be revis­
ited to compute new and more accurate initial conditions for these equations. This 
work on the fine grids consists a major fraction of the algorithm computational 
cost. In the sequel an estimate on the number of consecutive time steps one can 
march on the coarse grid will be derived based on the bound of Section 2. 

A simple way to achieve a prescribed accuracy is to maintain the coarse grid 
error below the fine grid error at all times t :::; T. Recall the bound obtained in 
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Section 2, 

Ilu(x, t) - uh(x, t)11 

Iluh(x, t) - u~o (x, t) II 

< IK(t)IIIL - Lhll t 
IILh - L Hllm+ltm+1 

< IK(t)1 (m ~ I)! 

In order to achieve the desired accuracy the following inequality must hold 

IILh LH Ilm+1tm +1 
IK(t)1 -( )1 ~ IK(t)IIIL - Lhll t 

m+1. 
t ~ T 

(3.3) 

(3.4) 

(3.5) 

The operator L - Lh accounts for the local truncation error and its norm satisfies 
IlL - Lhll = ChP. The norm of the relative truncation error can be estimated by 
IILh - LHllm+1 ~ cm+l(aPhP - hP)m+l, where 1ft = a. Inequality (3.5) holds if, 

(m+1)!ChP (m+1)! 36 
((aP - l)ChP)(rn+l) ~ (aP - 1)"' Cm hpm ( . ) 

The Stiriling formula for the factorial function estimates n! '" ~ nn+~ e-n. Sub­
stituting this in (3.6) yields, 

(m + 1)~ 
t ~ ----,----:--­

e(aP -1)ChP 
(3.7) 

where e is the Euler constant. Assume that IK(t)1 ~ Iluoll, then the error in the 
fine grid solution at the final time T satisfies 

(3.8) 

for a prescribed relative error tolerance E. Then the time t one can march on the 
coarse grid without correction satisfies 

e(oP-l)E T 
----'----'0-- < -
(m + 1)~ - t 

The following theorem was thus proved, 

(3.9) 

Theorem: For an LDS method of degree m based upon an order p approxi­
mation with coarsening ratio a, the fine grid should be visited ,= e (",P-l~ E times 

(m+l)2 
in order to achieve the fine grid accuracy on the same time 'interval. 

3.3 WORK CONSIDERATIONS 

The amount of computational work and the storage requirement in a cycle of LDS 
of degree m, will be evaluated and compared with the corresponding requirements 
on the finest grid in the cycle. In order to simplify analysis, it will be assumed 
that on the fine and coarse grid Jf = ~ and that H = 21 h. 

The equation is solved in a d-dimensional space, for d = 2,3. Typically, real 
world problems occur in 3-dimensional space. 
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Storage Requirements 

The LDS method uses on coarser levels m + 1 times as many equations as on the 
finest grid. The size of the spatial grid on any level is 2d larger than the next 
coarser one. The storage required to store all the computational grids is given by 

(3.10) 

where S is the storage requirement for the finest grid. 
If memory is at premium, storage may be traded for efficiency by initializing 

the grid successively rather than simultaneously. This way, at most two successive 
grids are required simultaneously. Thus, the memory requirement reduces to the 
size of the two finest grid, given by (1 + ~~1 )S. 

Efficiency 

The cost of a fine grid time step when using the LDS will be estimated. First, we 
compute the work required to initialize an LDS of degree m. It involves 2m steps 
on the finest grid. On the intermediate grids a total of 2m steps is required to 
initialize the next grid, first, m steps with systems of size 1, ... ,m are required to 
initialize the LDS on that grid, then additional m time steps with a system of size 
m + 1 are required to complete the next coarser level initialization. Thus, the cost 
of initialization denoted by 11,m is 

m(m-l) m(m-l) 1 m3m+l 
( ) 

Z-1 () 

1z,m = 2m + 2d1+1 + 2 + m(m + 1) (; 2dk :s; 2m + 2Ml _ 2 

(3.11) 
During initialization a time equal to m21 fine grid time step is marched. 

Denote by N the number of coarse grid time steps marched before revisiting the 
fine grid. The cost of a fine grid time step in such a cycle is 

dl 2 + m(3m+l) + N (m+l) h,m + N (m + 1)2- < m 2d+L2 2dl 

(N + m)21 (N + m)21 
(3.12) 

and the efficiency of the LDS cycle is the reciprocal of this quantity. 

3.4 ORDER OF INTERGRID TRANSFERS 

The transfer of the solution among the various grids is a major component of the 
LDS method. In the initialization stages the solution is first interpolated to the 
finer grids and after some time stepping on that grids is restricted to the coarsest 
grid. Appropriate choice of intergrid transfers is essential for obtaining the desired 
accuracy. 
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The necessary order of these transfers can be determined by analyzing their 
effect on the various Fourier components. The pth order interpolation of a 0(1) 
smooth component () results in an 0(1 - I()IP) smooth component on the fine 
grid and spurious oscillatory components of magnitude O(I()IP), for the frequency 
harmonics. These components are integrated on the fine grid having dispersive 
and dissipative errors different from their smooth harmonic. If the equation is 
of order m, this introduces an error of O(I()IP-m) in the high frequencies of the 
solution. The restriction operator couples those components again through the 
aliasing phenomena. It has two types of errors, fine grid high frequencies may alias 
with coarse grid low frequencies and fine grid low frequencies may contribute to 
coarse grid high frequencies. The injection operator transfers all high frequencies 
to their smooth harmonics and produces no error of the second type. Bearing in 
mind that the oscillatory modes of the fine grid are spurious components resulting 
from the interpolation of coarse grid smooth components, this type of error is 
acceptable. Therefore, if the discretization error is of order q, it is important that 
the visit to the coarse will not introduce an error larger than the truncation error. 
Thus, the following relation should hold p - m 2: q. 

3.5 RELATION TO PARABOLIC MULTIGRID 

The LDS was designed to accelerate simulation of linear evolution equations. It 
may be viewed as a generalization of the frozen T method [2] for parabolic equations 
since it can be reduced to that method by computing the initial data for VI,1 and 
subsequently freezing these values. 

The smoothness of the change in parabolic equation solutions enables using 
the same T for long times. Nevertheless, in order to reduce the number of visits 
to finer grids required to correct the magnitude of the T, it was artificially ex­
trapolated based on its change in previous times [3]. It seems that solving a time 
dependent equation for the T would be a more appropriate way to achieve this goal. 
It is hard to predict how this modification will change the overall performance of 
the parabolic solver, but clearly it will not significantly increase the algorithm cost. 

4 Numerical Results 

A few numerical examples will be given to demonstrate the potential of our ap­
proach. All examples are of linear hyperbolic equations with periodic boundary 
conditions in two dimensional space. The fine grid had 128 x 128 points while the 
coarse grid on which an LDS of degree one is integrated had 32 x 32 points. The 
fine grid is visited once in 20 coarse grid time steps, resulting in an efficiency of 
14.5. The figures show a cut in the solution at the point u attains its maximum, 
in the y direction 

The first example is the advection equation Ut = (1 + 0.3 sin(27rx))ux + 
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0.3 (1 + 0.3 cos(27rx) )uy discretized second order upwind in space with third order 
Runge Kutta and CFL=0.3. 

The next two are discretization of the linearized shallow water equation 

Pt a(x, Y)Px + b(x, y)Py + c(x, y) (ux + vy) 

Vt 

a(x, y)ux + b(x, y)uy + c(x, y)Px 

a(x, y)vx + b(x, y)vy + c(x, y)Py 

( 4.1) 

with a(x,y) = a(1. + 0.3 cos(27rx)), b(x,y) = b(1. + 0.3 sin(27rY)), and c(x,y) = 
c(1.+0.3 sin(27rx)). For both cases a2 +b2 > c2 anda2 +b2 < c2 the LDS efficiency 
can be vividly seen. 

5 Summary 

A simple and general method for accelerating the long time integration of par­
tial differential equations was introduced. It is highly effective, easily reducing 
computation time by a factor of 14. 

The basic ingredients of the method were analyzed, and it was successfully 
applied to linear hyperbolic problems with periodic boundary conditions. 

The method should be further generalized to treat different discretizations 
and boundary conditions. 
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FIGURE 1. Solution of Ut = (1 + 0.3 sin(27rx) )ux + 0.3 (1 + 0.3 cos(27rx) )uy, with 
Uo = e-20(x 2+y2) The fine grid solution is drawn with the solid line, the LDS with 
the dotted line and the coarse grid solution with dashed line. 
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FIGURE 2. The shallow water equation with a(x) 0.7 (l. + 0.3 cos(27l'x)), 
b(x) = 0.4 (l. + 0.3 sin(27l'Y)), c(x) = 0.3, with initial conditions po = e-20(x2+y2), and 
Uo = 0, Vo = O. The fine grid solution is drawn with the solid line, the LDS with the 
dotted line and the coarse grid solution with dashed line. 
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FIGURE 3. The shallow water equation with a(x) 0.2 (l. + 0.3 cos(27l'x)), 
b(x) = 0.3 (l. + 0.3 sin(27l'Y)), c(x) = l.0, with initial conditions Po = e-20(x2+y2), and 
Uo = 0, Vo = O. The fine grid solution is drawn with the solid line, the LDS with the 
dotted line and the coarse grid solution with dashed line. 
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A Full Multigrid Method Applied 
to Turbulent Flow using the 
SIMPLEC Algorithm Together 
with a Collocated Arrangement 
Peter Johansson and Lars Davidson 1 

ABSTRACT An implementation of a multigrid method in a three-dimensional 
SIMPLEC code based on a collocated grid arrangement is presented. The multigrid 
algorithm is FMG-FAS, using a V-cycle described by Brandt [1,2J. 
The coarse grid is obtained by merging eight fine grid cells in 3D, and four in 2D. 
Restriction and prolongation of field quantities are carried out by a weighted linear 
interpolation, and restriction of residuals by a summation. All variables and all 
equations, including the pressure correction equation, are treated in the same way 

To stabilize the solution process, a fraction of the multigrid sources is included in 
the diagonal coefficient ap , and a damping function is used on negative corrections 
of the turbulent quantities to prevent them from being negative. 
The multigrid method was shown to be relative insensitive to the choice of under­
relaxation parameters. Therefore 0.8 or 0.7 is used for all equations, except for the 
pressure correction equation where 1.5 is used. 
Both turbulent and laminar calculations are presented for a 2D backward facing 
step, a 2D ventilated enclosure, and a 3D ventilated enclosure. The turbulent cal­
culations are made with a two-layer low-Reynolds k - E model. 
Different discretization schemes for the convective schemes are used including the 
first order hybrid scheme and two higher order schemes (QUICK and a van Leer 
TVD scheme). 

1 Introduction 

Except for in some simple situations, calculation of flow problems is always bound 
to numerical methods. These numerical methods can be based on finite elements, 
finite volumes, finite differences, etc. 

1 Department of Thermo- and Fluid Dynamics, 
Chalmers University of Technology, S-41296 Gothenburg, Sweden 
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Characteristic of all of these methods is that a high resolution is needed in 
areas of rapid changes, for example in boundary layers, shocks and recirculation 
regions. On the other hand, commonly used matrix solvers are dependent on grid 
density and often the CPU-time is quadratically dependent on the number of 
nodes. This conflict usually results in the accuracy of the numerical simulation 
being dictated by limited CPU resources rather than by considerations of the 
physical flow situation. 

Using multigrid, the CPU-time is reduced dramatically. In fact the CPU-time 
is close to linearly dependent on the number of nodes, which means that higher 
resolution can be afforded and a more accurate solution achieved. 

For incompressible flow, several laminar multigrid implementations have been 
presented with different variants of FAS or CS. It is much more challenging to adopt 
FAS to turbulent flow situations, where only a very few efforts have been reported 
[4,5,6]. The turbulent transport equations (such as the k and E equations) increase 
the complexity of the equation system in many respects. The k and E equations 
are nonlinear and source dominated. The value of the turbulent quantities (k and 
E) must stay positive during every instant of the iteration procedure. 

In the present study FAS has been employed with the SIMPLEC algorithm 
in 2D and 3D turbulent flow using a low-Reynolds k - E model. An increased con­
vergence rate of a factor 10-100 or even more is obtained. The turbulent multigrid 
calculations were shown to be stable and the number of iterations was independent 
of grid density, or even decreased with increasing grid density. 

2 The finite volume procedure 

2.1 BASIC EQUATIONS 

The conservation equations for incompressible turbulent flow, using the k-E model, 
are 

~(pU/P) = ~ (r acI» + S 
aXj aXj aXj 

(1) 

where Table 1 shows the the different variables and source terms. The turbulence 
model used is a two-layer k-E model. In the fully turbulent flow region the standard 
k - E model is used, and near walls it is matched at a pre-selected grid line with a 
one-equation model. In the one-equation region the k equation is solved and the 
turbulent length scale is prescribed using a mixing length approach [7]. 

Define a flux vector Jj containing both convection and diffusion as: 

acI> 
Jj = pUj cI> - r ax. 

J 

Integration over a control volume using Gauss law then yields: 

(2) 
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EQUATION <P r S 

Continuity 1 0 0 

Momentum Ui Jieff _..0!.. 
aXi 

Turbulent kinetic energy k Ji + l!:J. Pk - pE 
(Jk 

Dissipation of k f Ji+ & f(CdPk - Ct2 pf) 
(J, 

p _ f!!:!.t { au] + iJ!!..i. 
k - /Lt aXi aXi aXj /Leff = CMPk2 IE + /L 

TABLE 1. The parameters in the general transport equation 

(3) 

2.2 NUMERICAL METHOD 

Representing the flux vector Jj at the cell faces and the sources in the center re­
sults in a system of matrix equations that can be written in the form: 

ap<Pp = L anb<Pnb + S 

nb 

(4) 

The code CALC-BFC [8], where the multigrid algorithm is implemented, 
uses the SIMPLEC algorithm of Patankar [9], within a collocated arrangement. 
To aviod nonphysical oscillations, a third order pressure dissipation is introduced 
by Rhie and Chow interpolation [10] when the massftuxes are calculated. 

The coefficients anb contain contributions due both to convection and dif­
fusion, and the source terms contain the remaining terms. The convective part 
is discretized either with the Hybrid-Upwind scheme [9], the quadratic uppstream 
scheme QUICK [11], or a TVD scheme from van Leer [12] The diffusive part is dis­
cretized with central differencing. In SIMPLEC procedure the continuity equation 
is turned into an equation for a pressure correction <Ppp and the solution procedure 
is briefly descriebed as: 

1. Relax U,V,W-momentum equations 
2. Calculate mass fluxes and relax the pressure correction equation. 
3. Relax k and E 

4. Calculate the turbulent viscosity (using under-relaxation) 
"Relax" means first to evaluate the coefficients and source terms in Eq. 4 and then 
to make a sweep with the TDMA smoother. 
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3 FAS applied to SIMPLEC 

3.1 DESCRIPTION OF FAS 

The description below is done with two grid levels, but is easily extended to more 
grid levels using the V-cycle. The FAS algorithm is described here when applied 
to SIMPLEC. This special multigrid method originates from a laminar multigrid 
[13], which is similar to the concept presented by Peric et. ai. [5]. To prepare the 
multigrid for local mesh refinements some changes were made before the extension 
to turbulent flow was performed. 

For any variable on the fine grid level 2, define the residual r2 by: 

a~¢~ = L a;'b¢;'b + 82 + r2 (5) 
nb 

The representation at a coarse grid by FAS is then: 

(6) 
nb nb 

where (f/ is the restricted field variable and 1'1 is the restricted residual obtained 
from the fine grid residual r2. The source term 81 and the coefficients a1 are 
calculated at the coarse grid using the restricted field variables, and all overlined 
terms are held constant under the course of coarse grid iterations. 

The overlined quantities are used as an initial guess for aI, ¢1 and 8 1 which 
are changed owing to the restricted residual 1'1 while iterating at the coarse grid. 

-1 
The changes {)1 = ¢1 - ¢ at the coarse grid are then prolongated to correct the 
approximation ¢2 obtained earlier at the fine grid. 

The two-dimensional coarse grid control volume is obtained by merging four 
fine grid cells together, and a three-dimensional coarse grid control volume by 
merging eight fine grid cells together. 

The residuals represent a flux imbalance according to Eq. 3. They are there­
fore restricted to the coarse grid by a summation of the fine grid residuals that 
correspond to the fine grid cells that define the coarse grid cell. Restriction and 
prolongation of the field quantities is made by bilinear interpolation in 2D and 
trilinear interpolation in 3D. 

Since non-uniform grids are used, the interpolation weights are assembled 
locally. For the restriction these weights are simply defined by the fraction that 
a fine volume takes of the corresponding coarse one, while for the prolongation 
the weights are calculated from the distances between the centers of the fine grid 
volumes and the coarse volumes. 

All variables (U, V, W, P, k, €) are restricted and prolongated equally, and all 
equations are treated in the same way with just a few exceptions given in the next 
section. 
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3.2 SPECIAL' FEATURES OF THIS IMPLEMENTATION 

1. In the laminar concept [13] the mass fluxes were restricted separately in 
order to achieve continuity at the coarse grid, At the coarse grid, the mass fluxes 
were then only corrected by the changes of the velocities. In the present study the 
pressure correction equation is treated in the same way as the other equations, 
but since it is a correction equation, <Ppp is equal to zero. No special treatment of 
mass fluxes is now needed, which simplifies the code, especially in connection with 
local mesh refinement. 

2. In order to prepare the present method for local mesh refinement the pres­
sure is restricted, which produces a problem at the coarse grid with the implicit 
treatment of the mass fluxes. The problem is related to the Rhie and Chow in­
terpolation, where the coefficient ap is used to calculate the mass fluxes and the 
mass fluxes are needed to evaluate ap. Therefore at a coarse grid, ap is stored 
from the last V-cycle and used in the Rhie and Chow interpolation. 

3. An extra sweep with the pressure correction equation and calculation of the 
turbulent vicosity immediately after prolongation has been shown to be efficient 
in preventing oscillatory behaviour. 

4. To stabilize the coarse grid equations special treatment of the multigrid 
source term 8 m 

-1 -1 ~-1 -1 -1 -1 
8 m = ap¢p - 6anb¢nb - 8 - r 

nb 

(7) 

is used for the k and E equations. If 8 m > 0, it is included in the right hand side 
vector 8~, while if 8 m < 0, is it included in the diagonal coefficient a~ via a division 
by ¢~ 

5. The turbulent kinetik energy k and its dissipation f cannot physically 
be negative. Furthermore during the iterative solution process they must stay 
positive. If they become negative the turbulent sources would change sign and the 
turbulent viscosity would be negative, which results in rapid divergence. To prevent 
the turbulent quantities from becoming negative after prolongation, a damping 
function on negative corrections, proposed by Lien [6], is used. The positive changes 
at a coarse grid 8~ are first prolongated to give 8~ and, in the same way, 8~ is 
obtained. The turbulent quantity ¢; at the fine grid is then corrected to ¢2 by 
¢2 = ¢;(8~ + ¢;)/(¢; - 8~) 

6. The QUICK scheme can produce negative coefficents, which can destroy 
the diagonal dominance of the coefficient matrix. Therefore a local under-relaxation 
is used, as suggested by Hellstrom [14], so that diagonal dominace is ensured al­
ways. 

3.3 SPECIAL TREATMENT OF BOUNDARY CONDITIONS 

The Dirichlet conditions at the inlet at coarse grids are based on global conser­
vation of the mass flux between the grids. Since at a boundary two cells merged 
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together define a coarse boundary cell (in 2D), the velocity is evaluated from the 
sum of mass fluxes from the two fine cells. 

Neumann boundary conditions are applied without any constraints at all 
coarse grids. 

4 Applications 

Three cases are presented where both laminar and turbulent calculations are per­
formed using a two-layer k - f model. 

In the laminar calculations the first-order Hybrid-Upwind discretisation scheme 
is used. For the turbulent calculations two different combinations of discretisations 
are used. The first combination is as in the laminar case (Hybrid-Upwind for all 
equations), and the second is QUICK for the velocities together with a bounded 
TVD scheme of van Leer for the turbulent quantities. 

11111111111 I I I I 

FIGURE 1. 20xlO grid for the backwards facing step 

MODEL LAMINAR LOW-RE k - f 

RE 100 110000 

SCHEME HYBRID HYBRID QUICK + VAN-LEER 

WU SPEEDUP WU SPEEDUP WU SPEEDUP 

20xlO 67 1.0 185 1.0 215 1.0 

40x20 58 1.9 108 3.3 130 3.1 

80x40 44 6.4 72 10.8 82 00 

160x80 60 15.6 72 23.7 76 00 

320x160 91 37.5 63 100* 73 00 

TABLE 2. Convergence data for backwards facing step 

The multigrid calculations were shown to be very stable, and therefore the 
under-relaxation parameters are set to 1.5 for the pressure correction equation and 
0.7 or 0.8 for all other equations.(0.7 was used for the backwards facing step and 
0.8 for the other two geometries). Decreasing the under-relaxation parameters to 
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0.5 decreased the convergence rate by a factor of 2 for both single grid calculations 
and for multigrid calculations. 

Different V-cycles were tested but the convergence rate was not significantly 
affected and therefore a 2-1-.. -1-4-1-.. -1 V-cycle was used. 

For each case, convergence data of the calculations are shown in tables. Con­
vergence history plots of each geometry are also presented. Superscript * means an 
estimated result because the single grid is too time consuming to calculate, and 00 

means that the single grid calculation did not converge. The convergence criterion 
is maxR = 0.1% where maxR is defined by 

maxR ~ m:x [{ ~ ap~p- ~"nb~nb - S } IF.] (8) 

The scaling factor FcJ> is the inlet flux for each equation. 
One WU is work equivalent to one SIMPLEC sweep at the finest grid, and 

is comparable to the calculation of maxR. 

4.1 2D BACKWARDS FACING STEP 
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FICURE 2. Convergence history of the 320x160 calculations for the 2D backwards fac­
ing step .[1]: Hybrid,turbulent,5-level FMC. [2]: QUICK,turbulent,5-level FMC. [3]: Hy­
brid,laminar,5-level FMC. [4]: Hybrid,turbulent,single grid. 

The first application is a 2D backwards facing step. The inlet is half of the total 
height 2H. The total length of the domain is 25H, to be sure that the Neumann 
condition at the outlet is correct. The coarsest grid is shown in Fig. l. 

For the laminar case, a parabolic velocity profile is used at the inlet and for 
the turbulent case a 1/7 profile is used. The Reynolds number for the laminar 
calculation is 100 and 110,000 for the turbulent case. 

The single grid calculations for the turbulent case were somewhat unstable 
at fine grids, mainly because of the high under-relaxation parameters used. To 
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stabilize the single grid calculations, a high viscosity was used during the first ten 
iterations. That worked nicely for the Hybrid scheme but was insufficient with the 
QUICK-van Leer combination. Note that the multigrid calculations did not show 
these instability tendencies. 

Convergence data are shown in Table 2. Notice that for the turbulent calcu­
lation the number of WU needed for convergence decreases when the mesh gets 
finer. The low Reynolds treatment demands high resolution near the walls, and 
although the mesh is expanding (see Fig. 1), 20 nodes were needed in the vertical 
direction. Therefore the low Reynolds area is defined from the 40x20 grid, where 
the first grid line is selected to be the one-equation region. A 5-level V-cycle is 
used for the turbulent case on a 320x160 grid, and the estimated speedup here is 
around 100, which is significant. Fig. 2 shows the convergence history. 

4.2 2D VENTILATED ENCLOSURE 

MODEL 

RE 

SCHEME 

lOxlO 

20x20 

40x40 

80x80 

160x160 

320x320 

LAMINAR LOW-RE k-E 

100 9000 

HYBRID HYBRID QUICK + VAN-LEER 

WU SPEEDUP WU SPEEDUP WU SPEEDUP 

41 1.0 119 1.0 169 

54 0.9 67 1.7 84 

100 1.7 51 6.0 59 

95 5.2 39 52.0 44 

87 22.6 34 153.6 43 

134 50* 30 600* 45 

TABLE 3. Convergence data for the 2D ventilated enclosure 

hin-O.3 !11 
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FIGURE 3. The 2D ventilated enclosure 
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FIGURE 4. Convergence history of the 160x160 calculations for the 2D ventilated en­
closure .[1]: Hybrid,turbulent,5-level FMG. [2]: QUICK,turbulent,5-level FMG. [3] : Hy­
brid,laminar,5-level FMG. [4]: Hybrid,turbulent,single grid. 

Next configuration is a two-dimensional model of a ventilated enclosure shown 
in Fig. 3 

The Reynolds number based on the inlet height is 100 for the laminar case 
and 9000 for the turbulent case. These turbulent calculations proved to be even 
more robust than for the backwards facing step. This is shown in Table 3 where 
the number of required WU decreases significantly with the grid density. Here, 
too, a non-uniform expanding mesh is used in order to be able to have one finite 
volume of the coarsest grid in the low Reynolds area. 

Here the speedup is even more significant, and a 6-level V-cycle is used for 
the turbulent case on a 320x320 grid, wich converged 600 times faster than the 
estimated CPU-time of the corresponding single grid calculation. It is worth men­
tioning that the 320x320 FMC calculation is performed within 30 minutes on a 
work station (DEC 3000/400) . In Figure. 4 the convergence history is shown for 
the 160x160 grid. 

4.3 3D VENTILATED ENCLOSURE 

hl,, _ Q2m 

biJplllt04m 
UIII~Q 4S5mlr 

hUIII=Q2rll 
balt, _ 04nl 
Uqu, - Q4Ss-wIS 

FIGURE 5. The 3D ventilated enclosure 

The configuration of the three-dimensional ventilated enclosure is shown in Fig. 5 
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FIGURE 6. Convergence history of the 40x40x40 calculations for the 3D ventilated en­
closure. [1]: Hybrid,turbulent,4-level FMG. [2]: QUICK,turbulent,4-level FMG. [3] : Hy­
brid,laminar,4-level FMG. [4J: Hybrid, turbulent single grid 

The Reynolds number based on the inlet hydraulic diameter is 100 for the 
laminar case and 8200 for the turbulent case. The turbulent flow becomes very 
complex inside the enclosure, which is shown in Fig. 7. 

This complexity also affects the convergence rate, where a typical number 
of required WU is around 200 while for the other two cases only around 50 were 
needed. Table 3 shows, however , that the number of required WU is constant or 
decreasing for increasing grid density, except for the finest laminar cube. Here, 
too, a non-uniform expanding mesh is used to be able to have one finite volume 
in the low Reynolds area at the coarsest mesh. 

The speedup for this configuration is not very significant since the grid density 
is not very high. Nevertheless, a speedup factor of 20 at a 4-level V-cycle with the 
k - E model on a 80x80x80 grid is considerable. Fig. 6 shows the convergence 
history for the 40x40x40 grid. 

It is interesting to note that when injection was used instead of this prolonga­
tion, on the QUICK-van Leer combination, the only effect was that the convergence 
rate was slowed down by a factor 2. If the weights were set as if the mesh was uni­
form, the convergence rate was not significantly affected either. On non-orthogonal 
meshes, where the evaluation of the local weights is too time consuming, the con­
vergence would therefore probably not be much affected much if fixed weights were 
used. 

5 Closure 

Some indications from the present investigation are worth pointing out: 
1. Multigrid accelleration is highly effective in 2D and 3D laminar and turbulent 
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MODEL LAMINAR LOW-RE k - E 

RE 100 8200 

SCHEME HYBRID HYBRID QUICK + VAN-LEER 

WU SPEEDUP WU SPEEDUP WU SPEEDUP 

lOx lOx 10 52 1.0 213 1.0 478 1.0 

20x20x20 45 2.8 215 2.0 332 00 

40x40x40 49 9.0 170 4.8 221 00 

80x80x80 116 20* 218 20* - -

TABLE 4. Convergence data for 3D ventilated enclosure 

flows, with observed speedup factors larger than 100. 
2. The CPU-time of the multigrid calculations is linearly dependent of the number 
of nodes for both laminar and turbulent flows. 
3. The effectivness is not greatly affected of grid non-uniformity. 
4. Neumann boundary conditions can be handled as well as Dirchlet conditions. 
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FIGURE 7. Vector plots at x/L=O.5 (upper left) , y/B=O.5 (lower left) and z/ H=O.5 for 
the three-dimensional ventilated room 
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Multigrid Methods for Mixed 
Finite Element Discretizations of 
Variational Inequalities 
Tilman N eunhoeffer1 

ABSTRACT We present a scheme for solving variational inequalities of obstacle 
type using mixed finite elements for discretization and we show the equivalence to a 
modified nonconforming method. This is solved using suitable multigrid methods. 
Numerical results are given for the elastic-plastic torsion of a cylindrical bar and 
the dam problem. 

1 Introduction 

We consider stationary variational inequalities of obstacle type: 

Problem 1.1 Find ii E C := {v E HJ(o') : v 2 W a.e. in o,} such that 

k agradii· grad(v - ii) dx 2 k f (v - ii) dx (1.1) 

where 0, denotes a bounded domain in JR2, f E L2(0,), W E Hl(O,) with \]:I ::; 0 a.e. 
on r := an and a is a symmetric 2 x 2 matrix-valued function on 0,. We assume 
that there exists n: > 0, such that 

L aij(x)~i~j ~ n:1~12 
i,j 

\:Ix E 0" \:I~ E JR2, aij E Loo(O,), 1::; i,j ::; 2. (1.2) 

It is well known that Problem 1.1 has a unique solution ii (cf. e.g. [10]). 
For strongly varying or even discontinuous coefficient functions a the dis­

cretization by mixed finite element methods is considered as superior to stan­
dard conforming techniques. A mixed formulation of Problem 1.1 has been de­
velopped by Brezzi, Hager and Raviart [5]. In particular, using the lowest order 
Raviart-Thomas elements and an appropriate post-processing technique the re­
sulting scheme is equivalent to a nonconforming method of inverse average type 

lInstitut fUr Informatik, Technische Universitat Miinchen, D-80290 Miinchen, 
Germany 
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based on the Crouzeix-Raviart elements augmented by suitable cubic bubble func­
tions. This has been established by Arnold and Brezzi [1] in the unconstrained case 
where for piecewise constant coefficient functions the components of the discrete 
solution associated with the nonconforming part and the bubbles totally decouple 
and thus can be computed independently. 

However, as we shall show, such a decoupling does not apply in the case 
of variational inequalities, since there is an inherent global coupling of the non­
conforming part and the bubbles caused by the constraints. Taking care of the 
constraints by piecewise constant Lagrangian multipliers and using static conden­
sation we end up with a variational inequality in terms of the multipliers. This 
variational inequality is then solved by an outer-inner iterative scheme with an 
active set strategy in the outer iterations and suitable multigrid methods for the 
inner iterations. 

The proposed mixed finite element technique is compared with standard con­
forming methods and its efficiency is illustrated by some numerical results for vari­
ational inequalities arising from elastomechanical applications and stationary flow 
problems in porous media. 

2 A mixed formulation for the obstacle problem 

The mixed formulation of the obstacle problem can be stated as 

Problem 2.1 Find p E H(div,O) and u E K := {v E L2(0) : v ~ \II a.e. in O} 
such that 

In cp· qdx + In udivqdx 0 'Vq E H(div, 0), (2.1a) 

In (divp + J) (v - u) dx < 0 "Iv E K (2.1b) 

where c:= a-I and H(div, 0) := {q E (L2(0))2 : divq E L2(On. 

The standard problem 1.1 and the mixed problem 2.1 are related as follows 
(cf. [5]). 

Theorem 2.1 Suppose that the unique solution u of Problem 1.1 is in H2(0), 
then (agradu, u) is the unique solution of Problem 2.1. 

For the discretization of Problem 2.1 we consider a regular triangulation 7h 
of 0 which, for simplicity, is supposed to be a polygon. Let pk(T) denote the 
polynomials of degree ::; k on T and 
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RT~l(Th):= {qh E (L2(0))2: qhlr:= a(x) +xr(x), 
r E pO(T), a E pO(T) X pO(T) V T E Th}. 

the space of Raviart-Thomas elements of lowest order [11]. 
Approximating H(div, 0) by 

RTg(Th) .- RT~l(Th) n H(div, 0) = 

259 

(2.2) 

{% E RT~l (Th) : qh . n is continuous across the (2.3) 
interelement boundaries of Th} 

we get the finite dimensional counterpart of Problem 2.1: 

Problem 2.2 Find Ph E RTg(Th) and 
Uh E Kh(Th) := {Vh E M~l(Th) : Vh ~ \[I a.e. in O} such that 

10 C Ph . qh dx + 10 Uh div% dx 0 (2.5a) 

10 (divPh + f)(Vh - Uh) dx < 0 (2.5b) 

This problem has a unique solution (Ph, Uh) E RTg(Th) X Kh(Th). A priori esti­
mates for the discretization error can be found in [5]. 

A common technique for the efficient numerical solution of the saddle point 
problem 2.2 is hybridization: The continuity constraints on the interelement bound­
aries are eliminated from the ansatz space RTg(Th) and instead are taken care of 
by appropriate Lagrangian multipliers. For this purpose we denote by Ch the set 
of edges oftriangles in Th, c{; := {e E Ch : e C aO}, c~ := Ch \ c{; and we set 

The well known equivalence 

Lemma 2.1 (cf. Lemma 1.2 in [1]) 11% E RT~l(Th)' then % E RTg(Th) iff 

L r /-L qh . nr de = 0 
rETh Jar 

(2.7) 

tells us how to choose the multipliers. We thus get the extended saddle point 
problem 
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Problem 2.3 Find Ph E RT~l (Th), Uh E Kh(~)' Ah E M~l (EZ) such that 

In CPh . qh dx + ~ (£ Uh divqh dx -faT Ah % . nT de) = 0 (2.8a) 

\1% E RT~l(~)' 

L r divPh (Vh - Uh) dx + r f (Vh - Uh) dx ~ 0 \lvh E Kh(Th), (2.8b) 
T JT Jf! 

L r fLhPh·nTde=O \lfLhEM~l(EZ)· (2.8c) 
T JaT 

Problem 2.3 has a unique solution (Ph, Uh, Ah). Moreover, if (Ph, Uh) is the 
unique solution of Problem 2.2, then Ph = Ph and Uh = Uh. 

Note that the matrix associated with Jf! C Ph ·qh dx is block diagonal consisting 
of 3 x 3 blocks and hence can be inverted easily. Then, elimination of Ph leads to 
a reduced system with a symmetric, positive definite coefficient matrix. However, 
we will follow another approach which, in the unrestricted case, has been proposed 
by Arnold and Brezzi in [1]. Taking into account that the multiplier Ah represents 
an approximation of u on the interelement boundaries, by an appropriate post­
processing Uh and Ah can be used to construct a new approximation of U which 
can be computed as the solution of a variational inequality related to a specific 
nonconforming discretization. In particular, we define 

(2.9) 

where M!vc(Th) refers to the lowest order nonconforming Crouzeix-Raviart ele­
ments 

M!vdTh) := { Vh E M~l(~) : vhlT E Pl(T) \IT E Th, 
Vh is continuous at the midpoints of each e E EZ and 
Vh = 0 at the midpoints of each e E En 

which in (2.9) are augmented by the cubic bubbles 

(2.10) 

Denoting by P~ and II~ the projections onto M~l (Th) and M~l (EZ), respec­
tively, we consider Wh E N 1(Th) such that 

(2.12) 

Existence and uniqueness are guaranteed by means of 

Lemma 2.2 (cf.Lemma2.3in [1]) Foranyvh EM~l(Th) andanYfLh E M~l(£~) 
there exists a unique Zh E N 1 (Th) such that 

(2.13) 
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Consequently, we are faced with the following 

Problem 2.4 Find Ph E RT~l(Th)' Wh E Kh(Th) := {Zh E N 1 (Th) : pRZh 2: w} 
such that 

{ c Ph . % dx - L { gradwh' qh dx = 0 
in T iT 

(2.14a) 

L ( Ph' grad(zh - Wh) dx 2: { pRJ (Zh - Wh) dx 'VZh E K(4.). (2.14b) 
Thin 

By a simple application of Green's formula we can show: 

Theorem 2.2 Let (Ph, Uh, Ah) be the unique solution oj Problem 2.3 and let Wh 
be defined by (2.12), then (Ph, Wh) is the unique solution oj Problem 2.4-

Denoting by P~T.c the projection onto RT~l (4.) with respect to the inner 
product 

we can write (2.14a) as 

[u,v] := L ( cu· vdx 
T iT 

Ph = P~T.c(agradwh)' 

Substituting (2.16) for Ph in (2.14b), we get 

Problem 2.5 Find Wh E Kh(Th) such that 

(2.15) 

(2.16) 

L ( P~T.c(agradwh)·grad(zh -Wh) dx 2: { (pRJ) (Zh -Wh) dx 'VZh E Kh(4.). 
T iT in 

(2.17) 

For elementwise constant a we have a decoupling of (2.17) into the nonconforming 
and the bubble part. However in contrast to the unrestricted case (cf. [1]) the two 
parts cannot be solved independently, since there still is a global coupling caused 
by the constraints. 

3 Iterative solution by nonconforming multigrid 
techniques 

We shall now give the algebraic formulation of Problem 2.5 in case of piecewise 
constant coefficient functions a. Therefore we introduce a set of basis functions 

iIi.._ { NC NC B B} 
'1'.- CPI , ... ,CPPh ,CPI"'" CPqh (3.1) 

where cpfc is a nodal basis function of MivdTh) with cpfC(mj) = bij, 1::; i,j::; 
Ph and cpf is a nodal basis function of B3 (4.) with cpf(sj) = bij, 1 ::; i,j ::; qh. 
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Here Ph denotes the number of edges of £Z and qh denotes the number of triangles 
of Th , Tnj is the midpoint of the edge j and Sj the center of gravity of the triangle 
j. Then each element of N 1(Th) can be represented by a coefficient vector ~ := 
(~NC,~BjT E IRPh+qh with 

Ph qh 

Zh = L,zfC cpfC + L,zf cpr (3.2) 
i=l j=l 

In view of the decoupling of the nonconforming and the bubble inequalities, Prob­
lem 2.5 has the algebraic form 

. ( w NC ) ( zNC ) Problem 3.1 Fmd:!Q:=;B E K such that for all ~:= ~B E K: 

where 

All and D are the matrices corresponding to the bilinear form 
In P~T.c(agradwh) ·gradzh dx, where D is diagonal and All is the usual matrix as-

sociated with the Crouzeix-Raviart elements. We set A := (A~l ~). Further 

!2 := (!2NC ,!2BjT is the vector associated with the right hand side In(P~f)zh dx, 
\]I E IRqh is the projection of the obstacle function \]I with \]Ii := IT \]I d.T and 

p := (pNC, pB) denotes the projection matrix according to the operator P~. 
We would like to solve this system with an active--set-strategy (see [8]) where 

in an outer iteration a set of active and inactive points is determined and in 
an inner iteration a linear system reduced on the inactive points is solved. For 
determining the active and inactive points we need an equal number of inequalities 
and constraints, but here we have Ph +qh inequalities and only qh constraints. That 
is why we switch to the constrained minimization problem which is equivalent to 
Problem 3.1: 

Problem 3.2 Find:!Q E K such that 

(3.5a) 

where 

(3.5b) 
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The constraint P:{ 2: W can be added to the functional J by a Lagrangian 
multiplier ~ E IRqh which can be interpreted as an elementwise constant function 
Ah E M~l (Th). We have Ah = 0 for elements where the obstacle for Wh is inactive 
and Ah > 0 for the clements where the obstacle is active. 

So we consider the extended problem 

Problem 3.3 Find!Q E IRPh + qh and ~ E A ;= {f: E IRqh ; /-Li 2: 0, 1::; i ::; %} 
such that 

where 
1 

L(:{,f:);= 2 (A:{,:{) - (Q,:{) + (f:, w - P:{). 

The unique solution of Problem 3.3 is characterized by 

Problem 3.4 Find!Q E IRPh+Qh and ~ E A such that 

A!Q - pT~ Q, 

't/f: EA. 

Note that (3. 7b) is equivalent to the complementarity problem 

min(~, P!Q - ~) = 0 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.8) 

where the minimum has to be understood componentwise. Eliminating!Q in (3.7b) 
by means of (3.7a), we end up with a complementarity problem for the multiplier 
~; 

Problem 3.5 Find ~ E IRd such that 

where A .­
pB D-IbB. 

min(~, A~ - ~) = 0 

pNC AIl(pNCf + pE D-I(pBf and ~ .-

(3.9) 

This complementarity problem for the Lagrangian multiplier will be solved 
by an outer-inner iterative scheme where the outer iteration is based on an active 
set strategy and the inner iterations are cg-iterations with the action of AlII being 
replaced by multigrid iterations for nonconforming finite elements as proposed by 
Braess and Verfiirth [3]. For the motivation of the active set strategy we remark 
that (3.9) is equivalent to the constrained minimization problem 

(3.10) 

where }(f:) ;= ~ f:T Af:- f:T~. Then, given an iterate ~ (v) and proceeding in descent 

direction - \l } (~( v)) we have 
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~ 

>.;v) _ (A~(v) - ~)i > 0, i E h := {I, 2, ... , qh}. (3.11) 

Consequently, an element is said to be active if (3.11) is violated, i.e. 

(3.12) 

We denote by Ih2) (~(v)) the set of all active elements and refer to its complement 

Ihl) (~(v)) := h \ Ih2) (~(v)) as the set of inactive elements. The new iterate is then 
determined by 

>.;V+l) = 0, i E Ih2)(~(v)) 

with respect to the active elements while the components associated with inactive 
elements are computed as the solution of the reduced linear system 

(3.13) 

The outer iteration will be stopped if Ihl)(~(V+1)) = 12\~(v)). 
The reduced systems will be solved by means of the following cg-iterations 

constituting the inner iterations. 

Inner cg-iterations: 
Step 1: Let !!(O) be given by 

compute ,!](O) as the solution of 

and set 

(0) 
r i 

{

Wi - (pNC!l(O))i - (pB D-1(pBf !!.(O))i­

_(pB D-1!l)i if i E Ihl)(~(v)) 
° if i E Ih2)(~(v)) 

p(O) ._ r(O). 

Step 2: For m = 0,1,2, ... 
Compute !l(m+l) as the solution of 

(3.14) 

(3.15) 



(m) 
zi 

a 

!!:.(m+l) 

r..(mH) 

(J 
p"(m+l) 

.-

-

.-

.-

.-

.-
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{ 
(pNGry(m+l))i + (pB D-1(pBf p(m))i if i E Ihl)(~(v)) 
o if i E Ih2)(~(v)) -

< r..(m), r..(m) > / < ~(m), p"(m) > 

!!:.(m)+ap"(m) 

r..(m) _ a~(m) 

< r..(m+l),r..(mH) > / < r..(m),r..(m) > 
r..(m+l) - (J p"(m) 

Step 3: Set ~(v+l) := !!:.(mH) 

The linear systems (3.14) and (3.15) are solved iteratively by the multigrid 
algorithm for nonconforming finite elements suggested by Braess and Verfiirth [3]. 

Having determined the multiplier ~, we can compute 1Q by (3.7a). For edges 
ei where Ail > 0 or Ai2 > 0 for the two adjacent elements ~l and Ti2 of ei, we 
say that the obstacle is active and we set wfG = 1/2 (Wil + Wi2)' For the inactive 
edges i E I(1)(~) := {I ~ i ~ Ph: Ail = Ai2 = O} we have ((pNGf~)i = O. So we 
only must solve the linear system 

(A l11QNG)i = bfG (3.16) 

reduced on the inactive edges i E I(1)(~). This is done again by the multigrid 
algorithm of Braess and Verfiirth. For the bubble part, we set 

wf = (Dii)-lbf if Ai = 0 

and we determine wf, such that Wh = W in the center of gravity of ~ if Ai > O. 
We see that actually we do not need the multiplier. We only need the active and 
inactive elements. 

4 Numerical Results 

In our computations 2 we used 2 pre- and 2 postsmoothing steps in the non­
conforming multigrid-method (V-cycle) to solve the linear systems where An 
appears. Normally we stopped the iteration, when the difference between two it­
erates was lower than eNG = 10-5 , but at latest after 10 multigrid cycles. 

We restrict ourselve on examples with piecewise constant coefficient matri­
ces, which are diagonal with same diagonal elements. So they can be replaced by 
scalars. 

The results of the proposed mixed algorithm are compared with the results 
of a conforming technique where a preconditioner is used in the inner iterations 
(see [7],[9]). It is part of an adaptive scheme but we only used uniform refinements. 

2 All computations have been performed on a SUN SPARCstation 2 
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4.1 THE ELASTIC-PLASTIC TORSION OF A CYLINDRICAL BAR 

First we consider the torsion of an elastic-plastic cylinder of cross-section 0 := 

[0,1] x [0,1] consisting oftwo different materials. In the inner part O2 := [1/3,2/3] x 
[1/3,2/3] holds a = a2 and in the outer part 0 1 := 0 \ O2 we have a = al. The 
matrix a describes the elastic behaviour of the material. As shown in [6], the 
stress potential Uc for a positive twist angle per unit length C is the solution of 
the variational inequality 

Problem 4.1 Find Uc E K := {v E H6(O) : v(x) ~ dist(x, ao) a.e. in O} such 
that 

L agraduc' grad(v - uc) dx :2 2 C L (v - uc) dx VvE K. ( 4.1) 

where dist(x, aO) denotes the distance between a point x E 0 and the boundary 
a~. In the region where the obstacle is active, the bar is plastic, in the other part 
it remains elastic. 

We have chosen c = 3 al/a2 and we have used a hierarchy ('Ii)f=o of 4 triangu­
lations starting from an initial coarse triangulation consisting of 18 elements. Both 
for the mixed and the conforming method Table 1 contains the number of inner 
iterations per outer iteration which are necessary to get a satisfactory convergence 
in the outer iterations. We see that for increasing ratios al : a2 the number of inner 
iterations for the conforming method increases more than for the mixed method. 

1:1 10:1 100:1 500:1 1000:1 

mixed method 11 12 
conforming method 21 24 

Table 1: Elastic-plastic torsion: Number of inner iterations 

4.2 THE DAM PROBLEM 

As a second example we consider a dam of porous material with cross-section 
o := [0,1] x [0,1]. We suppose the dam to consist of two vertical layers of two 
different materials. In the left part 0 1 := [0,1/2] x [0,1] we have a permeability 
coefficient k = kl' in the right part O2 := 0 \ 0 1 we have k = k2 • The dam 
separates two water reservoirs of different levels Yl = 0.8 on the left hand side 
and Y2 = 0.2 on the right hand side. The pressure can be computed by using the 
Baiocchi-Transformation 

w(x, y) := 11 p(x, t) dt (4.2) 

as the solution of the following variational inequality. 
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Problem 4.2 Find wE K := {v E Hl(O) : v 2: 0 in 0, vlan = g} such that 

10 k gradw· grad(v - w) dxdy 2: -10 k (v - w) dxdy VvEK. (4.3) 

with appropriate inhomogeneous Dirichlet boundary conditions g. (For details see 
[2].) In the part where the obstacle for w is active the dam is dry, the other part 
represents the wet region. 

Here we have used a hierarchy (1l)t=o of 4 triangulations starting from an 
initial coarse triangulation To consisting of 8 elements. Table 2 illustrates the 
advantage of the mixed method for high ratios as Table 1. 

I ratio kl : k2 
mixed method 
conforming method 

Table 2: Dam problem: Number of inner iterations 
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FIGURE 1. Elastic- plastic torsion, ratio 1000:1 , c = 3000 
The shaded area represents the plastic zone. 

FIGURE 2. Dam problem, ratio 100:1 
The shaded area represents the dry area. 
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Multigrid with Matrix-dependent 
Transfer Operators for 
Convection-diffusion Problems 
Arnold Reusken1 

1 Introduction 

At several places (e.g. [1,6,8,9,13,14]) it is claimed that one should use matrix­
dependent prolongations and restrictions when solving interface problems or convec­
tion-diffusion problems using multigrid. Recently, in [10], a theoretical analysis has 
been presented which yields a further justification of this claim. In [10] it is proved 
that for ID convection- diffusion problems the use of suitable matrix-dependent 
transfer operators results in a multigrid method which is robust w.r.t. variation 
in the amount of convection, even if one uses damped Jacobi for smoothing. In 
section 2 we briefly discuss the approach used in [10] and give some important 
results from [10]. 
The main subject of this paper is a generalization of the ID approach in [10] (cf. 
Section 2), resulting in a new multigrid method for 2D convection- diffusion prob­
lems. This 2D method is based on the following. A given matrix on a "fine" grid 
is modified using a suitable lumping procedure (e.g. a 9-point star is reduced to 
a 5-point star by using an approximation based on linear interpolation), then for 
this modified operator the Schur complement w.r.t. the coarse grid is local and 
can be computed with low costs. In a preprocessing phase, starting with a given 
matrix on the finest grid, this approach is applied recursively and (in a natural 
way) results in matrix- dependent prolongations and restrictions and coarse-grid 
operators which satisfy the Galerkin condition. Also, in this framework, a mod­
ification of the standard multigrid method is suggested: a prescribed additional 
correction, complementary to the coarse grid correction, is introduced. 

1 Department of Mathematics and Computing Science, Eindhoven University of Tech­
nology, P.O. Box 513,5600 MB Eindhoven, the Netherlands. e-mail: wsanar@win.tue.nl 
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2 Matrix-dependent transfer operators for ID 
convection-diffusion problems 

In this section we briefly discuss the approach used in [10] and we give some results 
from [10]. In section 3 we then generalize this approach, resulting in a method for 
2D problems. 

We consider a second order linear elliptic two-point boundary value problem. 
For convenience we use a sequence of uniform grids, although our analysis still 
holds if we only assume that the grids are quasi-uniform. Let h := 1/ (N + 1) be 
the mesh size parameter and Xi := ih, i = 0,1, ... , N + 1. We use the notation 
Uh := JRN; i E Uh corresponds to the grid point Xi. For discretization we use 
a three-point difference scheme; the resulting operator L h : Uh ----+ Uh can be 
represented with a difference star [-ah,i bh,i -Ch,i] in the grid point Xi. For 
notational convenience we drop the h index in the difference star, and thus (with 
al = CN = 0): 

(2.1) i = 1,2, ... ,N . 

We make the following stability assumption concerning the discretization method: 

(AI) Lh is a weakly diagonally dominant M - matrix. 

We refer to [7] for numerical discretization methods that satisfy (AI). We take an 
arbitrary "fine" grid with mesh size h and a corresponding "coarse" grid with mesh 
size H = 2h. The coarse grid space is denoted by U H = JRN H with N H := ~ (N -1). 

We now discuss the components for a two-grid method. 
Smoothing operator. For smoothing we use a (damped) Jacobi or Gauss-Seidel 
method. 

Grid transfers. We use the matrix-dependent prolongation p: UH ----+ Uh and 
restriction r: Uh ----+ U H as given in [8, 13]. In stencil notation we have: 

(2.2) [P]i = [C2i-l/b2i-l 1 a2i+l/b2i+1], i = 1,2, ... , N H , 

(2.3) [r]i = ~ [a2;jb2i - 1 1 c2;jb2i+1] , i = 1,2, ... ,N H . 

Coarse-grid operator. We use the Galerkin approach: 

For an analysis of the two-grid method we introduce a red-black ordering of the 
fine-grid nodes. We define the permutation matrix Q: Uh ----+ Uh by 

(2.5) (QU)i=U2i-l 1 :::;i:::;NH +l, 
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We use the notation: 

(2.6) 

An easy calculation (cf. [10]) yields the following 
LEMMA 2.1. The following holds: 

(2.7a) 

(2.7b) 

(2.7c) 

REMARK 2.2. From (2.7b) we see that, apart from a scaling factor, LH equals the 
Schur complement of Lh. As a consequence LH is an M-matrix. Using (2.7c) one 
can verify that LH is weakly diagonally dominant. It follows that the Galerkin 
approach with matrix-dependent grid transfer operators yields stable three-point 
operators on all coarser grid. 

Let Qo : Uh -+ Uh be a diagonal matrix with (QO)i,i = 1 if i is odd and 
(QO)i,i = 0 is i is even; also Dh := diag(Lh)' 
The proof of the following lemma is included because it is fundamental for the 
generalization to the 2D case in Section 3. 
LEMMA 2.3. The following holds: 

L - 1 L-l Q D-1 
h -p H r = 0 h . 

PROOF. Let S := A22 - A21Ail A12 . Using lemma 2.1 we get 

L-;;l_ pLi/r = QT(L-;:1 - pL1/f)Q = QT(L-;;1 - [ All~A12 ] S-I[A21Alll I])Q. 

Note that 

(2.8) L'-l -
h -

[ 
A-I + A-1A S-IA A-I A-1A S-1 1 11 11 12 21 11 11 12 

s-1 A21 Ail S-1 

= [ All~A12 ] S-I[A21 Al/ I] + [Ai/ ~] 

H L -1 L-l - QT [Al/ 0] Q - Q D-1 0 ence h - P H r - 0 0 - 0 h . 

Lemma 2.3 yields the following approximation property (where II . 1100 can be 
replaced by another norm): 

(2.9) II(L-;;1 - pLJ/r)Dhll oo = 1 
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which clearly shows robustness. Numerical experiments in [10] indicate that if one 
uses standard prolongation (linear interpolation) and standard weighted restriction 
a robust approximation property (as in (2.9)) does not hold. 
In [10] the approximation property in (2.9) is combined with an analysis of the 
smoothing property. 

3 Generalization to a multigrid method for 2D 
convection-diffusion problems 

In this section we derive a multigrid method for 2D convection- diffusion problems 
based on the approach of Section 2. 
We consider a second order elliptic BVP on 0 = [0,1]2 and use uniform grids for 
discretization. In this section we remain close to the red-black structure of Section 
2, i.e. we use red-black coarsening h ----+ V2h. 

3.1 LUMPING METHOD 

We consider grids as indicated in Figure l. 
Spaces of grid functions are denoted by G(Oh), G(OH), etc. For ease we assume 
Dirichlet boundary conditions, and thus the grids only contain points in the interior 
of the unit square. 
Clearly on Oh we have a red-black partitioning of the nodes: Oh = (Oh \ ° H) U 0 H . 
The points in (Oh \OH) have label 1 and the points in OH (coarse grid) have label 
2. Let there be given a discretization method resulting in a nonsingular operator 
Ah : G(Oh) ----+ G(Oh)' We use the standard nodal basis with red-black ordering 
of the nodes. Then Ah is represented in block-matrix form as 

(3.1) Ah = [ All -A12 ] 
-A21 A22 . 

~ / ~ 
/ ~ / 
~ / ~ 
/ ~ / 

Fig. 1 

/ 
~ 

/ 
~ 

0h: {x} U {o} U { • } 

OH := 0y'2h: {x} U {o} 
02h: {x} 

The fundamental step in the proof of Lemma 2.3 is based on the factorization 

(3.2) A;;-l = [ Al1~A12 ] S-1[A21A~l IJ + [Af ~] , 
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* 
If Ah corresponds to a 5-point stencil [* * *] then All is diagonal and the 

* grid transfer operators 

(3.3) p = [ Al1~ A12 ] , r = [A21Al11 I] 

are local. The coarse grid operator AH := r AhP is also local but corresponds to a 
9-point stencil and thus we cannot repeat the same procedure to go to the next 
coarser grid: A red-black partitioning yields a matrix (AH)ll which corresponds 
to a 5-point stencil and thus p and r as in (3.3) are not suitable anymore. 
In order to be able to repeat the same procedure we introduce a lumping strategy 
on a given grid Oh as in Fig. 1 which maps a 9-point difference star in a point of 
Oh \OH on a 5- point star in the same point. The lumping method we use is as 
follows. Assume we have the following 9-point star in a grid point of Oh \OH: 

(3.4) [a:;:: a:EE 1 
asw as aSE 

We replace this stencil by: 

(3.5a) 

(3.5b) 

[ 
0 (3N 0 1 

(3w (3M (3E , 
o (3s 0 

(3N = aN + aNW + aNE, (3w = aw + aNW + asw , 

(3M = aM - (aNW + aNE + aSW + aSE) , (3E = aE + aNE + aSE , 

(3s = as + asw + aSE . 

Obvious modifications are used close to the boundary. The same procedure can be 
used if we have a 9-point stencil on a square rotated grid (as OH in Fig. 1). The 
lumping procedure is based on a linear interpolation approximation: in the given 
equation (with star as in (3.4)) the unknown UNW is replaced by -UM +UN +uw 
which is just the value in NW of the plane through uM, UN, UW. 

In matrix form, the lumping procedure yields a matrix 

(3.6) Ah = [ All -A12] 
-A21 A22 

with A11 diagonal and A12 corresponding to a 4-point stencil. The prolongation 
and restriction 

(3.7) p = [ Al1~ A12 ] , r = [A21Al11 I] 
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are local and easy to compute. 
REMARK 3.1. A lumping procedure combined with Schur complement compu­

tation is used in [2] too. However, in [2] only SPD problems are considered. Also the 
lumping in [2] (adding off-diagonal coefficients to the diagonal) is different from 
ours; numerical experiments have shown that the use of this lumping procedure in 
many cases does not yield a convergent multigrid iteration for convection-diffusion 
problems. 

3.2 PREPROCESSING PHASE 

Let there be given a sequence of square grids as in Fig.l 0 1 C O2 C ... C 01' 
(mesh size ratio v'2), and let there be given a discretization operator on 01' which 
corresponds to a 9-point (or 5-point) stencil. We construct Ak ,· 1 ::; k < C and 
Pk: 0k-l --; Ok, rk: Ok --; Ok-I, 2::; k ::; C as follows: 

A lumping (if necessary) A- as in (3.7) 
I' --; I' --; PI', rl' 

1 Schur complement 

(3.8) A lumping 
1'-1 --; 

- as in (3.7) 
AI'-1 --; PI'-I, rl'-1 

1 Schur complement 

AI'-1 --; etc .. 

It is easy to check that the Schur complement (Ak - 1 ) of an operator with a 5-
point stencil in the red (label 1) points has a 9-point stencil, and thus the lumping 
procedure of subsection 3.1 can be applied to Ak - 1 . In the multigrid algorithm 
below we use Pk, rk (2::; k ::; C), Ak and the diagonal block (Ak)ll (1 ::; k ::; C). 
Note that (Ak)ll is diagonal. 

A Galerkin property which can be used for constructing the Schur comple­
ment is given in the following lemma (cf. (2.7), (2.9b)) 

LEMMA 3.2. Let B := [_~~~ -~~:] , p:= [ Bll~B12 ] , 

r := [B21Bul I], rinj:= [0 I]. 

Then for the Schur complement B22 - B 21 B1/ B12 of B the following holds: 

(3.9) B22 - B21BU1 B12 = rBp = rinjBp . 
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COROLLARY 3.3. For computing the Schur complement Ak- 1 of Ak one can use 
(3.9). For Xi, Xj in the coarse (H) grid Ok-l we have 

H H - H II II -T h (Ak- 1)ij =< Ak- 1ej ,ei >=< rinjAkPkej ,ei >=< Pkej ,Ak ei > . 

In Theorem 3.4 we present a stability result for the coarse grid matrices 
Ak (1 ::; k < €). A point X j f. Xi, with X j, Xi E Ok, is called a "closest neighbour 
of xi" if dist(xj,xi) = min{dist(xrn, Xi) I Xrn E Ok, Xrn f. xd· 

THEOREM 3.4. We assume that the 9-point operator Ae = (a~~)) has the 
following properties: 

(3.lOa) 

(3. lOb) 

(3.10c) 

"sign property" : ai~) ::; 0 for all i f. j, aif) > 0 for all i . 

"diagonal dominance" : L la~J) I ::; a~f) for all i, with inequality for at 
#i 

least one i . 

"connected graph property" : for every i: a~~) f. 0 for all j for which 
Xj E Oc is a closest neighbour of Xi E Of . 

Then for all k with 1 ::; k < € Ak = (a~;)) has the properties (3.10a-c) with € 
replaced by k. 

PROOF. Assume that Ak (with a 9-point stencil) is such that (3.10a-c) are 
satisfied with € replaced by k. Ak- 1 results from Ak as follows: Ak-Iumping 
--) Ak-Schur complement --) Ak - 1 . We first consider the lumping procedure. 
In Xi E Ok \Ok-l we have stars for Ak, Ak as in (3.4), (3.5) respectively; co­
efficients corresponding to boundary points (Xj E (0) are taken zero. Due to 
(3.10a,c) we have ap < 0 for all P E {N, W,E,S}\oO, ap ::; 0 for all P E 
{NW, N E, SW, SE}, aM > O. Using this and (3.10b) it follows that fJp < 0 
for all P E {N, W,E,S}\80 and fJM > O. Also note that fJM - 2:.P#1 fJp = 
aM + L.Pi-M ap holds. Hence for Ak the sign property, diagonal dominance and 
the connected graph property hold. 
We now consider the step in which the Schur complement is formed. With Ak := 

[ AA-ll -AA- 12 ] (cf. (3.6)) we have Ak- 1 = A22 - A21Al/ A12 . Using Corol-
- 21 22 

lary 3.3 it is easy to check that the connected graph property holds for Ak - 1 . 

~ote that Ak is an irreducibly diagonally dominant matrix with the sign prop­
erty (3.10a), and thus Ak is an M-matrix. Hence Ak- 1 (Schur complement of Ak) 
is an M-matrix and thus the sign property holds for Ak - 1 . We use the notation 
e := (1,1, ... , If; the length of this vector varies but it is clear from the context 

. - - --1 --1-
what It should be. Note that: Alle - A12 e 2:: 0, All 2:: 0, All A 12e ::; e, A21 2:: 
0, - A21Al/ A 12 e 2:: - A21 e and - A21 e + A22 e 2:: o. The last two inequalities yield 

- 1-
Ak- 1e = (A22 - A21Ali Ade 2:: O. Because Ak- 1 is regular, (Ak-Ie)i > 0 holds 
for at least one i. Now it follows, using the sign property for Ak - 1 , that diagonal 
dominance holds for Ak - 1 . 0 
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3.3 Two- AND MULTIGRID METHOD 

We introduce the following two-grid method on level k for solving AkXk = bk (1 ::; 
k ::; i). 

(3.11) 

(3.11a) 
(3.11b) 
(3.11c) 

(3.11d) 

Procedure TGMk(Xk, bk); 
Begin if k = 1 then Xk := Ak1bk else 

Begin 
for i := 1 to v do Xk := Sk(Xk, bk); 
dk := AkXk - bk; 
Zk := Ak~lrkdk; 

[ (A )-1 
Yk := '0 11 

(3.11e) Xk := Xk - PkZk - Yk ; 
end; 

end; 

(* smoothing *) 

Note that the correction in (3.11d) is not used in standard multigrid methods. 
The direct solver in (3.11c) can be replaced by a recursive call, which then yields 
a multigrid algorithm. 
The error iteration matrix of the linear smoothing method Sk is denoted by 8k, 
and the iteration matrix of the two-grid method is denoted by Mk. 

For the error iteration the following holds: 

(3.12) Mk = (1 - Ak1 Ak)8r . 

From (3.12) we see that the two-grid convergence is determined by the combined 
effect of lumping (I - .tikI Ak ) and smoothing (8;:). Note that the coarse grid 
operator and transfer operators do not occur in the error iteration matrix. This 
is due to the fact that the coarse-grid correction + additional correction (Yk in 
(3.11d)) yield a direct solver for the defect equation AkWk = dk. 
For a two-grid convergence analysis one needs suitable tools for analyzing the 
effect of the lumping procedure. This is a subject of current research. 

REMARK 3.5. We state two convergence results which can be proved. These 
proofs, however, will not be given in this paper. 
1. Let Ae be the standard 5-point discretization of the Poisson equation. Lumping 
in all points of Ok + Schur complement computation yields coarse-grid matrices 
Ak (k < £) with star 

(3.13) Ck [=~ ~~ =~ 1 
-1 -2 -1 

Fourier analysis (on 0 = [0, IF; Dirichlet Be) can be used to prove the following: 

- in (3.12) we take v = 0; then Me = 0, IIMkl12 S ~ 1 S k < £. 
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in (3.12) we take damped Jacobi with damping () = 0.75; then M£ 
0, IIMk I1 2 ::; ~(2//)2v /(2// + 1)2v+l (1::; k < e) (note: // = 1 ~ 2/27). 

The latter bound, and numerical results (cf. below) show that our method is 
competitive with the many fast Poisson equation solvers that already exist. 
2. We neglect boundary conditions and consider an infinite grid with a constant 
difference star 

r:; 
[A£]i = h2 

£ 
[ -~ -! -~ 1 + ~ [ 

o -1 0 h£ 

o 
-1 
o 

(i.e. -r:;6..u + U x + 'uy with full upwind discretization). 

o 0 1 2 0 
-1 0 

Analysis of lumping in all points of Dk + Schur complement computation yields 
explicit recursion formulas for the coefficients in the star of Ak (k < e). Using 
Fourier analysis one can prove: 

III - Ak1 Akl12 ::; 0.8 (1::; k < e) . 

This shows robustness: even with // = 0 (cf. (3.11)) we have two-grid contraction 
numbers::; 0.8 for all k with 1 ::; k ::; e (i.e. independent of hk ) and all r:; > O. 

REMARK 3.6. We note that for the Poisson equation the bound for the two­
grid contraction number of our method (cf. Remark 3.5.1) is the same as for the 
two-grid methods in [11,3,4]. In these papers red-black coarsening and a matrix­
dependent prolongation are used too. However, there are significant differences. 
This is already clear from the form of the two-grid iteration matrix as in (3.12). 
There is no lumping procedure in [11,3,4] and in [11,3,4] the coarse-grid matrices 
are all derived from (standard) discretization of the differential operator, whereas 
in our method we have other coarse-grid matrices (cf. (3.13)) based on the Galerkin 
condition. 

3.4 NUMERICAL EXPERIMENTS 

We consider the following class of convection-diffusion problems (r:; > 0): 

{ 
-r:;6..u + a(x, y)ux + b(x, y)uy = 0 in D =]0, 1[2 

(3.14) 
u = 9 on 8D . 

The meshes we use are as in Fig. 1, with mesh size hk := (~) 1k+l, k = 1,2, ... J 
For the preprocessing phase we only need a discretization on the finest grid D£. For 
6.. we use the standard 5-point difference star and the convection part is discretized 
using standard full upwind differences (cf. e.g. [13]). Note that this results in a 5-
point M-matrix A£. 
In the preprocessing phase coarse-grid matrices Ak (1 :S k < £), which are 9-
point M-matrices, prolongations and restrictions and diagonal matrices (Ak );:} 

are constructed. The multigrid algorithm of Section 3.3 can now be applied; the 
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only components which have to be specified are: S (smoothing operator), v (# 
smoothings), 'Y (# recursive calls). 
In the experiments below we always take a four-direction Gauss-Seidel smoothing. 
The following sequence of directions is used in all experiments: "for i = 1 to n do 
for j = 1 to n, for i = n downto 1 do for j = n downto 1, for j = 1 to n do for 
i = 1 to n, for j = n downto 1 do for i = n downto 1", where (i,j) corresponds to 
the grid point (ih,jh). So we do not adjust the ordering of the grid points to the 
direction of the flow. 

We measure arithmetic costs per iteration in terms of the unit Dl : the arith­
metic costs for One defect calculation on the finest grid. Note that for a standard 
multigrid V-cycle (h ----+ y2h coarsenin~) with v = 2 smoothings the costs are 
roughly 8D l. 

Numerical results for the following algorithms are presented: 

Alg. 1: v = 1, 'Y = 0 (only Gauss-Seidel). Costs ~ 4Dl . 

Alg. 2: v = 0, 'Y = 1 (S not used). Costs ~ 5Dl. 
Alg. 3: v = v(k), with v(k) = 0 if k = f, v(k) = 1 if k :S f - 1, 'Y = 1. 

Costs ~ 13Dl . 

W.r.t. Algorithm 3 we note that we do not use smoothing On level f because 
--1 1- Al Al = O. 
In all the experiments we take a fixed arbitrary starting vector x(O). If the 

error after the m-th iteration is denoted by e(m), we use as a measure for the error 
reduction: 

EXPERIMENT 3.1. (as in [12,14]). We take: 

a(x, y) = (2y - 1)(1 - x 2), b(x, y) = 2xy(y - 1) ; 
g(x, y) = sin(7fx) + sin(137fx) + sin(7fY) + sin(137fY) . 

In Table 1 we show values of DD. 

algorithm 1 algorithm 2 algorithm 3 
c; hl = 1/64 hl = 1/128 hl = 1/64 hl = 1/128 hl = 1/64 hl = 1/128 

100 0.76 0.78 0.25 0.26 0.0031 0.0035 
10-2 0.84 0.80 0.43 0.45 0.029 0.042 
10-4 0.46 0.90 0.85 0.91 0.0016 0.013 

Table 1. 
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EXPERIMENT 3.2. (rotating flow in part of the domain, cf.[5]). We take 

{ a(x,y) = sin(7r(Y - ~))cos(7r(x - ~)) 
b(x, y) = - cos(7r(y - ~)) sin(7r(x - ~)) 

a, b zero otherwise; g(x,y) = o. 

In Table 2 we show values of {j E. 

algorithm 1 algorithm 2 algorithm 3 
c hi = 1/64 hi = 1/128 hi = 1/64 hi = 1/128 hi = 1/64 hi = 1/128 

10-2 0.97 0.99 0.29 0.35 0.019 0.015 
10-4 0.96 0.99 0.47 0.55 0.10 0.26 
10-6 0.96 0.98 0.48 0.56 0.11 0.25 

Table 2. 

EXPERIMENT 3.3. (random 5-point M-matrix). We use a random number gener­
ator, which generates random numbers in [0,1], to fill all off-diagonal places of 
5-point stars in all interior grid points. The diagonal coefficients are taken such 
that the sum in each star is zero. Clearly this results in a 5-point M-matrix. 
We take the right hand side and boundary values equal to zero. 
In Table 3 we show values of {j E. 

algorithm 1 algorithm 2 algorithm 3 
hi = 1/64 hi = 1/128 hi = 1/64 hi = 1/128 hi = 1/64 hi = 1/128 

0.98 0.99 0.36 0.39 0.11 0.20 

Table 3 

REMARK 3.7. From the experiments above one may infer the following. Algorithm 
1 shows results as expected. In all experiments algorithm 2, in which only the diag­
onal matrix (.,h)"l"/ (cf. (3.11d,e)) is used for smoothing, converges; this indicates 
that our approach w.r.t. the coarse grid correction is satisfactory. In certain cases, 
(cf. Exp. 3.2, 3.3) algorithm 2 which has low costs per iteration and is easy paral­
lizable has an "acceptable" convergence rate. In cases where the convergence rate 
of algorithm 2 is rather low, (cf. Exp. 3.1) the use of four-direction Gauss-Seidel 
on level k ::; £. - 1 (i.e. algorithm 3) yields a significant improvement. 
Clearly Experiment 3.3 is not related to a pde problem. This experiment is done 
to give some further indication of the robustness of algorithm 2. 

REMARK 3.8. If the block matrix Ah in (3.1) corresponds to a grid decomposition in 
which standard h-2h coarsening is used, then the approach of Section 3.2, 3.3 can 
be applied, provided we use a suitable lumping strategy. Numerical experiments 
have shown the same robustness as for the case with red-black coarsening. 



280 Arnold Reusken 

ACKNOWLEDGEMENT 

The author wishes to thank Prof. dr. Gabriel Wittum for fruitful discussions. 

References 

[1] R.E. Alcouffe, A. Brandt, J.E. Dendy Jr., J.W. Painter, The multi-grid 
method for the diffusion equation with strongly discontinuous coefficients, 
SIAM J. Sci. Stat. Comput. 2: 430-454 (1981). 

[2] O. Axelsson, V. Eijkhout, The nested recursive two-level factorization method 
for nine-point difference matrices, SIAM J. Sci. Stat. Comput. 12: 1373-1400 
(1991 ). 

[3] D. Braess, The contraction number of a multigrid method for solving the 
Poisson equation, Numer. Math. 37: 387-404 (1981). 

[4] D. Braess, The convergence rate of a multigrid method with Gauss-Seidel 
relaxation for the Poisson equation, Math. Compo 42: 505-519 (1984). 

[5] A. Brandt, I. Yavneh, Accelerated multigrid convergence and high-Reynolds 
recirculating flows, SIAM J. Sci. Comput. 14: 607- 626 (1993). 

[6] J.E. Dendy Jr., Black box multigrid for nonsymmetric problems, Appl. Math. 
Compo 13: 261-283 (1983). 

[7] E.P. Doolan, J.J.H. Miller, W.H.A. Schilders, Uniform numerical methods 
for problems with initial and boundary layers, Boole Press, Dublin, 1980. 

[8] W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin, 1985. 

[9] P.W. Hemker, R. Kettler, P. Wesseling, P.M. de Zeeuw, Multigrid methods: 
development of fast solvers, Appl. Math. Compo 13: 311-326 (1983). 

[10] A. Reusken, Multigrid with matrix-dependent transfer operators for a singu­
lar perturbation problem, Computing 50, 199-211 (1993). 

[11] M. Ries, U. Trottenberg, G. Winter, A note on MGR methods, Linear Alge­
bra Appl. 49: 1-26 (1983). 

[12] J.W. Ruge, K. Stiiben, Algebraic multigrid, In Multigrid Methods (S.F. Mc­
Cormick, ed.), SIAM, Philadelphia 1987. 

[13] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1992. 

[14] P.M. de Zeeuw, Matrix-dependent prolongations and restrictions in a black­
box multigrid solver, J. Comput. Appl. Math. 33: 1- 27 (1990). 



13 

Multilevel, Extrapolation, and 
Sparse Grid Methods 
u. Riide1 

ABSTRACT Multigrid Methods are asymptotically optimal solvers for discretized 
partial differential equations (PDE). For the optimal solution of PDEs, however, 
the quality of the discretization is of the same importance as the speed of the 
algebraic solution process. Especially for high accuracy requirements, high order 
discretizations become increasingly attractive. We describe higher order techniques, 
like extrapolation and sparse grid combination that are particularly interesting in 
the context of multilevel algorithms, because they are based on discretizing the 
problems on grids with different mesh sizes. Classical Richardson extrapolation can 
be extended and generalized in many ways. One generalization is to consider the 
mesh widths in the different coordinate directions as distinct parameters. This leads 
to the so-called multivariate extrapolation and the combination technique. 

1 Introduction 

Multigrid methods are generally considered to be among the fastest solvers for 
discretized elliptic boundary value problems. The efficiency of multigrid is derived 
from the use of different discretizations with different mesh widths such that fine 
mesh approximations are corrected recursively by approximations on coarser levels. 
The same hierarchical structure that leads to fast solvers can also be used to 
support the discretization process itself. Such techniques, where several distinct 
meshes participate to define a combined discrete solution, are generally called 
extrapolation methods. 

The basic idea of Richardson extrapolation for elliptic equations (see Marchuk 
and Shaidurov [9]) is to take a linear combination of approximations on different 
grids. If uh(x) denotes the discrete solution at point x in a uniform mesh with 
spacing h, the combined solution 

(1) 

is chosen such that the first term of an h2-error expansion is eliminated. Thus the 

lInstitut fUr Informatik, Technische Universitiit, D-80290 Miinchen, Germany, e-mail: 
ruede@informatik. tu-muenchen.de 
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extrapolation process is based on the existence of an asymptotic error expansion 
of the form 

where u* denotes the exact solution and where we assume R2m+2(X) ~ C(x) is 
bounded, and where C(x) and e2k(x), 1 ~ k ~ m are independent of h. 

The discrete solution uh(x) may be a grid- or finite element function. In 
any case, the spaces where the linear combination (1) is formed must be chosen 
carefully. In (1) we have implicitly assumed that this is the coarse mesh with 
spacing h that is naturally embedded in the fine mesh, so that the fine mesh 
solution may be transferred to the coarse mesh with injection. 

The existence of asymptotic expansions (2) can be assumed only in cases 
when the solution is sufficiently regular and when the discretizations are uniform. 
In elliptic problems the smoothness of the solution may be disturbed at reentrant 
corners or where the data is non-smooth. The form of the domain or the need for 
local refinement may make the use of uniform meshes difficult. However, even in 
these more complicated cases, the existence of generalized expansions with frac­
tional powers of h can be shown under assumptions, like local uniformity of the 
meshes, see Blum, Lin, and Rannacher [2,3, 1]. The local smoothness-of the solu­
tion is a basic characteristic of many elliptic problems, so that extrapolation can 
be used locally, even when the global solution is non-smooth. 

Extrapolation is a natural supplement of multigrid-like methods and has been 
investigated in this context in several papers, see Brandt [4], Hackbusch [8], Rude 
[11], and Schaffer [15]. 

With this background, several interesting new extrapolation-based approaches 
have been developed within the past few years, including the sparse grid combi­
nation technique and multivariate extrapolation. 

In this paper we will focus on explicit extrapolation methods that are based 
on the (linear) combination of solutions on different grids. Implicit extrapolation 
methods, in contrast, obtain higher order by applying the extrapolation idea on 
quantities like the truncation error or the numerical approximation of the func­
tional. Such methods are discussed in Rude [12]. Some methods of this type do 
not need uniform meshes and are therefore especially attractive in an adaptive 
refinement setting. An analysis is given in Rude [13]. 

2 Combination extrapolation 

Extrapolation exploits the asymptotic behavior of a solution depending on a small 
parameter. For most extrapolation techniques it has been assumed that there is 
a single parameter to use - the mesh size h. In the case of partial differential 
equations, however, the location x as well as the mesh spacing h may be considered 
as vector valued quantities. 
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h fu. fu. fu. 
I 2 4 8 

. . . . . . . 

.... :~: . . 
Full multivariate extrapolation 
Combination_~xtr~polation 2:~=o - 2:~-I, see (4) 
Full grid Uh2 ,h2 

FIGURE 1. Schematic representation of multivariate extrapolation techniques 

Let us now assume that the solution domain is the unit square [0,1]2, and 
that it is possible to compute numerical approximations on grids with mesh spacing 
hI = llNI in the xl-direction and h2 = llN2 in the x2-direction. Denoting these 
approximations by uh1 ,h2 (Xl, X2), we assume that the error satisfies a splitting 
condition 

u h1 ,h2 (Xl, X2) = u* (Xl, X2) + e~1 (Xl, X2) + e~2 (Xl, X2) + R h 1,h2 (Xl, YI), (3) 

where the dominating terms are assumed to be el and e2. The level k combination 
is now defined as 

k k-l 
h1,h2 clef ~ 2-i h 2i - kh ~ 2-i h 2i - k+1h Uk ~ U 1, 2 _ ~ U 1, 2 = (4) 

j=O j=O 

k k-l 
U* +e~1 +e~2 + LR2-ih1,2i-kh2 _ LR2-ih1,2i-k+1h2 

j=O j=O 

SO that the dominating terms are the same as for the solution U2-kh1,Z-kh2. This 
special variant of extrapolation does not need any explicit knowledge of the form 
of the error terms el and e2. It is only required that each of the leading error terms 
depends on only one of the mesh parameters. For an illustration of the combination 
extrapolation process, see Figure 1. The diagonal lines in the scheme of solutions 
indicate the approximations contributing to the combination. 

The resulting grids are depicted in Figure 2 for different k. Note that, ac­
cording to the above consideration, the combined solution on all these grid should 
provide similar accuracies. 
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FIGURE 2 G 'd c 1/8,1/8 1/4 ,1/4 1/2,1/2 . n s lor u , U 1 , U 2 

The extreme case of uk/2 ,1/2 has been introduced by Griebel, Schneider, and 
Zenger [7] as the combination technique. The grid resulting in this case is called a 

sparse grid, see u~/8,1/8 in Figure 2 for a simple example. If we assume that e1 and 
e2 are still dominating over the sum of 2k -1 remainder terms, as they now appear 
in (4), we can compute a solution with the accuracy of a grid with N 2 nodes by 
combining the solution of 2k - 1 = O(log2 (N)) grids, each with approximately 
only N or N /2 nodes. 

This turns out to be not quite correct, because here even for smooth solutions 
the remainder terms are of the same order as the smallest e~" and e~2. Recent 
theoretical results confirm earlier heuristical considerations and practical evidence 
(see further below) that the error in the combination technique is now dominated 
by the remainder terms. Under certain smoothness assumptions it can be shown 
to be of the order O(h2Ilog(h)l), as compared to the full grid accuracy of O(h2) 
under the same assumptions. For more details based on finite difference and Fourier 
techniques consult Bungartz, Griebel, Raschke, and Zenger [5]. A proof based on 
Sobolev space techniques for finite element discretizations is given by Pflaum [10]. 
Both papers are based on the recursion formula 

k 
h / 2,h / 2 _ h,h + ""H2-jh ,2j -kh 

uk - 1 - Uk L..-t ' 
j=1 

where 
Hhl ,h2 ~f u2h1,2h2 _ u2h1,h2 _ uh1 ,2h2 + uh1 ,h2 , 

and on finding bounds of the form 

IIHhl,h2 11 ::; chih~. 

(5) 

Based on this estimate, the difference of two consecutive terms in (5) is bounded 
by 

Thus 
k 

Ilu2- kh ,Tk h _ u~,hll ::; CI:jT2j(2 j - kh)4 = Ch-4(~kT2k _ ~T2k + ~T4k), 
j=1 



13. Multilevel, Extrapolation, and Sparse Grid Methods 285 

so that we obtain for the special case of the combination technique 

2- 2k k 42-2k 42-4k 
IluTk ,2- k _ u1/2,1/2 11 < c-- _ -- + --. 

k-l - 3 9 9 

If we define h = 2-k this becomes the sparse grid error estimate 

Iluh,h - u~~11/211 ::; Ch21log2 hi. 

The combined solution uZ1 ,h2 would conventionally be defined on the inter­
section of all grids participating in the extrapolation process. Here the common 
intersection of all grids participating in the computation of uZ,h is the grid of uh,h 
itself, so that the combination solution u~/2,1/2 would be defined on just a single 
point within the solution domain. Using bilinear interpolation for each single com­
ponent function, we can extend the the domain of definition to the union of all 
participating grids. This is possible, because bilinear interpolation can be shown 
to be compatible with the error splitting (3). In (4) it is implicitly assumed that 
a suitable interpolation has been applied to all terms. 

Assuming that the computation of uh1 ,h2 requires O(hl1. h2"l) = O(Nl . N 2) 

operations, the total cost for finding uZ,h is O(k2-k N 2 ), where h = liN, as 
compared to O(N2) for the direct computation of uh,h. Note that for k 2: 2 the 
computation of uZ,h is significantly cheaper than finding U2- kh ,2- k h. Furthermore, 
as with any explicit extrapolation technique, the different solutions can be com­
puted independently in parallel. Note, however, that the collection of the results is 
not trivial in a parallel environment, and for an optimal strategy we must form the 
interpolants and their combination in a tree-like algorithmic scheme. Furthermore, 
the parallelization effect is even more profitable for higher dimensions, see Griebel, 
Huber, Riide, Stortkuhl, and Zenger [6]. 

The efficient computation of the solutions contributing in a combination ex­
trapolation requires the solution of highly nonisotropic problems. This requires 
modified multigrid algorithms using line relaxation or semi-coarsening. 

The following example illustrates the features of combination extrapolation. 
We study the solution of the homogeneous Dirichlet problem of Poisson's equation 

-~u 

u 
f(x,y) 
o 

in 0, 
on 80 (6) 

discretized by 5-point differences with the data chosen such that the true solution 
is 

u(x, y) = sin(w1l'x) sin(w1l'Y) for w = 1,2,3,···. (7) 

This function is an eigenfunction of the discrete Laplace operator, so that the 
errors can be computed analytically without pollution by interpolation effects. 

In Table 1 we compare the efficiency of various combination extrapolation 
methods directly. For the smoothest solution (w = 1) the results for uk/2,1/2 pro­
vide the highest accuracy relative to the total number of unknowns. 
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TABLE 1. Combination extrapolation 
w=l 

hI = h2 Uo UI U2 U3 U4 U5 
1/2 Work 1 7 29 95 273 723 

Error 1.18e-2 1.96e-3 2.80e-4 1.94e-5 -7.70e-6 -5.06e-6 
1/4 Work 9 51 181 535 1433 

Error 2.68e-3 6.16e-4 1.41e-4 3.21e-5 7.26e-6 
1/8 Work 49 259 869 2471 

Error 6.56e-4 1.60e-4 3.93e-5 9.46e-6 
1/16 Work 225 1155 3781 

Error 1.63e-4 4.05e-5 1.01e-5 
1/32 Work 961 4867 

Error 4.07e-5 1.01e-5 
1/64 Work 3969 

Error 1.01e-5 

w=2 
1/2 Work 1 7 29 95 273 723 

Error 1. 85e-2 -2.24e-3 -1.31e-3 -5.18e-4 -1. 78e-4 -5.70e-5 
1/4 Work 9 51 181 535 1433 

Error 2.95e-3 4.91e-4 7.01e-5 4.86e-6 -1.93e-6 
1/8 Work 49 259 869 2471 

Error 6.71e-4 1. 54e-4 3.53e-5 8.04e-6 
1/16 Work 225 1155 3781 

Error 1. 64e-4 4.02e-5 9.84e-6 
1/32 Work 961 4867 

Error 4.07e-5 1.01e-5 
1/64 Work 3969 

Error 1.01e-5 

. . 1/41/4 1/81/8 For w = 2, that IS a less smooth solutIOn, u3 ' and u2 ' are of better 
or the similar efficiency as u~/2,1/2. This seems to get more prominent for k ---> 

00. For example, u~62,1/2 provides an accuracy of 1.17e-7 with total system size 

of 53277 unknowns, which is less efficient than to compute u~/8,1/8 giving an 
accuracy of 8.8ge-8 with total system size 33933. At present, it is therefore unclear, 
whether and under which circumstances the combination technique should be used 
in its original form with u~/2,1/2 or whether restricted forms using uZ 1 ,h2 are more 
efficient. 
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3 Multivariate extrapolation 

The asymptotic expansion (2) can be generalized to a multivariate form, e.g. 

u* + hre20 + hfe40 + h~e60 + h~e80 + ... 
h~e20 + hrh~e22 + hfh~e24 + h~h~e26 + 

Uhl ,h2 = h~e04 + hrh~e24 + hfh~e44 + 
h~e06 + hih~e26 + 
h~e08 + 

(8) 
where all terms up to a total order of 8 are shown. We note that the error terms 
correspond to a Table of approximate solutions arranged like 

Uhl ,h2 

Uhl ,h2/2 
Uhl ,h2/4 

Uhl ,h2/8 

uh l/2 ,h2 

uh l/2,h2 /2 

uh l/2 ,h2/4 

uh l/4 ,h2 

uh l/4,h2 /2 
(9) 

so that we can use a combination of approximations uhlTi ,h2Ti for 0 :S i, 0 :S j 
and i + j :S p to eliminate the error terms hiih~j for 2i + 2j :S 2p (see Figure 1). 

The extrapolation coefficients can be computed by symbolic algebra tech­
niques. A Maple2 program for this purpose is shown in Figure 3. Referring to 
the arrangement of terms as in (9) (see also Figure 1) we find the extrapolation 
coefficients for order k = 1,2 and 3 as follows: 

k = 1: 

k= 2: 

k= 3: 

-5/3 4/3 
4/3 

37/45 -100/45 64/45 
-100/45 80/45 

64/45 

-485/2835 
3108/2835 

-6720/2835 
4096/2835 

3108/2835 -6720/2835 4096/2835 
-8400/2835 5376/2835 

5376/2835 

(10) 

(11) 

(12) 

We repeat the experiments of Table 1 for multivariate extrapolation. u~l,h2 
denotes the corresponding result, where u~l,h2 == uhl ,h2 is the result without ex­
trapolation. 

2Maple V, Copyright (c) 1981-1990 by the University of Waterloo, is a symbolic com­
puter algebra system 
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T:=[ 1, 
hl-2, h2-2, 

h2-4, hl-4, hl-2*h2-2, 
hl-6, hl-4*h2-2, hl-2*h2-4, h2-6 ]; 

S:=[ [hl=8, h2=8] , 
[hl=4, h2=8] , 
[hl=2, h2=8] , 
[hl=l, h2=8] , 

n: =nops (T) ; 

X:=['x.i'$i=l .. n]; 
B:=[1,'O'$i=2 .. n]; 
EQS:={ 

, convert ( 

[hl=8, 
[hl=4, 
[hl=2, 

h2=4] , 
h2=4] , 
h2=4] , 

[hl=8, 
[hl=4, 
[hl=8, 

h2=2] , 
h2=2] , 
h2=1] ]; 

['subs(S[i] ,T[j])*X[i] '$i=1. .n], 
'+' ) 

B[j] '$j=1..n 
}; 

X:=convert(X,set); 
solve(EQS,X); 

FIGURE 3. Maple Program to calculate the extrapolation coefficients in (10-12) 

A comparison of Table 1 with Table 2 shows that for these smooth solutions 
extrapolation provides significantly more accurate results than the combination 
technique. 

We now consider more oscillatory functions and compare the accuracy of the 
full grid solution u1/64 ,64, the combination technique u;/2,1/2 and a multivariate 

extrapolation u~/8,1/8. Figure 4 shows the error in a logarithmic scale versus the 
frequency parameter. The error of the full grid solution is almost independent of 
w. Of course, this is also the most expensive of the methods. For all other solutions 
the error grows with the frequency. The error for the multivariate extrapolation is 
smaller than for the combination method, though u~/8,1/8 is significantly cheaper 

A 1/2 1/2 to compute than us' . 
The most efficient method is conventional Richardson extrapolation which 

is even more accurate than multivariate extrapolation for a comparable computa­
tional cost. Note that for more extrapolation steps and more than two dimensions, 
the multivariate extrapolation becomes more attractive in terms of work and paral­
lelization possibilities. Also note, that with multivariate extrapolation it is possible 
to accommodate different expansions in the mesh parameters, as they may occur 
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TABLE 2. Multivariate extrapolation 
w=l 

hI = h2 Uo UI U2 U3 

1/2 Work 1 7 30 102 
Error 1.18e-2 1.13e-3 4.64e-5 1.02e-6 

1/4 Work 9 51 190 586 
Error 2.68e-3 7.32e-5 6.25e-7 3.50e-9 

1/8 Work 49 259 918 2730 
Error 6.56e-4 4.43e-6 9.41e-9 1.32e-11 

1/16 Work 225 1155 4006 11722 
Error 1.63e-4 2.75e-7 1.45e-10 5.11e-14 

1/32 Work 961 4867 16710 48522 
Error 4.07e-5 1.171e-8 2.27e-12 1.9ge-16 

1/64 Work 3969 19971 68230 197386 
Error 1.01e-5 1.07e-9 3.54e-14 7.7ge-19 

w=2 
1/2 Work 1 7 30 102 

Error 1.85e-2 -9.1ge-3 1. 3ge-3 -1.16e-4 
1/4 Work 9 51 190 586 

Error 2.95e-3 -3.32e-4 1.16e-5 -2.56e-7 
1/8 Work 49 259 918 2730 

Error 6.71e-4 -1.83e-5 1.56e-7 -8.74e-1O 
1/16 Work 225 1155 4006 11722 

Error 1.64e-4 -1. 11e-6 2.34e-9 -3.30e-12 
1/32 Work 961 4867 16710 48522 

Error 4.07e-5 -6.88e-8 3.64e-11 -1.27e-14 
1/64 Work 3969 19971 68230 197386 

Error 1.01e-6a -4.2ge-9 5.68e-12 4.98e-17 

for time-dependent equations, when the time step size is one of the parameters. 
For the given situation, the combination technique seems to be generally inferior 
to extrapolation schemes. 

4 Extrapolation and Full Multigrid Algorithms 

Extrapolation raises the approximation accuracy beyond the truncation error of a 
single solution by itself, so that, in contrast to conventional multigrid techniques, 
it does not suffice to compute each problem to an accuracy matching its own trun­
cation error. Each subproblem must be solved with the accuracy that is expected 
for the extrapolated result. 

Typically, the initial guess for a multigrid solution is computed by nested 
iteration. When the objective is a solution with truncation error accuracy, then 
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FIGURE 4. Accuracy of various methods depending on frequency: solid line = full 
grid solution (UI / 64 ,1/64), dashed line = combination method (U~/2,1/2), dashed-dotted 
line = multivariate extrapolation (Ui/8,1/8), dotted line = Richardson extrapolation 
4/3ul / 16,1/16 _ 1/3ul / 8,1/8 

the initial guess can be obtained by interpolation, so that a fixed, small num­
ber of correction cycles is sufficient to compute the solution on each grid. For 
higher accuracy, as required with extrapolation, the analysis in Hackbusch [8] and 
Schiiller and Lin [16] shows that the number of cycles with this strategy depends 
logarithmically on h. 

For an extrapolation method, it does therefore not suffice to compute an 
approximation with h2 accuracy as initial guess, but we must provide sufficient 
accuracy so that the terms hf h~ are represented correctly up to the order of the 
extrapolation process. This cannot be accomplished easily by a nested iteration 
for each single subproblem, but we must use additional information. For more 
conventional extrapolation techniques this has been discussed by Hackbusch [8] 
and Schuller and Lin [16]. The optimal starting values for the iteration on each 
grid can be obtained by a modified extrapolation that is designed not to produce 
the best approximation to the differential equation, but to the discrete solution 
on the new grid. Additionally, the initial guesses must be computed by sufficiently 
high order interpolation. 

For the combination extrapolation, suitable starting values in the above sense 
can be obtained by using a combination extrapolation of thc form 
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.. 

FIGURE 5. Test solution 

wherever the necessary terms are available. At the borders of the extrapolation 
scheme (see Figure 1) this is not possible and a prediction of uhl/2,h2 from uh1 ,h2 

and u2h1 ,h2 requires the explicit knowledge of the form of e~l (analogous for 
uh1 ,h2 /2). 

Analogous techniques must be used for multivariate extrapolation , where the 
initial guesses must be computed from the existing approximations by suitable 
linear combinations plus interpolation. Note that requires the exchange of infor­
mation from all existing solutions, so that a parallel implementation requires a 
global communication step, that should be arranged in a hierarchical form. 

5 Numerical experiment 

We now study solutions of the discretization of (6) with bilinear finite elements 
and data such that the solution becomes 

7rX 7ry 
U ( x, y) = x (1 - x) cos ( 2 ) y (1 - y) cos ( 2 ). (13) 

This solution is depicted in Figure 5. In Figure 6 we display the performance of 
our explicit extrapolation methods. We plot the accuracy versus the total number 
of unknowns involved in the solution process (neglecting the extra work required 
to obtain higher accuracy). The slope of the lines reflects the order, so that the 
two methods of 4th order and 6th order have parallel lines, respectively. The plot 
of the standard method clearly shows the O(h2) behavior by a factor 4 reduction 
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FIG URE 6. Performance of explicit extrapolation methods for the smooth model problem. 

when the number of unknowns is increased by a factor of 4. 
The combination solution produces a curved line, sloping upward, reflect­

ing the fact that for comparatively small numbers of unknowns the logarithmic 
factors in complexity and accuracy are still essential. The graph for the combina­
tion technique is obtained from a L 2-error norm evaluated on the smallest regular 
grid including the combined grid. For larger number of unknows the combina­
tion method should asymptotically provide close to order 4 (with respect to the 
number of unknowns) and therefore the graph should asymptotically tend to the 
same slope as the 4th order methods. The graph also shows that for this example 
straightforward Richardson extrapolation is most efficient. The potentially more 
effective multivariate extrapolation variants are not yet significantly cheaper, but 
their errors (though of the same order) have larger constants. This depends very 
much on the details of the problem as well as the details of the evaluation. 

Clearly, the multivariate extrapolation methods are very attractive when we 
are concerned about parallelization. The same is true for the combination tech­
nique. The smoothness can only be efficiently exploited by high order methods. 

6 Conclusions 

In this paper we have discussed several extrapolation based PDE solvers, includ­
ing the sparse grid combination technique and multivariate extrapolation methods. 
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For the model cases considered, extrapolation seems to be the most efficient choice, 
with multivariate extrapolation being an interesting alternative in a parallel en­
vironment. For simple model problems in two dimensions it seems that various 
extrapolation techniques present a more efficient solution method than the com­
bination technique. 

Future work will include the analysis of more complicated problems and will 
explore the various combinations of sparse grid and extrapolation methods. A 
more comprehensive study must include the sparse grid finite element technique 
and other implicit extrapolation methods (see Rude [12]) and must address the 
combination of these methods with local mesh refinement. Suitable techniques are 
discussed in Rude [14]. 
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Robust Multi-grid with 7-point 
IL U Smoothing 
Rob Stevensonl 

1 Introduction 

This paper deals with MG applied to discretized anisotropic boundary value prob­
lems. A model problem is given by 

f onn=(0,l)2 

° on an 
discretized using linear finite clements corresponding to a regular triangulation of 
n. Besides this problem, we consider the problems that arise when the unit square 
is replaced by a domain having a re-entrant corner (less-regular problems) or when 
the differential operator is replaced by a rotated operator so that possibly the grid 
is no longer oriented with the direction of the anisotropy. We are interested in the 
question of whether the MGM is robust, that is, whether it converges uniformly 
not only in the "level" I, but also in f. We concentrate on 7-point ILU smoot hers 
which are known to give often good results in practice. 

The paper is organized as follows: In section 2, some general MG conver­
gence theory is treated. In [10], sufficient condition~ on the MGM were given for 
robustness of the W-cycle applied to anisotropic problems on convex domains and 
on domains with re-entrant corners. The same was done in [9] for V-cycle MG ap­
plied to anisotropic problems on convex domains. Both papers follow and in some 
aspects extend the general MG theory developed by Hackbusch ([1]), which was 
extended by Wittum in [11, 12]. In the present paper, we show robustness of the 
W- and V-cycle under the same conditions as in [10] and [9], but now using the 
general convergence theory of Mandel, McCormick and Bank ([5]). In some sense 
the new results arc stronger (robustness of the W-cycle for less regular problems 
with only one smoothing step) and the arguments are much simpler. This is par­
ticularly true for less-regular problems, since unlike Hackbusch's analysis of the 
W-cycle, the estimate needed for the smoother is independent of the regularity 

1 Utrecht University. From August 1, 1993: Department of Mathematics and Computer 
Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The 
Netherlands. Email: stevenso@win.tue.nl . 
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of the boundary value problem. Essential for our results is a new estimate of the 
so-called "smoothing factor" ([5]) for smoothers having negative eigenvalues. 

In sections 3 and 4, we apply the theory of section 2 to our model (rotated) 
anisotropic problems. On level l, let AZ(E) = WZ(E) - RZ(E) be the 7-point ILU 
decomposition of the stiffness matrix, hz be the mesh-width and let ¢ E [0,7r) 
be the angle of rotation. Using an estimate from [10] concerning the so-called 
"approximation property" ([1]), the essential conditions for robustness turn 6ut to 
be 

2 { O(E) 
(a). supz hzIIRz(E)lloo = O(E2) 

(b). SUPZ,E p(WZ(E)-l AZ(E)) < 2. 

In section 3, we consider ¢ E {O, i, 3;} which means that the grid is oriented 
with the direction of the anisotropy. We show that supz hrIIRz(E)lloo '" E. Even 
when we consider only smoot hers that are convergent, condition (b) is not trivial. 
For example, Jacobi iteration applied to our model problem is convergent for each 
hz and E. However, even for fixed E, the spectral radius of the preconditioned 
system tends to 2 if hz 1 0. Until now, for 7-point ILU, (b) was proved only for 
a kind of modified decomposition. Numerical experiments show that modification 
is also necessary for obtaining robustness if ¢ E {i, 3;}. For ¢ = ° however, it 
appears that unmodified ILU generally yields a more efficient MGM than modified 
ILU. We will give an upper bound for the spectral radius of the preconditioned 
system with 7-point ILU for a general 7-point symmetric M-matrix with constant 
coefficients. Using this bound it will follow that (b) is also satisfied for unmodified 
ILU if ¢ = 0. 

The case ¢ rf. {a, i, 3;} is treated in section 4. For these angles and E small, 
AZ(E) is not an M-matrix. The 7-point decomposition is not exact for E = ° and for 
this reason we are not able to give a complete proof of robustness. Yet, numerical 
experiments with modified IL U do indicate robustness if ¢ E (0, i) U e; , 7r). As 
a partial explanation, we prove that the "asymptotic rest" (the rest "away from 
the boundary") is of the order E2 (d. (a)) if ¢ E (0, i) U (3; , 7r). This is quite a 
surprising result since for ¢ E {a, i, 3;}, the asymptotic rest was only of order E. 
Using this difference in order, we will be able to clarify some discrepancies between 
the local mode smoothing factors and the actual MG contraction numbers. 

2 General multi-grid convergence theory 

We assume sequences of linear operators 

l E No = {a, 1, 2, ... } 

with l f---+ nz increasing, which are the sequences of stiffness matrices, prolonga­
tions and restrictions respectively. We equip en! with the scaled Euclidian scalar 
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product defined by 

and norm II . II = (-, .) L Adjoints relative to (-, .) will be denoted by * 
Basic assumptions that we make throughout the paper are 

• Al = Ai > 0, r = p* and Al- 1 = rAzp. 

Because of the first assumption, we may define the energy scalar product by 

(Ul,Vz)E = (AlUl,Vl) 

1 

and norm II . liE = (., 1~· Adjoints relative to (-, ·)E will be denoted by H 
To solve AlUI = fl on some level I, we apply the induced MGM with VI 

pre-smoothing steps of type Ul <--- Ul + (WP))-I(fl - Aluz), V2 post-smoothing 

steps of type Ul <--- Ul + (W?)*) -1 (fl - AlUz) and, recursive calls on each coarser 
grid. We assume that the equations on level ° are solved sufficiently accurately. 
Let M{ be the error amplification operator of the resulting MGM on level I. We 

put Kl = lz -pAz_\rAl, S?) = lz - (W/ i ))-IAl and Ri i ) = W?) -AI (i E {1,2}). 
We consider only smoothers that satisfy 

• IISl(i) IIE+-E < 1, for each I E No (i E {I, 2}). 

We recall the MG convergence theorem from [5]: 

Theorem 2.1 Let, = 1 (V-cycle) or, = 2 (W-cycle) and let a E (0,1] with 
a = 1 if, = 1. Fori E {1,2}, put 

Define the bijection IJ! Q : (0, 1] -+ [0, 00) by 

then 

if Vi > ° 
if Vi = ° 

if a 2 l~x 
if a ~ l~x ' 

(1) 

Note that \[J~1 is decreasing and so the rhs of (1) is less than 1 uniform in I if the 
(3i- 1 's are bounded uniform in I and VI + V2 > 0. For each y 2 0, a f--+ \[J~I(y) is 
decreasing. For a 2 t!~, in particular for a = 1, it holds that \[J~I(y) = l~y. 
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Proof. [5, lemmas 4.3, 4.4, 5.1 and theorems 5.1, 5.2] 0 

We give an upper bound for p(Az[(Iz - Sr(S[)H)-l - Iz]) for symmetric 
smoothers (Sz = SZH) that possibly have negative eigenvalues (p(WZ- 1 Az) > 1). In 
contrast to what was suggested in [5, remark 4.4], such a bound has been missing 
until now. Applications are given by the ILU smoothers. 

Theorem 2.2 Let // 2: 1, Wz = Wt, 80 that Sz = Sf, and p(Wz- 1Az) :::; p < 2. 
Then 

{
I p(l _ p)2L1-2 } 

p(Az[(Iz - S1 L1 )-1 - Iz]) :::; p(RzSz) max 2//' 1 _ (1 _ p)2L1 . 

Proof. Let the operator st be such that st Sz is the projection on Im Sz orthog­
onal w.r.t. (-, ')E and (Sn H = Sr Then by Ker [(Iz - S1 L1 )-1 - Iz] = Ker Sz and 
(J(Sz) C [1 - p, 1], we have 

p(Az[(Iz - S1 L1 )-1 -lz]) 

= p(Sz(Iz - Sz)-!Az(Iz - Sz)-!Sz(Sn 2(Iz - Sz)[(Iz - S1")-1 -lz]) 

:::; IISz(Iz - Sz)-!Az(Iz - Sz)-!SzIIE+-EII(Sn 2(Iz - Sz)[(Iz - S1 L1 )-1 - IzlIIE+-E 
:::; p(RzSz) max 11;/'((1_ ,\2L1)-1 - 1)1. 

AE[l-p,l] 

Elementary analysis shows that the maximum is obtained in one of the end points 
of the interval, which gives the result. 0 

Theorem 2.2 shows that the negative influence of eigenvalues of WZ- 1 Al close 
to 2 on the MG convergence speed disappears when more smoothing steps are 
applied. If we had estimated only p(Az[(Iz - S1)-l - Iz]) and then had used 
p(Az[(I1 - S[LI)-l - Iz]) :::; ~p(Az[(Iz - S1)-l - Iz]) ([5, lemmas 4.2, 4.4]), then 
this effect would not have become visible. 

Using theorem 2.2, we can estimate (3-1 = (3;1 from theorem 2.1 by 

-1 _Q Q 1. p(RzSz) {I p(1 - p)2L1-2 } 
(3 :::; (supp(KzAz )p(Az ))a sup (A) max -, ( )2 ' Z Z P Z 2// 1 - 1 - P v 

(2) 

where p = supz p(WZ- 1 Az). When we insert the rhs of (2) with a = 1 into the rhs 
of (1), we find exactly the V-cycle bound of [9, (3.7) with 8 = 2]. 

If Wz is constructed by making a (weakly) regular splitting of Az, e.g. an 
ILU decomposition of an M-matrix A z, then IISzlloo :::; 1 if the row sums of A z are 
non-negative ([8, proposition 3.3]). In that case, we can estimate p(RzSz) :::; IIRzlloo. 

When theorem 2.2 is applied, supz p(WI-
1 Az) < 2 is a condition for obtaining 

a bound on IIM[IIE+-E which is less than 1 uniform in l. That this condition is also 
necessary for obtaining an uniformly converging MGM becomes plausible by the 
results of numerical tests and the following heuristic argument: Let el be such that 
WZ- 1 Azez = Aez with A close to 2. Then Slez = /J£z with f1 = 1 - A close to -l. So 
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el is hardly reduced by the smoother. Moreover, because of WI- 1 Aiel ~ 2el, the 
error el is not "almost in the kernel of AI"; in other words, el is not "smooth" and 
therefore it is hardly reduced by the coarse grid correction either. 

To prove robustness for anisotropic problems, in theorem 2.1 we need (3;1,s 
that are bounded uniform in land E. If we consider (2), then the expected in­
crease of (suPI p(Kl(E)Al(E)-Q)p(Al(E)Q))~ when E ! 0 due to the loss of ellip­

ticity might be compensated by a corresponding decrease of SUPI p(~(~;fe\~f)). In-

deed, if Rl(O) = 0, we can expect that limdo SUPI p(~(~;~)jf)) = O. Assuming that 

IIS1(E)1100 S 1, we obtain from theorems 2.1 and 2.2 the following sufficient condi­
tions for robustness 

• sUP1,f P(Kl(E)Al(E)-Q)~ IIR1(E)1100 < 00 

• SUP1,eP(Wz(E)-1 Al(E)) < 2. 

In sections 3 and 4, we will discuss these conditions for our model problems. 
Finally in this section, we show that the factor p(R1Sd from theorem 2.2 

may be replaced by p(Rd if p(WI- 1 Ad S 1. Applications are given by the SGS­
smoothers and the modified IL U smoothers (IL U w), characterized by a rest Rl 
satisfying (Rl)ii = W 2:#i I(Rl)ijl, if W 2 1. 

Theorem 2.3 Let l/ 21, WI = Wt and p(Wl- 1 AI) S 1. Then 

Proof. [5, lemma 4.4, theorem 4.4 and remark 4.4] or 
p(Ad(I1 - SrV)-l - Ill) 

! 1 1 ! = P(SI2 (II - SI)-2 Al (II - SI)-2 Sl2 St(I1 - SI)[(I1 - Srv)-1 - Ill) 
S p(Rl) max>'E[O,l] 11>:>'((1 - ).2v)-1 - 1)1. 

o 

3 7-point 1L U smoothing 

We consider a symmetric M-matrix A with constant coefficients that can be de­
scribed by a 7-point difference stencil on a finite two-dimensional grid: 

(3) 
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The 7-point ILU decomposition A = W - R w.r.t. an east-to-west, south-to-north 
lexicographical ordering of the grid points is given by W = (D - L )D-l (D - LT), 

L ~ [: leij l' D ~ [:. dij 
lswij as 1 R~ [ . 

, rij 

where iL. le2. as2 lsw2. 
d .. - 8 _ _ tJ_ _ __ _ tJ 

tJ - , 
dij+l di- 1J di- 1j - 1 J 

as as lei-lj-2lswij 
leij = oc + -d-lswij+l, lswij = 0fW + -d-lei-lj-b rij = ---c....d-::-=--=-------",-

i-lj i-lj i-lj-l 
(4) 

skipping terms containing indices (p, q) that correspond to grid points outside the 
domain. 

In theorem 3.2 we estimate IIRlloo and p(W-1A). Our main application is 
given by our (rotated) anisotropic model problems described precisely in the fol­
lowing example. 

Example 3.1 Let A = Al(f) be the stiffness matrix resulting from the application 
of the linear finite element method to the rotated anisotropic boundary value 
problem 

{ (-(fC2 + s2)or - 2(10 - 1)SC0201 - (fS2 + c2)O~) U = f 
u = 0 

on n 
on on (10 E (0,1]), 

where c = cos(</», s = sin(</», </> E [0,7r), ~*! hl=2-(1+2) 
w.r.t. a regular triangulation of n as- _ 
suming that on coincides with grid lines. 
Then Al(f) is of the form (3) with 
oc = hI2(s(c + s) + fC(C - s)), as = hI2(c(c + s) + fS(S - c)), 0fW = hl2(f - l)sc 
and 8 = 2(oc + as + 0fW). 

Note that Al(f) is an M-matrix for all 10 E (0,1] if and only if </> E {O, i, ~7r}. 
We assume canonical (7-point) prolongations and restrictions. Then from [10, 

theorems 2.1 and 2.4] we know that for </> E {O, i, ~7r}, 
1 

(S~PP(KI(f)AI(f)-a)p(AI(f)a)) a = 0(10-1) (f! 0) (5) 

with a = 1 if n is convex and a < 1 otherwise (for a discussion about the value 
of a we refer to [10, remark 2.5]). For </> ~ {O, i, ~7r}, (5) is not valid, but instead 
only 0(c2 ) holds ([10, remark 2.3]). 

Theorem 3.2 Let as> 0, osw, ae ~ 0, osw + ae > ° and {) = 2(ae + as + osw). Let 
( = "( be the largest root of 

f(() := (3-2(as+OC+0fW)(2+(OC2+0fW2-4as2)(+4as(OCOfW+2as(0fW+OC+as)) = o. 
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ocasw(, + as(asw2 + oc2) d ocasw + aswas + ocas Th 
Put r = 2 an q = 2 . en 

(, _ 4as2 oc + asw + 4as 

(a). rij :::; r (and rij i r liaway from the boundary") and so IIRlloo :::; 2r 

(b). p(W- 1 A) :::; q~r' 

(Note that q and r are homogeneous functions of A of order 1 and thus q~r is 

homogeneous of order 0. So e.g. multiplication of A by hi2 makes rand q a factor 
hi2 larger but does not change q~r.) We have eae2:'+"t::::SasGSUJ <)2r < q and thus 

IIRlloo :::; q (explicit bound) and p(W- 1 A)(:::; q~r) < 2. 

Proof. Since A is an M-matrix, it is well known (cf. [6]) that 

- km 
dij 2: d, k ij :::; k, mij:::; m, rij:::; d 

(and convergence to these bounds "away from the boundary"), where d = d is the 
largest root less than b of the system 

{d = b - ~2 - ~2 - ls!:t, (1 - ~:)k = oc + as:w, (1 - ~:)m = asw + asr} (6) 

{=} d6 - 2(as+oc+asw)d5 + (oc2 +asw2 _as2 )d4 + 4as(aswoc+as(as+oc+asw))d3 

+(oc2 +asw2 _as2 )as2 d2 - 2(as+oc+asw )as4 d + as6 = 0. 

2 

By noting that d is a solution of (6) if and only if ~ is a solution, (6) 
2 

can be reduced to the equation f( 0 = 0, where ( = d + ~ . It can be verified 
that f(b) (= 2(oc + asw)(oc2 + asoc + aswas + asw2 )) > 0, f(2as + oc + asw) (= 
-2(oc + asw)(ocasw + aswas + asoc)) < 0, f(O) > ° and lim(--->_oo f(O = -00. We 
conclude that all solutions of f( () = 0, and thus all solutions d of (6), arc less than 

b. So the solution d = d is the largest solution of (6) and d = (+~ where 
( = "( E (2as + oc + asw, b) is the largest solution of f( 0 = 0. 

We can now write 

!em 
d 

ocasw (d + -"f) + as(asw2 + oc2) 

(d- arf 
which shows (a). The expression r is a decreasing function of"( > 0. Substituting 
the bounds that we found for (, yields the inequalities 2ae2:'+"t:::SasGSUJ < 2r < q. 

It remains to show that p(W- 1 A) :::; p := q~r' Because of A = A* > ° and 
W = W*, this inequality is equivalent to A + P~l R 2: ° ([8, lemma 2.9]). We have 

1 
R= 2(R+R) > 

1 
2(R - diag{ (rowsumR)ij}) 
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~ [ r,j 
(8) 

Although it is not the case for R, in (8) we have an operator that is a decreasing 
function of the coefficients rpq (use Gershgorin's circle theorem). Since rpq ::; rand 
~r = q, we thus have 

A+ _P- R > [ . 
P - 1 - ~'q 

-ae 
-asw 

-as 
l5-q 
-as 

-asw 
-ae 

We compare this operator in the rhs with the semi-positive definite operator 

(0" - L)u-1(0" - LT) ~ [ : 
ElL 
u 

-x+~ 
u 

_y + ,:x 
-as 

0" + x 2+y2+ag2 

u 
-as 

_y + ,:x 
-x+~ 

u ~l . , 

whee, L '" [y ili xl' a ~ y+x+", and x, y "'"' mal. Both opecato", have "CD 

row sums ((0" - L) has zero row sums). The system of equations { =; : ~: :=:w 
has two (one, if as = 0) solutions (x, y) E R 2 . It can be verified that these solutions 
satisfy the remarkable equality x;: = ~q which completes the proof. D 

We will now consider A = Al(E) from example 3.1 for ¢ E {O,~, 3;}. Theorem 
3.2(b) shows that for each E, sUPl p(Wl(E)-l Al(E)) < 2. Therefore, from theorem 
2.1 it follows that for fixed E the MGM with 7-point ILU smoothing converges 
uniformly in l. 

For each r/, E {O ~ 37r} the inequalities 2oca'lW+asoc+asasw < 2r < q show 
'/-' , 2' 4 ' 2oc+2asw+4as 

that sUPl hrIIRl(E)lloo rv E. (For ¢ = 0 this is a remarkable result since for fixed l, 
hrIIRl(E)lloo = O(E2) as can be deduced from the recursions defining the decompo-

sition). Since by (5), sUPl hi2p(Kl (E)Al (E)-a)!; = O(c1), robustness will follow 
whenever SUPl,E p(Wl(E)-l Al(E)) < 2. 

2 lE(1-E)h27'+E(1_E+Q E2) For r/, = 37r we obtain q = h - ~ and r = h -2 2 I' 4 4 in the-
'/-' 4 ' l 1+9E l (h?()2 _4,2 

orem 3.2. For E = 0, the equation f(() = ° reduces to hr((hr( - ~)2 = 0. Therefore, 
it holds that limdO hf( = ~ and so the upper bound q~T for SUPI p(Wl (E) -1 Al (E)) 
from theorem 3.2 tends to 2 if E 1 0. 

We have computed IIM{(E)IIE<--E numerically with the Lanczos method using 
symmetry of M[(E) W.r.t. (-, ·)E. The results are given in table 1. With the same 
number j of MG evaluations, the Lanczos method gives a much more accurate 

approximation of IIM{(E)IIE<--E than the averaged reduction factor ii~~ii where ri 
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E \ hi 1 1 1 1 1 1 
32 64 128 256 512 1024 

1 .028(.039) .032(.044) .034(.047) .034(.047) .035(.047) -

.1 .058(.059) .062(.064) .064(.066) .064(.067) .064(.067) -

.01 .185(.087) .230(.109) .243(.119) .245(.120) .247(.121) -

.001 .106(.036) .317(.091) .510(.130) .576(.145) .592(.156) .595(.159) 
.0001 .004(.001) .046(.016) .263(.067) .585(.117) .761(.149) .811(.168) 

TABLE 1: IIM{IIE+-E for fl = (0,1)2, 7-point ILU smoothing, I = 1, V1 = V2 = 1 and 
1> = 3:. In parentheses the results for 7-point ILUw smoothing with w = ~. 

denotes the residual after step i. Table 1 shows unsatisfactory contraction numbers 
for small E and hi and it strongly indicates that indeed this MGM is not robust. 
This would also mean that in this case the upper bound q~r is sharp when E 1 o. 

In order to obtain a robust method, modified ILU (ILUw ) was proposed by 
Wittum ([12]), Oertel and Stiiben ([7]) and Khalil ([4]). From [8], we recall the 
following theorem: 

Theorem 3.3 ([8, theorem 3.2]) Let A = Ww - Rw be a symmetric ILUw de­
composition of a symmetric M-matrix A. Then for w ~ 0, 

(aJ. IIRwlloo::; (1 +w)IIRolloc and (b). p(W,~-lA)::; max{1, l;w}' 

So for the modified decomposition the eigenvalues of the preconditioned system 
stay away from 2, whereas the rest is only at most a factor 1 + w larger than with 
the unmodified decomposition. 

Since we already knew that for ¢ E {O, ~, 3:} the rest of unmodified IL U 
is of order E, we conclude that for these angles MG with 7-point ILUw smooth­
ing with w > 0 is robust. In table 1, numerically computed contraction numbers 
IIM{(E)IIE<--E are given for ¢ = 3: and w = ~. We took w = ~ because at least for 
¢ = ~, this value yields the optimum so-called "local mode smoothing factor" if 
E 1 0 ([7]). However, the contraction numbers do not vary much as a function of w 
as long as w stays away from O. 

For ¢ = ~, it holds that q = hi 2 l~~E and r = hi 2 (h?()~-4E2 in theorem 3.2. 

For E = 0, the equation f(() = 0 reduces to hf((hf( - 1)2 = O. So limdo hf(, = 1, 
and again the upper bound q~r for SUPl p(Wl(E)-l Al(E)) tends to 2 if E 1 o. 
Numerical computations show contraction numbers for unmodified and modified 
7-point ILU which are similar to those found for ¢ = 3:. So also for ¢ = ~, we 
may conclude that the upper bound ~ is sharp when E 1 0 and that a robust 
method is only obtained with modified ILU. 

Finally, we discuss the case ¢ = O. We obtain q = hi2 4~f and r = hi2 (h?~;2 -4 

For E = 0, f(() = 0 reduces to (hf( + 2)(hf( - 2)2 = 0 so that limdo hf(, = 2, 
which gives no information as to whether or not -q- is less than 2 uniform in E. q-r 
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Solving f(() = 0 explicitly yields hf(, = 2 + (1 + ~v'2)E - 116(1 + v'2)E2 + O(E3) 
and so 

-q- = v'2 - !( v'2 - l)E + O(E2). 
q - r 8 

We conclude that for the unrotated anisotropic equation the MGM with unmodi­
fied 7-point ILU smoothing is robust. In table 2 numerically computed contraction 
numbers are given for unmodified and modified ILU with w = ~. A comparison of 

E \ hI 1 1 1 1 1 1 
32 64 128 256 512 1024 

1 .028(.039) .032(.044) .034(.047) .034(.047) .035(.047) -

.1 .023(.021) .026(.028) .027(.030) .027(.031) .027(.032) -

.01 .006(.004) .020(.014) .027(.023) .028(.028) .029(.029) -

.001 .000(.000) .001(.001) .011(.006) .023(.018) .028(.025) .029(.028) 
.0001 .000(.000) .000(.000) .000(.000) .003(.002) .016(.010) .025(.021) 

TABLE 2: As table 1 with now ¢ = o. 

these results shows that for small E modified ILU gives only slightly better results, 
whereas for E ~ 1 unmodified IL U yields a faster converging method. 

To see whether the bound q~r is sharp, we computed p(WI(E)-1 A(E)) nu­
merically. We found values less than or, when E and hI are small, close to 1.2. 
For E = 1 (Poisson equation), f(() = C - 4(2 - 3( + 16 and so "( = ~ + 
2Re ((-~~ + ~ v;ri)~) ~ 3.598 (and thus d = (+vf=4 ~ 3.294). This yields 

a bound q~r ~ 1.388. Numerically we found p(WI- 1 AI) ~ 1.178, 1.179 and 1.180 

for !1 = (0,1)2 and hI = l4' 1~8 and 2;6 respectively. 

4 The rotated anisotropic equation for angles 
¢ 5i {O, ~, 3:} . 

For ¢ tf- {O, ~, 3;}, 7-point IL U is not exact for E = 0; at the boundary the rest 
does not tend to zero when E 1 0. So, at least a straightforward application of the 
theory from section 2 does not show robustness of the MGM. However, numerical 
experiments performed by Oertel and Stiiben ([7]) do indicate robustness with 
7-point ILUw smoothing if ¢ E (O,~) U e;, 71') and w = 1 (our ¢ corresponds to 
71' - ¢ in [7]). 

Unmodified ILU turned out to yield an MGM that diverges for many angles. 
Note that for ¢ tf- {O,~, 3;} and E small enough, AI(E) is not an M-matrix and 
so p(WI(E)-1AI(E)) < 2 is not guaranteed if w < 1. For w 2: 1, we have Rl 2: 0 
which is equivalent to p(WI- 1 Az) ::; 1 (see [8, proposition 2.8]). We recall that 
when p(WI- 1 AI) ::; 1, for proving robustness on can apply theorem 2.3 instead of 
2.2 so Sl need not be bounded. 
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When we repeated the experiments from [7], it appeared, as for ¢ E {O, ~, 3;}, 
that for each w 2': ° away from the boundary the di/s converge to some limit "(t. 
In the case of ILUw , the di/s satisfy the recursion 

with leij , lsnij and r ij as in (4). In a way similar to that used in the proof of 
theorem 3.2 for w = 0, the resulting fixed point equation for "(t can be reduced to 
the equation 

- - 2 
for ( = C := dw + ~ ,where f((, E) is as in Theorem 3.2 (there denoted by f(()) 

dw 

and 

( I" ) = reasw( + £15(asw2 + re2
) ( f (7)) 

r .", E (2 _ 4£152 C . . 

By convergence of dij to "(t, we have convergence of rij to rw := r((w, E). Note 
that hFt, hrL and hrrw are independent of hi. For ¢ E (O,~) U e;, 7r), but not 
for ¢ E (~, 3;), we found numerically that limdo hrrw = 0. (However, in contrast 
to the case ¢ E {O,~, 3;}, it turned out that rij :::; rw was not valid.) 

To find a partial explanation for the observed robustness with ILUw when 
¢ E (0, ~) U (3; ,7r) and w 2': 1, we study the size of the "asymptotic rest" hrr w 
as a function of E. If the "boundary perturbations" may be neglected, then for 
w 2': 1 robustness is proved whenever supJhrrw sUPI hI 2p(KI(E)AI(E)-a)i-} < 00. 

We recall that sUPI hI 2p(KI(E)AI(E)-a)i- = O(c2), and not O(c1) as was the 
case for ¢ E {O,~, 3;}. 

Except for ¢ = 7r - arctan(2) (¢:} aswl€=o = rel€=o)' for which angle r((, 0) re­

duces to (E2~~:;'I<-0 which is never zero, the equations r((, 0) = 0 and iw((, 0) = 0 
1,=0 

have a common, and therefore w-independent, solution ( = ((0) := _ as(a'lu?+(E2) I . 
aeasw €=o 

• 2 -(0) . -2 2 
Vla ( = d + ~ , ( corresponds to the fixed pomts - as:w I€=o = hi cos(¢) and 

-::t=o = hI2(sin(¢) + cos(¢))2 of the recursion for dij with E = 0. Numer­

ically, we found that indeed limdo hFt = (sin(¢) + coS(¢))2 if ¢ E (0, I) and 
limdo hr;lw = cos( ¢)2 if ¢ E (~i"' 7r). For ¢ E (I' 3,;), hrdw converged neither to 
(sin(¢) + cos(¢))2 nor to cos(¢) . Note that 7r - arctan(2) E (I' 3,;). 

When we try to analyse (w as a function of E, a problem that we encounter 

is that fw is not differentiable to ( in (((0),0). Therefore, now let ( = (: be the 

solution of f:;'((, E) := f((, E) =f 2wr((, E)((2 - 4(152) = ° with limdo (: = ((0). 

Since for ¢ f/:. {O, I' 3;}, ( = ((0) is an isolated root of 1:;'((,0) = 0, the (: 

are uniquely defined. From our experiments we know that limdO (w = ((0) if 

¢ E (0, I) U eZ·, 7r). Hence, for these angles and E small enough we have (w = (~ 
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- -- d -± .JL f± (((0) 0) 
or C = C· The implicit function theorem tells us that (-d C)I = - ~'~ (0)' • E E=O 7J(fw (( ,0) 
Some computations show that 

fef~(((O), 0) 

g(f~(((O), 0) 

3 cos( ¢)2 sin( ¢) + cos( ¢)4 + 2 cos( ¢) sin( ¢) + 1 

cos(¢)(cos(¢) + sin(¢)) 

We conclude that for ¢ E (0, ~) u e;, 7T), 

2 -± = hlr(C,E) 

~(((O), 0) 

~( (((0),0) . 

= hfr(((O) , 0) + hf(~((((O),O)(fe(:)IE=o + ~:(((O),O))E + O(E2) 

=O(E2 ), 

which shows robustness of MG with 7-point ILUw smoothing for w 2 1 assuming 
that boundary perturbations can be neglected. 

We end by making some remarks about local mode analysis. From h[r w = 
O(E2), it is not hard to prove that the "local mode smoothing factor" tends to zero 
when E 1 0 (cf. [2, table 4.1]). For ¢ E {O, ~, 3;}, it is known that this smoothing 
factor does not tend to zero when E 1 0 (for example, for ¢ = 0 and unmodified 
7-point ILU it tends to (3 + 2V2)-1 ([3, theorem 3.2])). From practice however, it 
turns out, also for small E, that the MG contraction number depends smoothly on 
¢ E [0, ~] U [3; ,7T] and that it does not tend to zero uniformly in hi. We conclude 
that for anisotropic problems, a local mode analysis of only the smoother can give 
misleading results. To obtain full insight into the convergence behaviour of the 
MGM, one also have to perform an analysis of the coarse grid correction. 
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Optimal Multigrid Method for 
Inviscid Flows 
Shlomo Ta'asan 1 

ABSTRACT In this paper we describe a novel approach for the solution of in­
viscid flow problems both for incompressible and subsonic compressible cases. The 
approach is based on canonical forms of the equations in which subsystems governed 
by hyperbolic operators are separated from those governed by elliptic ones. The 
discretizations as well as the iterative techniques for the different subsystems are in­
herently different. Hyperbolic parts, which describe in general propagation phenom­
ena, are discretized using upwind schemes and are solved by marching techniques. 
Elliptic parts, which are directionally unbiased, are discretized using h-elliptic cen­
tral discretizations and are solved by pointwise relaxations together with coarse 
grid acceleration. The resulting discretization schemes introduce artificial viscosity 
only for the hyperbolic parts of the system; thus a smaller total artificial viscosity 
is used, while the multigrid solvers used are much more efficient. Solutions of the 
subsonic compressible and incompressible Euler equations are achieved at the same 
efficiency as the full potential and Poisson equations respectively. 

1 Introduction 

In the past decade a substantial effort has been invested in understanding the 
Euler equations and their efficient solvers, where multigrid methods play in im­
portant role. The two major directions of research in multigrid solution of the 
Euler equations are the use of coarse grids to accelerate the convergence of the 
fine grid relaxations [Jameson 83], and the use of defect correction as an outer iter­
ation while use the multigrid method to solve for the low order operator involved 
[Hemker 86]. Extensive research has been conducted in both directions, and refer-

1 This research was made possible in part by funds granted to the author through a 
fellowship program sponsored by the Charles H. Revson Foundation and in part by the 
National Aeronautics and Space Administration under NASA Contract No. NASl-19480 
and NASl-18605 while the author was in residence at ICASE, NASA Langley Research 
Center, Hampton, Va 23681. 
The Weizmann Institute of Science, Rehovot 76100, Israel, and 
Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center, Hampton VA 23681. 
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ences can be found, for example, in [Wesseling 92]. Both approaches can be shown 
to be limited in their potential. For hyperbolic equations, methods that are based 
on defect correction have h-dependent convergence rates, while the other methods 
have p-dependent convergence rates where p is the order of the scheme involved. 
This unacceptable situation has led to the research outlined in this paper. More 
extensive discussion of the different issues will be presented elsewhere. 

The poor behavior of coarse grid acceleration for hyperbolic equations, and 
even worse behavior for high order discretizations, has led to the conclusion that 
coarse grids should not be used to accelerate the convergence for hyperbolic prob­
lems. Rather the relaxation should converge all components of such problems. This 
is possible since hyperbolic problems describe propagation phenomena and march­
ing techniques in the appropriate directions are very effective for solving them. For 
elliptic problems, on the other hand, local relaxation with good smoothing prop­
erties can be accelerated by coarse grid corrections leading to a very fast solver. 
Moreover, these problems cannot be solved efficiently by any local relaxation alone, 
and coarse grids acceleration is necessary. Thus hyperbolic equations do not need 
coarse grids acceleration, while for elliptic equations such acceleration is necessary. 

These observations have motivated a study concerning the separation of the 
different parts, hyperbolic and elliptic, in inviscid flow problems. The result was 
a canonical form for the inviscid equation where the hyperbolic and elliptic parts 
reside in different blocks of an upper triangular form of the system [Ta'asan 93]. 
These forms are the analog of the decomposition of the time dependent one di­
mensional Euler equations into characteristic directions and Riemann invariants. 
The insight gained by the use of the canonical variables enables one to construct 
genuinely multidimensional schemes for the equations. It unifies the treatment of 
the compressible subsonic case with the incompressible case, although these two 
cases have been studied by different methods up to now. Canonical boundary con­
ditions are also obtained [Ta'asan 93] and enable the proper numerical treatment 
of general boundary conditions. 

Schemes that are based on the canonical forms have been developed. These 
schemes use upwind discretization only for the hyperbolic variables and central 
h-elliptic discretization for the elliptic ones. The resulting schemes are also com­
patible with the uniqueness and non-uniqueness of the inviscid equations under 
different geometries and boundary conditions. In particular, the non-uniqueness 
of solutions for exterior flows around smooth bodies is evident for these schemes, 
and only the addition of a global condition, e.g., circulation, ensures uniqueness. 
In existing schemes this issue is obscure, since there seems to be no direct analog 
of the physical behavior. 

The relaxations based on the canonical forms use a marching technique in 
the stream-direction for the hyperbolic quantities. These are the total pressure 
p = p + q2/2 for incompressible flows, and entropy s and total enthalpy H for 
compressible subsonic flows. The velocity components are relaxed by a Kacmarz 
relaxation using preconditioned residuals. 

All schemes presented here use staggered grids and are free of spurious os-
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cillations even as the Mach number approach zero. Their formulation is done by 
conservative finite volumes and is constructed for structured as well as unstruc­
tured meshes. The unknown variables for the incompressible case are the normal 
velocity components on the cell faces and the total pressure. The pressure and 
tangential velocity components are calculated from the other components. For 
the compressible case the variables are the normal velocity components, the total 
enthalpy, and the entropy. Other quantities, such as pressure and density, are cal­
culated from these by well known algebraic relations, while the tangential velocities 
are calculated from the normal velocities at the neighboring cells. 

Numerical results are given for a two dimensional flow around a cylinder both 
for incompressible and subsonic compressible Euler equations. These problems 
already include the major difficulties in real problems and serve as a good test 
for the method proposed. Second order schemes are used for both cases and the 
solutions are obtained with the efficiency of the full potential and the Poisson 
equations respectively. 

2 Canonical Forms and Discretization Rules 

The discretization and efficient solution of elliptic systems of partial differen­
tial equations is quite well understood. One of the important concepts here is 
h-ellipticity [Brandt 84]. It guarantees that the stability of high frequencies for the 
discrete problem is in correspondence to that of the differential system. For the 
later, an ellipticity is defined in terms of the symbol p(w) as 

(2.1) 

while h-ellipticiy is defined as 

det ph(O) 2 ClOl 2 rn (2.2) 

Discretizations which are h - elliptic admit local relaxation methods with 
good smoothing properties. This, together with efficient coarse grid acceleration 
for smooth components, makes standard multigrid methods very efficient for such 
discretizations. Although other types of discretization also admit fast multigrid 
solvers, we restrict our focus to h - elliptic discretization for elliptic problems. 

The discretization of hyperbolic equations which in general describe propa­
gation phenomena can be done naturally using upwind biased schemes. The appli­
cation of the above ideas to the steady state inviscid incompressible and subsonic 
compressible equations is not straightforward, since these equations are neither el­
liptic nor hyperbolic, but rather mixed hyperbolic-elliptic. The optimal treatment 
of the problem should therefore include an identification of these two parts, which 
have inherently different behavior and call for different numerical treatment both 
on the level of the discretization and the solver. The device for this is a canonical 
form of the equations, described in details in [Ta'asan 93]. 
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For a two dimensional flow the canonical form of the incompressible Euler 
equations, in terms of velocities u, v and total pressure P = p + (u2 + v2 ) /2), is 

while in the compressible case it is 

where: 

Dl = p/c2((c2 - u2)Dx - uvDy) 
D2 = p/C2((c2 - v2)Dy - uvDx) 
Do = vDx - uDy 

(2.3) 

(2.4) 

(2.5) 

In view of these forms we can use the following discretization rule for the inviscid 
equations: 

(a). Use central (unbiased) h-elliptic discretizations for elliptic subsystems 

(b). Use upwind biased schemes for hyperbolic subsystems 

3 Discretization 

Let a domain n E JR2 be divided into arbitrary cells. Let the vertices, edges and 
cells be V,E and C respectively. The well known Euler formula 

# V + #C + #holes = #E + 1 (3.1) 

suggests several possibilities for discretization of different systems on structured 
and unstructured meshes. 

3.1 INCOMPRESSIBLE EULER 

For the discretization schemes for the incompressible Euler equations we rewrite 
the Euler formula (3.1) as 

#V + #V + #C + #holes = #V + #E + 1 (3.2) 



15. Optimal Multigrid Method for Inviscid Flows 313 

where the left hand side will be related to the equations and the right hand side 
to the unknowns. 

The unknowns used are the normal velocity components on edges, and the 
total pressure P on vertices. A continuity equation is discretized on each cell and 
two momentum equations on each vertex. Thus, we obtain the following diagram 

V·n ~ #E 
P ~ #V 
divV = 0 ~ #C (3.3) 
- V x curlY + V' P = 0 ~ 2#V 
Jrhole V . tdO" ~ #holes 

As can be seen form equation (3.2), a compatibility condition has to be 
specified. When specifying as boundary conditions the normal velocity component 
at every boundary point, it is clear from the continuity equation that the required 
compatibility condition is J V . nds = O. Moreover, (3.2) also suggests that an 
extra condition per hole is required as is shown in (3.3). This is in agreement with 
the uniqueness of the differential equation. 

The above argument for the location of variables and equations must be 
implemented for general grids. Thus an integral form of the equation will be used, 
namely: 

J"( V· nds = 0 
J"j((V . n)V - ~(V . V)n + Pn)ds = 0 

(3.4) 

Control volumes for the continuity and momentum equations are shown for an un­
structured grid case in Figure 1. Note that the control volumes for the momentum 
equations consist of cells of the dual grid. 

.V!t:CurIV +Gmd H . O 

H 

H 

FIGURE 1 

The discretization of the continuity equation is straightforward, since all the 
required quantities for that equation are in the appropriate location. In discretiz­
ing the momentum equation, we consider first the canonical form to decide which 
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quantities are to be upwinded and which ones are to be discretized using central 
differencing. As can be seen the total pressure, which is one of our unknowns, 
is propagating along streamlines. Its discretization in the third equation in the 
canonical form is to be done using an upwind biased scheme, since upwinding 
a term that propagates along certain lines introduces only a small error in its 
discretization. For that reason other terms involving derivatives of P in the vor­
ticity equations should not be upwinded. Note that only the total pressure may 
need an upwind biased scheme, while the velocity components require a central 
discretization everywhere. 

The above arguments can now be transformed into the conservative form. To 
this end we introduce the following decomposition of the derivatives of P 

(3.5) 

and a similar decomposition for Py 

The first term in the above formula represents a derivative of the total pres­
sure in the direction of the flow, and the second one involves the derivative in a 
direction perpendicular to the flow. Upwinding only part of the terms involving P 
is done as follows: Let el = (u/q, v/q) and e2 = (v/q, -u/q). The normal vector 
to an edge is written as 

(3.6) 

and is used for the discretization of the P terms, namely, 

(3.7) 

where PtP , P{ are upwind and central approximations to P on the edges. All 
other terms are done in a directionally unbiased way, leading to a scheme which 
involve artificial viscosity only for the total pressure, and also there, only for the 
derivatives in the streamwise direction. The full discretization is 

E jE/ Vj . njdsj = 0 

Eley[(VI . nl)VI - ~(Vl . Vl)nzldsl + dP = 0 
(3.8) 

where 'Y,1 are control volumes for the continuity and momentum equations re­
spectively. 

On a uniform rectangular grid some simplification is obtained. The discretiza­
tion of the total pressure term reduces to 

(3.9) 

where u, V, q2 are approximated at the point ((t, (3) using symmetric formulas, and 
pc, pup are central and upwind biased approximations given, for example, by 
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~(Pa,{3 + Pa+l,(3) 
sgn(u)(1.5Pa,{3 - .5Pa+1,(3)+ 

(1 - sgn(u))(1.5Pa+1,{3 - .5Pa+2 ,(3) 

Similar equations are constructed for extrapolating in the other direction. 

(3.10) 

It can be shown that the resulting scheme does not admit spurious oscilla­
tions. If on the other hand, a central approximation to P were used everywhere 
the resulting scheme would admit spurious oscillations for the total pressure as 
well as for the pressure. 

3.2 2D COMPRESSIBLE EULER EQUATIONS 

As we have emphasized before, the structure of the incompressible Euler and the 
subsonic compressible Euler are very similar, although the number of variables is 
different. The numerical treatment of the two cases is similar. 

Rewriting the Euler formula as 

#V +#V +#C +#C +#holes = #C+ #V +#E+ 1 (3.11) 

one obtain the following choice of discretization. Let H be associated with the 
cell centers, the normal velocity components be at the edges as before, and the 
entropy be at the vertices. With each cell we associate one continuity equation and 
one energy equation while the two momentum equations are associated with each 
vertex. Quantities other than the above are calculated by well known algebraic 
relations for the thermodynamical quantities and by averaging for the tangential 
velocity components. The following diagram is obtained, 

V·n {::::::? #E 
s {::::::? #V 
H {::::::? #C 
divpV = 0 {::::::? #C (3.12) 
- V x curlY + V' P = 0 {::::::? 2#V 
divpVH = 0 {::::::? #C 
frhol e V . tdu {::::::? #holes 

Control volume for an unstructured mesh, for the continuity, energy, and 
momentum equations are shown in Figure 2. 

The canonical form for the compressible equations suggests that only the 
entropy and the total enthalpy will be discretized using upwind biased schemes, 
and only in the appropriate terms; that is, only in those in which a derivative in 
the streamwise direction is involved. Other derivatives involving these quantities 
should be discretized using central differencing. Decomposing the unit normal 
vectors to the edges as before we get 



316 Shlomo Ta'asan 

where 

-pYxCurlY +p GradH -p TGradS=O 

DI\'( P Y HI 0 

FIGURE 2 

dp = L[P?(nl . ei}ei + pf(nl . e~)e~ldsl 
lE i 

pup = p(SUP, HC, q2) 

pc = p(SC, HC , q2). 

The full discretization is then 

LpjVj . njdsj = 0 
j E'Y 

L((PIVI · nz)Vldsl + dp = 0 
lEi 

L .oj Vj . njHjPdsj = 0 
jE'Y 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where .0 is computed using a symmetric formula for all the quantities involved, 
(i.e., velocities, total enthalpy, and entropy), and "I and i denote control volumes 
for the different equations. 

4 Multigrid Algorithm 

The multigrid solver, like the discretization, is based on the canonical forms men­
tioned in section 2. Its main ingredient which differs from other methods is the 
relaxation method. Other elements of the multigrid method are standard and will 
be mentioned only briefly. 

As can be seen from the canonical form, the hyperbolic and elliptic parts for 
subsonic flows are separated. Since these subsystems are of very different nature, 
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it is unlikely that the same numerical process will be optimal for both. Indeed, it 
can be shown that coarse grids are inefficient in accelerating certain smooth com­
ponents for hyperbolic problems. For these problems convergence rate is roughly 
(2P - 1)/2P for a p - order method. The better the scheme, the less coarse grids 
help. This behavior suggests that coarse grids are not appropriate for accelerating 
convergence for hyperbolic problems. The relaxation should therefore converge all 
components in the problem. While for elliptic problems relaxation cannot be ef­
ficient for smooth components, for hyperbolic problems the situation is different. 
Marching in the direction of the physical flow is very efficient in converging all 
components and eliminates the need for coarse grid acceleration. For elliptic prob­
lems, on the other hand, relaxation techniques with good smoothing properties 
combined with coarse grid acceleration yield optimal solvers. The separation of 
the different subsystems presented by the canonical form allows one to construct 
an optimal solver for the full system. Marching techniques will be used for the 
hyperbolic quantities, while local relaxation with good smoothing will be used for 
the elliptic parts. 

4.1 RELAXATION: INCOMPRESSIBLE EULER 

The discretization of the equation is done in conservative form and some trans­
formations are required between that form and the canonical form in order to 
relax the equations. Denoting the residual of the incompressible Euler equations 
in conservative form by (RP, RU , RV) and the residual of the canonical form of the 
equations by (rt, r~, rn, the following relation holds 

UI) ( o 
-v 
u 

( 4.1) 

where A is an averaging operator needed since RP and RV are not located at the 
same points. 

The relaxation of the incompressible Euler equation is done as follows. The 
total pressure P is relaxed in the streamwise direction using the residual r~ and 
the discretization of the operator uDx + vDy. Thus we get 

(4.2) 

where c~ is the diagonal term multiplying Pi in the preconditioned residual r~. 
This is followed by relaxation of the normal components of the velocity vector 
using a Kacmarz relaxation for the resulting preconditioned equations, which are 
similar the Cauchy-Riemann equations, giving the relaxation 

Vj'llj +-- V j · llj + (r}hdsj/l)dsk)2 (4.3) 
key 
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for the continuity equation and 

VI' tl f- VI' tl + (rNq),ydst! 'lJdsk)2 
key 

( 4.4) 

for the vorticity equation. Here we assumed for simplicity of exposition that the 
grid and its dual are orthogonal, although one can work with the general case as 
well. In that case the variables VI . tl coincide with the normal velocity component 
of one of the neighboring cells. 

4.2 RELAXATION: COMPRESSIBLE EULER 

Let the residual of the compressible Euler equations be denoted by (RP, RPu, RPv, RH) 
and the ones for the canonical form by (r~, r~, r~, r~). Then the following relation 
prevails 

( rl) (1 0 0 0) ( RP ) r~ = _q2 A -v u 0 RPu 
r~ _q2 A u v 0 RPV 
o -H 0 0 1 RH c 

(4.5) 

The relaxation for the compressible Euler is done in a similar way to that of 
the incompressible equations. The total enthalpy is relaxed first, using the precon­
ditioned residual r~ 

H"( f- H"( + (r~h/c!J 

followed by relaxing the entropy using 

S1' f- S1' + (r~)"(/d't 

(4.6) 

(4.7) 

where c!J and ci are the diagonal coefficient in the discrete version of uDx + vDy 
and -pT(uDx +vDy) respectively. This is followed by relaxing the continuity and 
vorticity equations. The relaxation for the continuity equation is done by keeping 
the values for the density frozen, i.e., 

Vj . nj f- Vj . nj + (r~),.djjdsj/ 2)Pkdsk)2 jE'Y (4.8) 
kE"( 

and the vorticity equation is relaxed as 

VI' tl f- VI . tl + (r~/(qp)),ydst! 2)dsk)2 ley (4.9) 
kE1' 

Note that the preconditioning of the discrete system does not result in an 
exact upper triangular form. Lower diagonal terms exist but these are of order 
O(h2) and do not affect the design of the relaxation and other numerical processes. 
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The coarsening part of the multigrid method involved is standard and its 
details are omitted. Coarse grids are created by combining neighboring fine grid 
cells into a coarse grid cell. Linear interpolation of corrections and full weighting 
of residual and functions are used in an FMG-FAS formulation [Brandt 84]. 

5 Numerical Results 

We present here numerical results for flow over a cylinder, which already presents 
all the difficulties encountered in incompressible flows and subsonic compressible 
flows. For both cases an O-mesh body fitted grid was used. The grid extended 
to a distance of about 10 chords and the aspect ratio for it was around 1. The 
examples are given to show the convergence (toward physical solution) of the 
schemes presented here. All solutions were obtained with residual on the order 
of 10-8 . Numerical experiments are shown for levels 4,5 and 6 which correspond 
to 32 x 16, 64 x 32 and 128 x 64 grids. Plots of the pressure coefficient Cp are 
given in Figure 3 and are in agreement with the exact analytical solution for 
the incompressible case and the Prandl-Gaure approximation for the compressible 
case, i.e., 

The boundary conditions used for the incompressible case were 

V·n=O 
V·n=(Uoo,O)·n 
P - lU2 - Poo + 2 00 

wall 
far - field 
inflow 

(5.11) 

The implementation of the boundary condition for the velocity components was 
straightforward since the unknown variables are the normal velocity components 
to the edges. The implementation of the inflow boundary condition for P was done 
by prescribing it at the vertex inflow boundary points. Outflow condition for this 
quantity was a second order extrapolation. 

The boundary conditions used for the compressible Euler were 

pV ·n= 0 
pV . n = Poo (UOO , 0) . n 

H = Hoo 
s = Soo 

wall 
far - field 
inflow 
inflow 

(5.12) 

with Moo = .1 The implementation of the boundary condition for the velocity 
components was also natural for this case, though slightly more involved since it 
was nonlinear as the density depends on the velocity field. The implementation of 
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the inflow boundary condition for the total enthalpy was done by introducing the 
inflow value at the inflow edges. The entropy at the inflow vertex points was also 
prescribed. Both the entropy and total enthalpy were extrapolated at the outflow 
farfield boundary, as well as on the wall. 

Incompressible Euler 

-3 

-2 

Cp -1 

0 128x64 
64x32 
32x16 

-1.0 -0.5 0.0 0.5 1.0 

x 

Cp 

-3 

-2 

-1 

0 

Compressible Euler 

128x64 
64x32 
32x16 

-1.0 -0.5 0.0 0.5 1.0 

x 

FIGURE 3: Flow around a Cylinder 

Both cases had an asymptotic convergence rate of about .18 for a W(2,2) 
cycle, and the resulting pressure coefficients shown in Figure 3 correspond to so­
lutions converged to residuals level of 10-8 . 
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Multigrid Techniques for Simple 
Discretely Divergence-free Finite 
Element Spaces 

Stefan Turek1 

ABSTRACT We derive some basic properties for a class of discretely divergence 
free finite elements. These make possible a new proof of the smoothing properly in a 
standard multigrid algorithm for the Stokes equations. In addition with appropri­
ate divergence-free grid transfer routines of second order accuracy we get the full 
multigrid convergence. We demonstrate how to develop and implement efficiently 
these operators and confirm our theoretical results by numerical tests. 

1. The simple nonconforming finite element spaces 

We consider the usual weak formulation of the steady Stokes problem with bilinear 
forms a(u, v) := (Vu, Vv) and b(p, v) := -(p, V·v) : 

Find a pair {u,p} E H6(O) x L6(0) ,such that 

a(u, v) + b(p, v) + b(q, u) = (f, v) ,V {v, q} E HMO) x 16(0). (V) 

For the discretization let Th be a regular decomposition of the domain n into 
triangles or quadrilaterals denoted by T , where h > 0 is a measure on the maxi­
mum diameter of the elements of Th . To obtain the finc mesh Th from a coarse 
mesh T2h we simply connect opposing midpoints (true domain boundaries are 
respected). In the new grid Th coarse midpoints become vertices. For the ap­
proximation of problem (V) by the finite element method we introduce discrete 
spaces Hh :::::0 H~(O) and Lh :::::0 16(0) . In the quadrilateral case we usc the ref­
erence element T = [-1,1]2 and define for each T E Th the one-to-one (bilinear) 
transformation 1/JT : T ---+ T . Then we set (rotated bilinear elements, see [5]) 

(1) 

while in the triangular case PI (T) is used. The degrees of freedom are determined 

Ilnstitut fur Angewandte Mathematik, Universitiit Heidelberg, 1m Neuenheimer Feld 
294, D-69120 Heidelberg, Germany 
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by the nodal functionals {F~a/b) (-) , f edges of T h} , with mr midpoint of f , 

F~a)(v) := 1f!~1 i v&-y or F~b)(v):= v(mr). (2) 

Either choice is unisolvent with respect to PI (T) and {h (T) , but in the quadrilat­
eral case each leads to a different finite element space (since the applied midpoint 
rule is only exact for linear functions). Then, the corresponding (parametric) finite 

element spaces Hh = H~a/b) and Lh are defined as (fi inner edges, fb boundary 
edges) 

Lh := {Qh E L6(0) I qhlT = const., 'IT E Td , H~a/b):= S~a/b) x S~a/b), (3) 

(4) 

In the triangular case, QI (T) is replaced by PI (T) . Our definitions lead to piece­
wise constant pressure approximations and edge oriented velocity approximations 
with midpoints or integral mean values as degrees of freedom. Since the spaces 
H~a/b) are nonconforming, i.e., H~a/b) rt HMO) , we have to work with element­
wise defined discrete bilinear forms and corresponding energy norms. Let 

ah(Uh, Vh) .- L 1 'VUh . 'VVh dx 
TETh T 

bh(qh, Vh) := - L qhlT QT(Vh) , 
TETh 

QT(Vh):= L If! Fta/b) (Vh) . nr(.6) 
rcaT 

Furthermore, let i~a/b) : HMO) ----7 H~a/b) be the global interpolation operator in 

H~a/b) , which is determined by 

(7) 

With some additional regularity assumptions on the domain and the used mesh in 
the quadrilateral case (see [5]'[6]) we can state: 

Lemma 1 For the interpolation operators ih = i~a/b) we have 

Lemma 2 There exist unique solutions {Uh, Ph} E H~a/b) x Lh such that 

For the explicit construction of the divergence-free subspace H~ c Hh we make 
the following definition. 
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Definition 1 A function Vh E Hh is called discretely divergence-free if 

(10) 

Because the pressure space is piecewise constant an equivalent criterion is 

(11) 

With these modifications we can introduce a subspace H~ c Hh , and our discrete 
problem for the velocity only is reduced to: 

Find u~ E H~ , such that 

ah(u~, v~) = (f, v~) ,Vv~ E H~. 

Finally, the corresponding pressure Ph E Lh is determined by the condition 

(12) 

where the functions vI; are in the curl- free part of the complete space Hh . In our 
configuration this is performed by a marching process from element to element, 
without solving any linear system of equations. 

2. The divergence-free subspaces and their properties 

Consider a general quadrilateral T E Th (see Figure 1) with vertices ai, midpoints 
m j , edges r j , unit tangential vectors t j and normal unit vectors n j . Let i.p~ E Sh 

be the usual nodal basis functions of the finite element space Sh = S~a/b), restricted 

to the element T, satisfying Fri (i.p~) = bij , i, j = 1, . . . ,4. Then, the first group 

m3 a3 

(L4 r3 
LI m2 

T 
rn'l 

f2 
al 

m] a2 

FIGURE 1: General quadrilateral T 
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of trial functions {v~ t} of H~, corresponding to the edges of T h, is given by the 
local definition 

i,t {j t j . - 1 4} v hi T E 'Ph , J - , ... , . (13) 

The second group {v~1/1} , corresponding to the vertices, is locally determined by 

. 'Pk n k 'Pj nj 

V~rTE{ I~kl - I~jl ,j=I, ... ,4,k=(j+2)mod4+1}. (14) 

Thus, we get approximations for the tangential velocities on the edges, and for the 
streamfunction values at the nodes. The full space H~ is the direct sum of these 
two subspaces. Defining the inner product (., ·)d,h on H~ by 

(15) 

the induced norm II . Ild,h is equivalent to the L2-norm, and both groups of trial 
functions are orthogonal relative to this form. If we eliminate one of the functions 
{v~ 1/1} by prescribing the value in one (boundary) point, we get a basis for the 
discretely divergence-free subspace H~ , assuming that our problem has only one 
boundary component. This is a simple consequence of the orthogonality relation 
corresponding to II . Ild,h and the fact that for Vh = I: \]iiv~1/1 : 

I\]iJ+1 \]iJ 12 4 
IIVhll~,h rv L ITI L Ir~2 rv L L l\]ik+1 - \]ik12 . (16) 

TETh rJ EaT TETh k=l 

This means, the mass matrix is spectrally equivalent to a stiffness matrix cor­
responding to the discretization of the Poisson equation with natural boundary 
conditions by conforming bilinear elements. Let S~ be this usual conforming finite 

element space with nodal basis, satisfying 'P~l(ai) = Dij for all vertices ai of Th . 
By Sl we denote the corresponding positive definite stiffness matrix with 

SCi,j) .- '" 1 n i,l. n j,l d 
I .- ~ v 'Ph v 'Ph X. 

TETh T 

(17) 

Additionally we define the Stokes stiffness matrix Sd in H~ , 

S Ci,j) .= a (vi,d vj,d) 
d . h h' h ' (18) 

and we set for functions Vh = I: Xd,iv~d E H~ the discrete norm scale III . Ills , 

(19) 

where s = 0 corresponds to the euclidian vector norm II . liE, and s = 1 to the 
energy norm 11·11 h . The following Lemma is necessary for the multigrid convergence 
proof, when the smoothing property will be shown. 



16. Multigrid Techniques for Divergence-free Finite Element Spaces 325 

Lemma 3 There holds for Vh = 'EXd,iv~d E H~ : Illvhllh/2 ~ ch-11lvhllo 
Proof. 
We show some estimates for s = 0 and s = 1 , and then prove the final result for 
s = 1/2 using some interpolation arguments (see also [4]). First, we get 

Illvh III~ ~ c (I]!T Sl Sll]! + Ur SpUt ) ~ c (I]!T Sl Sll]! + UrUt ) , (20) 

and by definition we additionally have 

IIIvhll15 = I]!TI]! + UrUt . (21) 

Then, a first result in matrix-vector notation reads (with Ip identity matrix) 

(22) 

and with some interpolation arguments for norm scales we achieve for s = 1/2 

Illvhlll~/2 ~ C(I]!TSII]! + UrUd· (23) 

By a basic finite element estimate we finally reach: Illvhllh/2 ~ ch-11lvhllo D 

Furthermore, we can state the following estimates for the condition numbers: 

Lemma 4 Let Vh E H~ , then: 

1) For the stiffness matrix Sd: ch2111vhlilo ~ Illvhllll ~ c Illvhlllo 
2) For the mass matrix Md : ch2111vhlilo ~ Ilvhllo ~ ch Illvhlllo 

3. The multigrid algorithm and its analysis 

Let {Th t ht be a family of regular subdivisions which are achieved using the re­
finement process from Section 1. The discrete Stokes problem on level k reads: 

Find u% E H% , such that 

ak(u%, v~) = (f, v%) ,'Vv% E H~. 

As before write Vk E H% as 

Vk = L Xd,lv~d = L I]!i(hk . v~,p) + L u!v1/, (24) 
I j 

and introduce, corresponding to the euclidian scalar product < .,. >E for vectors, 
the discrete scalar product (., ·)k where 

(Vk' Wk)k := L I]!~ I]!~ + L U/,vU!,w , (Vk' Wk)k =< X~, X! > E· (25) 
j 
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The prolongation operator If-1 : HL1 ~ H~ and its adjoint restriction operator 
1;-1 : H~ ~ HL1 are defined through 

Further, we define the positive definite discrete operator Ak : H~ ~ H~ by 

(AkVk, wkh = ak(vk, Wk) , 't/Vk, Wk E H~, 

such that the eigenvalues A~ of Ak satisfy the relation 

O(ht) ~ A~ ~ ... ~ AZwX ~ c, 

(27) 

(28) 

where c is a constant independent of hk . Finally we introduce the operator p;-l : 
H~ ~ HL1 , which is the adjoint of It1 relative to ak("') , 

such that Pk-1 _ A-1 I k- 1A k - k-1 k k, 

and again we introduce the mesh-dependent norm scale 111·llls,k on H~ where 

The k-Ievel iteration MG(k, uZ, gk) for solving AkUk = gk 

For k = 1 , MG(l, u~, gd is the exact solution: MG(l, u~, gl) = Al1g1 

For k > 1 , there are four steps: 

1) m-Presmoothing steps using the damped Jacobi-iteration 

uL = U~-l +Wk(gk - AkU~-l), 1 = 1, ... ,m, 
where Wk has to be smaller than the inverse of the largest eigenvalue AZwX • 

2) Correction step 
Calculate the restricted defect 

and let uL1 E HL1 (1::::; i ::::; p, p ~ 2) be defined recursively by 

(30) 

(31) 

(32) 
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3) Step size control 
Calculate UZ'+l by 

(34) 

where the parameter ak may be a fixed value or chosen adaptively so as to minimize 
the error uZ'+ 1 - Uk in the energy norm, 

(35) 

4) m-Postsmoothing steps 
Analogously to step 1) apply m smoothing steps on uZ'+! and obtain u%m+! 

For the convergence analysis we restrict to the case of a two level method (k = 2) 
without postsmoothing and step length control (ak = 1), and show the usual 
smoothing and approximation property for the damped Jacobi-method. The essen­
tial new approach is that the smoothing property may be shown using only the 
properties of the finite element spaces. This is in contrast to Brenner [2], where 
the relation between linear divergence-free finite elements and the Morley element 
was used. 

Lemma 5 (Smoothing property) 
For the error er := Uh - ur there holds: Illerllll:::; cm-l/4h-llle~llo. 
Proof. 
Applying m damped Jacobi-steps to e~ = Uh - u~ yields 

er = (h - whAh)me~ . 

A l/2( A )m 0 h h -Wh h eh 
-1/4Al/4 1/4Al/4(J _ A )mA-1/4A1/4 0 Wh h Wh h h Wh h h h eh 

(36) 

IIIA~/2erII16 < W~1/211IA~/4w~/4A~/4(h - WhAh)m A~1/4111611IA~/4e~1116 

< clll(WhAh)1/4(h - whAh)mII1611IA~/4e~1116, 

respectively, Illerllli:::; clll(WhAh)1/4(h - whAh)mII1611Ie~llli/2 . 

By standard arguments for positive definite operators (see, e.g., [1]) we get 

(37) 
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The main work was already done in the preceding section, by proving Lemma 
3. Now we show the appropriate approximation property following the ideas of 
Brenner [2]. The main difference is that the evaluation for the quadrilateral case 
is done without using explicitely that the finite elements are divergence-free in a 
pointwise sense (which they are not). Since in the 2-level iteration the correction 
equation is solved exactly, the coarse grid solution U2h := u~h satisfies: 

A-I A-I[I2h( Am)] A- II 2h A m p2h m U2h = 2h g2h = 2h h gh - hUh = 2h h heh = h eh . (38) 

Then, for the proof we require the following assumptions on Igh : 

Condition I 

2) :JIIh/2h : V(O) nH2(O) ----7 H~/2h ,V(O) = {v E HMo): V·v = O}: 

Ilv - IIh/2h vila + hllv - IIh/2h vllh/2h < ch211v112' 't:/v E V(O) n H2(O) , 

IIIIh V - IghII2h vila + hllIIh v - IghII2h vllh ::; ch211v112' 't:/ v E V(O) n H2(O) . 

Lemma 6 (Approximation property) 
There holds for Vh E H~ and Vh = (h - IghP~h)vh E H~ , with condition I: 

We can sum up both lemmas in the following Theorem. 

Theorem 1 (Convergence of the 2-1evel scheme) 
Let e;:'+l be the error after one 2-level step with m damped Jacobi-smoothing steps 
from an initial error e~ . Using the grid transfer routines Igh , fulfilling condition 
I, we obtain the error reduction, with e(m) := m- I / 4 , 

In the following we will construct transfer operators Igh : Hgh ----7 H~ satisfying 
condition 1. The first, a natural choice, analogous to scalar nonconforming finite 
elements (see [3],[7]), is the L2-projection 1;( from Hgh into H~ with 

(39) 

In matrix-vector notation with coefficient vectors X 2h and Xh = 1;( X 2h we get 

M (i,j) _ (i,d j,d) h,h - v h ,vh 
N(i,j) _ (i,d j,d) h,2h - v h ,v2h , 

where Mh,h is the mass matrix on level h , and Nh,2h the transfer matrix. 

Lemma 7 The transfer operator I~h = 1;( satisfies condition I . 

(40) 
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The problem with this transfer operator lies in the fact that the mass matrix cor­
responds to a second order problem, and the part for the streamfunction values 
is equivalent to a conformingly discretized Laplacian operator (see (16)). Conse­
quently, we need fast Poisson-solvers for each prolongation and restriction, typi­
cally a second (standard) multigrid algorithm. However, even with fast Poisson­
solvers the numerical amount is very large. This led us to look for simpler transfer 
operators for which one obtains the same convergence rates with much less numer­
ical amount. For this we present two operators which work on the macro elements 
of level 2h , interpolating directly into the divergence-free subspace. Then, the 
problem is to show that the approximation properties are sufficiently good. Con­
sider the following macro element with streamfunction values 1}J i and tangential 
components Utj . One regular refinement leads to Figure 2. We have to define five 

U ts 1/;3 
I 

Uts Utg 

I 

FIGURE 2: Macro and refined elements 

new streamfunction values at the vertices, and tangential components on all new 
edges. In vertices belonging to the macro triangulation the values are preserved. 

The macro elementwise interpolation algorithm 

(a). Transfer the divergence-free coefficient vector (1}J 2h, U t2h) into the primitive 
coefficient vector (U2h , V2h ) . 

(b). Interpolate "fully" (see below) on the macro elements to get (Uh' Vh) . 

(c). Compute Uth and Unh on all fine grid edges. 

(d). Set 1}J h = 1}J 2h in the macro nodes and calculate in the new vertices the values 
for 1}J h by integrating U nh . 

(e). Take the average for 1}Jh and Uth , which lie on macro edges. 

For the following we denote the "full" interpolation (step b.) of the primitive 
nonconforming finite elements by hh . The problem for the analysis is that the 
values for the inner normal velocities are only implicitely given, while the tangential 
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ones are directly defined. Let us start using the full interpolation for hh , this 
means using linear/rotated bilinear interpolation on each macro element. Then we 
get the following function values (Figure 3) on the new edges (see also [7]). For 

FIGURE 3: Configuration for interpolation 

the trial space H~a) , for instance, we can calculate 

( 41) 

This choice for hh is denoted by Ifh . Another possibility is to use a constant 
interpolation If,. on each macro element, which results in 

(42) 

Before giving some theoretical results we make some remarks concerning an effi­
cient implementation. The procedure 1) - 5), previously described, looks compli­
cated. However, the essential idea is to rewrite this procedure using local matrices, 
resulting in elementwise defined 21 x 8 matrices. This has to be done very carefully, 
but the gain is a discretely divergence-free interpolation operator with numerical 
amount comparable to corresponding operators for scalar Poisson-equations ([6]). 

Lemma 8 The operator I;hL (with Ifh) satisfies both estimates of condition I, 
while the I;t satisfies only the first relation. 

Nevertheless I;hK will be used in our following test calculations, too. Another ap­
proach for developing this operator is the following one. Consider the discretization 
of the generalized Stokes problem with 0: > 0, E: ~ 0 , 

o:u - E:~U + \lp = f, \I·u = o. (43) 

As E: ...... 0 the influence of the Stokes operator weakens, and for E: = 0 we only 
have to solve a linear system with mass matrix Md . Since this matrix is spec­
trally equivalent to a matrix with conformingly discretized Laplacian part (for the 
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streamfunction (16)) it seems to be natural to solve this system using conforming 
multigrid routines. This procedure, however, is exactly the same like the proposed 
one for I;;,K , if for the tangential part on the edges the operator It;, is taken. 

4. Numerical results 

As smoothing operator we restrict ourselves to the Gauf3- Seidel method which has 
the same numerical amount as the Jacobi- iteration on scalar workstations like the 
SUN 4/260 used. The case of the IL U- method is studied in [6] , in which we give an 
overview of renumbering strategies. In the following table we present the number 
of unknowns (NEQ), the convergence rate K, and the efficiency rate { , 

K, = 8 Ir(S) 1/lr(O) I { = _ 1000Ts . (44) 
8NEQ log K, 

Here, r(S) denotes the residue after 8 iterations, and Ts the corresponding time. 
The efficiency rate { measures the time needed to gain one digit per unknown. The 
numbers are generated using an F -cycle, since the V-cycle seems to be unstable 
sometimes, while the W-cycle shows no advantages. As finite element we use the 
space Hh = H~b), and we set m = 2 . We calculate the standard problem of 
the Stokes Driven Cavity on the unit square, with the following coarse grids as 
typical represent ants of possible meshes (see Figure 4) . The finer subdivisions are 

FIGURE 4: Used coarse grids 

achieved by the regular refinement process from the previous section. The tables 
show that the projection method led to very good convergence rates but had the 
largest numerical amount. The constant operator I;;,K led to surprisingly good 

results if the grid was regular. For irregular grids, I;;,K was much less robust than 
I h,L 

2h . 

From these tests we conclude that I;;,L is the best since it satisfied the re­
quirements: Small numerical amount , good convergence rates, robust against grid 
and parameter variations and theoretically analysable. In connection with Gauf3-
Seidel iteration as smoother in our proposed algorithm we seem to have found a 
good candidate as a Black Box solver for linear systems in a fully nonstationary 
Navier- Stokes code, as can be seen in [6],[7]. 
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TABLE 1: Rates for Stokes Driven Cavity 

K, , 
Grid I 3201 12545 49665 3201 12545 49665 

I n,1\. 
2h 0.193 0.210 0.298 0.597 0.612 0.840 
In,L 

2h. 0.104 0.092 0.106 0.622 0.548 0.619 
In,l:' 

2h 0.066 0.058 0.050 1.080 1.010 1.250 

Grid II 2417 9441 37313 2417 9441 37313 
I n,1\. 

2h 0.356 0.379 0.440 0.856 0.947 1.200 
In,L 

2h 0.136 0.143 0.143 0.605 0.667 0.792 
In,l:' 

2h 0.175 0.196 0.220 1.880 1.940 2.890 

Grid III 2433 9473 37377 2433 9473 37377 
I n,1\. 

2h 0.286 0.321 0.545 0.811 0.998 1.950 
In,L 

2h 0.175 0.193 0.211 0.964 1.100 1.200 
In,l:' 

2h 0.151 0.184 0.210 3.660 3.980 5.250 
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Grid-independent Convergence 
Based on Preconditioning 
Techniques 
A. van der Ploeg, E.F.F. Botta and F. W. Wubs1 

1 Introduction 

Today numerical calculations are no longer restricted to a class of simple prob­
lems, but cope with complicated simulations and complex geometries. In many 
situations the accuracy of the numerical solution is determined by the limited 
amount of computer power and memory. Therefore much attention has been given 
to the development of numerical methods for solving the large sparse system of 
equations Ax = b obtained by discretising some partial differential equation. Since 
direct methods require much computer storage and CPU-time, a large variety of 
iterative methods has been derived. In this paper we will focus on iterative meth­
ods like MICCG and algebraic multigrid. Gustafsson [1] has shown that for several 
problems the CPU-time using MICCG is O(N5/4) in 2 dimensions and O(N7/6) 
for 3D-problems, where N is the total number of unknowns. Multigrid methods 
perform even better and for a large class of problems they have an optimal or­
der of convergence: the amount of work and storage is proportial to the number 
of unknowns N. However, due to the required proper smoothers and the restric­
tion and prolongation operators at each level, the implementation of multigrid for 
practical problems is much more complicated than that of MICCG. Here we look 
for a combination of these properties: an incomplete LU-decomposition such that 
the preconditioned system can be solved with the optimal computational com­
plexity O(N) by a conjugate gradient-like method. The basic idea behind this 
preconditioning technique is the same as in multigrid methods. In Section 2 a pre­
conditioning technique is described which uses a partition of the unknowns based 
on the sequence of grids in multigrid. After a renumbering of the unknowns ac­
cording to this partition, Land U are obtained from an incomplete decomposition 
based on a drop tolerance [2]. The construction of Land U makes no restriction 
with respect to the sparsity pattern of A and the computational complexity for 

lUniversity of Groningen, Department of mathematics, P.O. Box 800, 9700 AV 
Groningen 
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the building of the incomplete decomposition is O(N). 
In Section 3 results are presented from the above method applied to some represen­
tative test problems described in the literature. These results show the robustness 
of the method. A comparison with some existing techniques is given in Section 4. 

2 The preconditioning technique 

Before an incomplete decomposition of A is made, a renumbering of the unknowns 
based on the multigrid idea is performed. Consider a sequence of nested grids 
0 1, O2 , ... ,0,, where 0, c 0,-1'" CO l . If all grids are uniform Om has mesh 
size 2m - 1 h, where h is the mesh size of the finest grid 0]. The set of unknowns at 
the m-th level is now defined by W m = Om \Om+1, where 0,+1 = 0. For Dirichlet 
boundary conditions and a lexicographical numbering within the levels, we obtain 
for the inner grid points of a uniform rectangular 8 x 8 grid: 

1 2 3 4 5 6 
7 28 8 29 9 30 
10 11 12 13 14 15 
16 31 17 36 18 32 
19 20 21 22 23 24 
25 33 26 34 27 35 

The points with numbers 1 to 27 belong to the first level WI. Similarly the two sets 
of points 28 to 35 and 36 belong to W 2 and W3 respectively. In [3] an algorithm 
for the generation of such a numbering is given in the more general case where 
the mesh is not uniform. Numbering the unknowns as described above results in 
a system of linear equations which can be written as 

where Xl is the vector containing the unknowns of the first level WI and X2 those 
of the second grid O2 . This partitioning of the matrix can be repeated for the 
matrix in the lower-right corner until we arrive at the coarsest grid. 
The preconditioning technique consists now of making a splitting A = LU + 
R in which the elements rij all satisfy Irij I :S Gij. Herein Gij represents a drop 
tolerance which should be chosen carefully in order to obtain a proper incomplete 
decomposition of A. We will show that it is advantageous to choose this drop 
tolerance small for the block in the lower-right corner. Suppose that Gij can be 
chosen such that LU has the block structure 

] [ o 
A22 - A21U-1L-1A12 ] [ ~ (1) 
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This implies that the residual matrix R has the block structure 

The vector Rx only contains components of the first level. With this type of pre­
conditioner all low-frequency errors are eliminated immediately and the iterative 
method only has to remove high-frequency errors with a wavelength in the order of 
the mesh size. In [3] it is shown that for a discretised Laplace operator the choice 
(1) leads to a preconditioned matrix with a condition number which is bounded 
by 2. Of course it is not realistic to use (1) as a preconditioner, since this requires 
the inverse of the block A22 - A21 U- 1 L -1 A l2 , but it is possible to choose Eij such 
that one obtains a residual matrix with small elements Tij in the lower-right corner 
and a limited amount of fill-in. 

I---' 

t::: 
I---' 
V-

E(m-l) elm) I---' , V-
I---' 
I---' 
V-
V-

elm) elm) V . V-

111111111l/ II 

FIGURE 1: The drop tolerance for isotropic problems. 

In the following we describe our choice for Eij' Suppose that A is obtained from 
a standard discretisation of a Poisson equation in two dimensions on a uniform 
rectangular grid. After a renumbering of the unknowns, as mentioned before, we 
consider the corresponding block partitioning of the matrix A. The drop tolerance 
Eij is kept constant within each of the diagonal blocks and starting with E = E(1) in 
the first diagonal block, corresponding with level WI, we let the drop tolerance de­
crease by multiplying with a factor e < 1 at each new level. In the lower-triangular 
part Eij is chosen equal to Eii and in the upper-triangular part it follows from 
symmetry. Fig. 1 shows the drop tolerance near the diagonal blocks corresponding 
with Wrn - 1 and Wrn . Herein E(rn) = eE(m-l) = ern-IE(!). For most problems the 
choice of E(1) and e is not very critical. In 2D-problems e = 0.2 is a reasonable 
choice, but in 3D-problems the optimal value for e is smaller. The above choice can 
also be used very well for different mesh sizes hand k in horizontal and vertical 
direction, respectively, as long as hand k have the same order of magnitude. In 
[3] it is shown that when h « k or k « h it is much better to choose Eij as 

(2) 
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where Pij is the distance between the two grid points with numbers i and j, and c 
is a parameter which must be chosen in advance (the numerical experiments will 
demonstrate that good results are obtained with c ~ 0.2). When a non-uniform 
grid is used, the drop tolerance can be adapted to the local mesh size [3]. 

3 Numerical experiments 

In order to demonstrate the preconditioning technique described in the previous 
section, we show the results of 3 different situations. Example 3 was taken from 
[4]. All numerical experiments have been carried out in double precision on an 
HP -720 workstation and with the iterative method applied On the preconditioned 
system L-1AU-1x = L-1b, where x = Ux. In all cases, the initial solution was 
some random vector. 
It appeared to be advantageous to number the unknowns in the separate groups 
according to a red-black ordering. This numbering has also the advantage that the 
resulting method can be implemented more efficiently on supercomputers. This 
meanS that the best ordering for scalar computers is also optimal for vector and 
parallel computers. When the sparsity pattern of the factors Land U is chosen 
such that all elements of the residual matrix are in absolute value smaller than c, 
this is indicated with ILU(c) or MILU(c). When the technique described in the 
previous section is used this is indicated with NGIC(c) or NGILU(c) were NGIC 
stands for Nested Grids Incomplete Choleski. When NGIC(c) is combined with the 
conjugate gradient method, this is indicated with NGICCG(c). In all examples the 
parameter c was chosen equal to 0.2. 
When the sparsity pattern of the matrix L + U is taken the same as that of A, 
this is indicated with the word standard. The efficient Eisenstat implementation 
[5] was used whenever it was possible. 

Example 1. The first example shows the results of solving a Poisson equation 
On the unit square [0,1] x [0,1] with Neumann boundary conditions everywhere, 
discretised on a uniform grid. This problem is of interest for calculating the pressure 
in an incompressible fluid. Since the level of the solution is not fixed, the coefficient 
matrix is singular. Therefore, the conjugate gradient method is implemented as 
described in [6]. Fig. 2 shows the number of flops per unknown necessary for the 
conjugate gradient method to fulfil the stopping criterion 

IlL -l(b - AU-1xn )112 < 1O-61IL-1(b - AU-1xO)112 

versus the number of unknowns. In order to improve the efficiency of MICCG we 
applied small perturbations of the main diagonal: before the modified incomplete 
Choleski-decomposition was made all diagonal elements were multiplied with a 
factor 1 + lOh2 . These perturbations decrease the number of MICCG-iterations 
considerably. The results of Fig. 2 clearly show the effect of choosing different 
incomplete Choleski-decompositions. With standard ICCG the number of flops per 
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FIGURE 2: Numerical results for a discretised Poisson problem. 

unknown grows very strongly with the number of unknowns. Standard MICCG 
performs much better but the amount of work per unknown still grows with mesh­
refinement. With NGICCG as described in Section 2, the number of flops per 
unknown is approximately constant. 
Fig. 3 gives an impression of the sparsity pattern of L+ LT in case of 100 unknowns. 
The size of a dot represents the absolute value of the corresponding matrix entry. 

Example 2. Our second example is the discretised convection-diffusion equation 

-/:).u(x, y) + 104 {(i - x)3 :x u(x, y) + (i - y)3 :y u(x, y)} = f(x, y) 

on the square [0,1] x [0,1] with Neumann boundary conditions everywhere. For 
the discretisation we used a rectangular grid with constant mesh size l/(M - 1) 
in both directions and central differences for all derivatives. The coefficient matrix 
is not necessarily an M-matrix, because the mesh-Peclet numbers can be larger 
than 2. Since the system is non-symmetric, it was solved with preconditioned Bi­
CGSTAB with the same stopping criterion as in Example 1. We have compared the 
preconditioning of standard ILU with NGILU(0.2). The results are summarised in 
Fig. 4 giving the number of flops per unknown against the number of unknowns. 
The results of the standard MILU-preconditioning cannot be shown because even 
for M = 256 (~ 0.65 X 105 unknowns) the construction of the incomplete factori­
sation breaks down due to the generation of small elements on the main diagonal. 
For M = 512 (~2.62 x 105 unknowns) the construction of the MILU-factorisation 
can be completed and leads combined with Bi-CGSTAB to 49 iterations and ap­
proximately 2150 flops per unknown. 
We observed that the convergence behaviour of Bi-CGSTAB with standard ILU 
as preconditioner was very irregular, whereas with NGILU(0.2) this behaviour is 
much smoother. In case of a very irregular convergence behaviour the accuracy of 
the calculated solution may be spoiled by cancellation effects ([4]). Indeed, when 
using standard IL U, the 2-norm of the real residual was about 100 times larger 
than the 2-norm of the calculated residual on which the stopping criterion was 
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FIGURE 3: Sparsity pattern of L + LT 

based. When using NGILU(0.2) both norms were approximately the same. 

Example 3. The following test problem is a simplified aquifer problem and is 
taken from [4]. The non-symmetric system of linear equations stems from discreti­
sation of the convection-diffusion equation 

on the square [0,1] x [0,1]. The diffusion coefficient function A is given in Fig. 5 in 
which the dashed area indicates the region in which A = 10000. Further F(x, y) = 0 
everywhere, except for the small square in the center, where F(x, y) = 100. We 
have Dirichlet boundary conditions along all boundaries as shown in Fig. 5. The 
partial differential equation was discretised on a rectangular grid with mesh size 
1/ M, and central differences for all derivatives. Fig. 6 shows the number of flops per 
unknown necessary for Bi-CGSTAB versus the number of unknowns. As stopping 
criterion for the iteration we used 

Again the standard MILU-factorisation breaks down and therefore no results for 
this preconditioning technique can be shown. With MILU(0.02) the construction 
of the preconditioner does not break down. The results of Fig. 6 clearly show the 
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FIGURE 4: Number of flops per unknown for example 2 on various grids. 
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FIGURE 5: The diffusion coefficient for example 3. 
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FIGURE 6: Numerical results for example 3. 
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effect of the choice of the preconditioner. With standard ILU and with MILU(0.02) 
the number of flops per unknown increases very strongly with mesh-refinement, 
whereas with NGILU(0.2) the amount of work per unknown is approximately 
constant. When the mesh size was 1/320 in both directions, the average number of 
entries in one row of the matrix L + U was 12.4, and not more than 11 iterations 
of Bi-CGSTAB were necessary in order to fulfil the stopping criterion. 
Fig. 7 shows the convergence behaviour of preconditioned Bi-CGSTAB when the 
mesh size was 1/200, and we note the relatively smooth convergence behaviour of 
the iterative method combined with NGILU(0.2). 

-100 2000 

I-standard ILU 

II-MILU(0.02) 

III-NGILU(0.2) 

6000 10000 14000 
Number of flops per unknown 

FIGURE 7: Convergence behaviour of Bi-CGSTAB for example 3 on a 201 x 201-
grid. 

4 Comparison with other techniques 

In this section we take a closer look at the condition number of the preconditioned 
matrix in case the coefficient matrix A stems from a standard discretisation of 
a Poisson equation on a rectangular grid with constant mesh size h. We want to 
construct an incomplete Choleski-decomposition of A such that the preconditioned 
matrix L -1 AL -T has a condition number as small as possible. Although we only 
consider the case of A being symmetric and positive (semi-)definite, the results of 
Section 3 show that the preconditioning technique is of interest for a much broader 
class of problems. 
We will see that for a certain choice of the drop tolerance parameter Cij the condi­
tion number of L -1 AL -T grows with the mesh size h as O(h-a.) with 0: < ! and 
that this particular choice of Cij is far from optimal. In [3] it is shown that even if 
the largest part of L is chosen very sparse, we still can construct a preconditioner 
for which cond(L -1 AL -T)::; 2. The grid points are divided into 4 parts: the red 
and black points of the first level, and the red and black points of the second level. 
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For example: 
* 0 * 0 * 0 * 0 * 0 
0*0 • 0 * 0 .0* 
* 0 * 0 * 0 * 0 * 0 
o • 0 * 0 • 0 * 0 • 
* 0 * 0 * 0 * 0 * 0 
0*0 • 0 * 0 .0* 

The points are numbered in the sequence '0','*', '.', '*'. Suppose that the main 
diagonal of A is scaled to unity, then according to this partition, A has the block 
structure 

(3) 

where A;; = Aji and Ij is an identity matrix. We want to make a complete 
Choleski-decomposition LLT of the matrix A - R, such that L is sparse. The 
residual matrix R is taken so small that LLT resembles A. We consider a choice 
of LLT which leads to a residual matrix with the block structure 

[ 

0 0 

R = 0 R22 
o 0 
o 0 

o 
o 

R33 

o Ll 
After eliminating all 'o'-points we obtain the Schur-complement 

-A21A13 

h - A 31 A 13 

-A41 A 13 

(4) 

By lumping all off-diagonal elements onto the diagonal, the first diagonal block 
12 - A21A12 is approximated by the diagonal D2 = ~I2. This implies that R22 = 
~h - A21A12 with row suins zero. We continue in this manner by eliminating all 
'*'-points and by approximating the block in the upper-left corner by D3 = ~h. 
One can show that this leads to the block R33 = ~ h - 2A31A12A21A13 of the 
residual matrix. After eliminating all '.'-points it follows that R44 is the residual 
matrix in the approximation of the Schur-complement 

54 = ~h - 2A41A12A21A14 - 8A41A13A31A14 

It can be shown that this block is a sparse M-matrix with a nine-point stencil. 
One way to proceed is to make a block decomposition of 54 in the same way as in 
(3), and then make an incomplete decomposition as described above for A. This is 
exactly the nested recursive two-level factorisation method described by Axelsson 
and Eijkhout in [7]. They prove that if the incomplete Choleski-decomposition is 
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made in this way, the condition number of L -1 AL -T grows with the mesh size h 
as O(h- O.69 ). 

The so-called RRB-method described by Brand in [8] follows the same strategy for 
the first 2 log M levels. When the level number exceeds 2 log M the drop tolerance 
is set to zero. In [8] it is proven that when A stems from the discretisation of 
a Poisson equation on a uniform rectangular grid with Dirichlet boundary con­
ditions, this strategy results in an incomplete Choleski-decomposition such that 
the condition number of L -1 AL - T grows with the mesh size h as O(h-a), with 
ex < ~. With this preconditioning technique one does not obtain grid-independent 
convergence. In [7] the nested two-level factorisation method is combined with 
nested polynomial approximations in order to obtain a method of optimal order of 
computational complexity. In this paper, we follow a different approach: we make 
a more accurate incomplete Choleski-decomposition of S4 by choosing a smaller 
drop-tolerance during the construction of an MIC-decomposition of S4 as described 
in Section 2. 

Numerical verification of the condition number. 
To obtain insight in the condition number of L - 1 AL -T we have computed the 
maximum eigenvalue of this matrix, which is equal to the spectral condition num­
ber, by an iterative method. The coefficient matrix results from a standard five­
point discretisation of the Poisson equation on a rectangular grid with constant 
mesh size l/(M + 1), hence A has dimension M2. We have used Dirichlet boundary 
conditions everywhere. At every new level the drop tolerance E is decreased by mul­
tiplying with a factor c = 0.2. The results are summarised in Fig. 8 which shows 
the computed largest eigenvalue versus M. For comparison we also give the results 
of the RRB-method described in [8]. From these results we conclude that with 

6.---__ --~--~--~-

I·RRB 
II-NGIC(0.2) 

5 IIl-NGIC(O.1) 

III 

00 600 

FIGURE 8: Condition number of L - 1 AL -T versus M. 

the RRB-method the condition number of L -1 AL -T increases only very slightly 
with mesh-refinement. With NGIC(0.2) and NGIC(O.l) the results are even bet­
ter: the condition number hardly increases with mesh-refinement. When we choose 
a smaller value for the parameter c, the condition number of L - 1 AL -T appears 
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to be bounded by 2. Table 1 shows a number of calculated largest eigenvalues 
of L -1 AL -T for RRB and for NGIC with some choices of E and c. The average 
number of entries in one row of L is given in brackets. Remark that when c = 0.1 

TABLE 1: Calculated condition numbers of L-1AL-T . 

M RRB NGIC NGIC NGIC 
E = c = 0.2 E = 0.1, c = 0.2 E = 0.2, c = 0.1 

32 2.39{5.0) 1.990{5.2) 1.577{6.9) 1.98992{6.4) 
64 3.00{5.1) 2.162{5.5) 1.762{7.5) 1.99753{7.1) 
128 3.73{5.2) 2.378{5.7) 1.898{7.8) 1.99939{7.7) 
256 4.63{5.2) 2.532{5.9) 1.990{8.0) 2.000{8.1) 
512 5.73{5.2) 2.647{6.0) 2.057{8.2) 2.000{8.3) 

and E = 0.2 the difference between 2 and the largest eigenvalue behaves like O{h2 ). 

From the difference between the last two columns of this table we conclude that 
the choice of the parameters E and c is not very critical. 

5 Conclusions and discussion 

In this paper, a new preconditioning technique is described which shows grid­
independent convergence when combined with any conjugate gradient-like method. 
This technique is relatively easy to implement: we only have to make an incomplete 
LV-decomposition of A. Essential in the method is the choice of a drop tolerance 
controlling the size of R = A - LU and the ordering of the unknowns. The ordering 
is similar to that in multigrid approaches and makes it possible to construct an in­
complete LV-decomposition which can be used in eliminating effectively both high­
and low-frequency errors. The method is demonstrated for a Poisson equation, a 
convection-diffusion equation and an aquifer problem. In all cases, the method is 
much cheaper than standard {M)ICCG. This difference is more pronounced for 
the really difficult problems and increases with the dimension. The convergence 
behaviour is, in contrast to that of standard {M)ICCG, always smooth, which is 
advantageous for the construction of stopping criteria when the linear solver is 
used as an inner-iteration method within some inexact Newton method. 
The computational work consists of three parts: the construction of the precondi­
tioning matrix, its application, and the number of iterations. From the numerical 
experiments we conclude that the construction of the preconditioner grows lin­
early with the number of unknowns. Its application is linear with the fill-in. This 
fill-in is about a factor two larger than that of A, which is modest and comparable 
to that of a standard ILV-decomposition. With the present method an iteration 
step is significantly cheaper than one multigrid step, due to additional smooth­
ing operations needed in the latter method. Some preliminary results show that 
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the number of iterations is comparable and hence the computational work of the 
present method is less than that of multigrid. 
In our view, the results in this paper show the potential of the introduced method. 
Of course, more analysis (e.g. rigourous convergence proof) and further optimisa­
tion (e.g. choice of the drop tolerance and ordering of the unknowns) is needed. 
Moreover, implementations on modern computers which exploit the parallelism 
present in the algorithm must be studied. A different topic is the application of 
these ideas to problems which are far from elliptic, such as the Navier-Stokes 
equations. Research on these subjects is in progress. 
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A New Residual Smoothing 
Method for Multigrid 
Acceleration Applied to the 
Navier-Stokes Equations 

Zhong Wen Zhu, Chris Lacor and Charles 
HirschI 

ABSTRACT A new residual smoothing method, based on a decomposition into for­
ward and backward sweeping steps, is investigated by means of a Fourier analysis on 
the two-dimensional convection-diffusion equation. Both central and upwind space 
discretizations are considered together with explicit multi-stage Runge-Kutta time­
stepping. The Fourier analysis shows improved high-frequency-damping, which 
plays an important role in the multigrid acceleration. The numerical results of 
2D flat plate laminar flow calculations confirm the efficiency of the new residual 
smoothing approach 

1 Introduction 

Explicit multi-stage time stepping schemes are widely applied to the Euler IN avier­
Stokes equation solvers because of their simplicity [1],[2],[3]. In order to obtain fast 
convergence with a high CFL number, the implicit residual smoothing approach 
with a central form was introduced by Jameson et al [4] in early 1980's. Later, 
several authors [5],[6],[7] slightly adapted the residual smoothing strategy in order 
to deal with high-aspect-ratio meshes in viscous calculations. In 1991, Blazek et al 
[8] proposed an upwind-biased residual smoothing method which shows improved 
high-frequency-damping if combined with upwind schemes for hypersonic flow. The 
drawback seems to be an increased complexity and computational effort because 
the smoothed residual is based on the characteristic variables. In addition, since 
both of methods require the solution of tri-diagonal systems, they are difficult to 
vectorize. 

A new approach, defined as a forward-backward residual smoothing, was pro-

IDepartment of Fluid Mechanics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brus­
sels, Belgium 
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posed by Zhu, Lacor and Hirsch [9] recently. It can be combined with either 
central or upwind schemes. The one-dimensional Fourier analysis shows that it 
offers improved smoothing properties for all the frequencies and that it is also 
computationally more efficient since it vectorizes completely. The application of 
the forward-backward residual smoothing to the two-dimensional Navier-Stokes 
equations is investigated in detail in this pap~r. In the viscous calculation, the 
high-aspect-ratio meshes can not be avoided near the wall. The effect of the high­
aspect-ratio on the convergence is studied by means of a Fourier analysis on the 
two-dimensional convection diffusion equation. Both central and upwind space dis­
cretizations are considered together with explicit multi-stage Runge-Kutta time­
stepping. The analysis shows that the smoothing properties can be improved by 
implicit residual smoothing for reasonable aspect-ratios. In this case the forward­
backward residual smoothing shows better smoothing properties than previous 
residual smoothing approaches. Finally, the 2D flat plate laminar flow test case is 
selected to confirm the efficiency of the new approach. 

2 Two Dimensional Model Problem 

Consider the following linear, scalar, two-dimensional convection-diffusion equa­
tion 

(1) 

where a, b, a 2 o. The convective term can be represented in the Ii form as follows: 

uxLlx = 8;; Ui,j = (Ui,j - Ui-1,j) + 'lj; [1 ~ Ii (Ui,j - 2Ui-1,j + Ui-2,j)+ 

--(U"+l " - 2u" " + U"-l ") 1 + Ii ] 
4 ',J ',J ',J (2) 

(u" " - U" "-I) + .1. --(U" " - 2u" "-I + U" "-2)+ [
1 - Ii 

'I-,J 'I-,J 0/ 4 'I.,J 2,J 2,J 

--(U" "+1 - 2u" "+ U" "-I) 1 + Ii ] 
4 2,J 't,J 't,) (3) 

where 'lj; = 0 for a first order upwind scheme. For 'lj; = 1, the parameter Ii controls 
the upwind biasing which yields different schemes for the following values of Ii: -1 
(second-order upwind), 0 (Fromm scheme), 1/3 (third-order accurate), 1/2 (Quick 
scheme). When Ii = 1, the central scheme is recovered and the following artificial 
viscosity should be added for stability. 

(4) 



18. A New Residual Smoothing Method 347 

where JL is the artificial viscosity coefficient. The viscous terms in equation (1) are 
discretized in a central form: 

UH1,j - 2Ui,j + Ui-1,j 

Uyy i1y2 (j~Ui,j Ui,j+! - 2Ui,j + Ui,j-1 

After introducing the following parameters: 

b 
() == -, 

a 

i1x 
i1y' 

the semi-discretized equation in time is given as 

i1t dUi,j _ R· . - R av = 0 
dt t,) t,) 

1 

Re 
a 

ai1x 

(5) 

(6) 

(7) 

where Ri,j is the residual of the physical flux and Ri.j is the residual of the artificial 
viscosity which corresponds only to the central scheme. It is zero for K, #1. They 
have the following forms: 

R· t,) 
(8) 

Ri,j -(]"xJL({j~ + ()A{j~)ui,j 
After applying the m-stage explicit time-stepping to equation (8), one obtains 

[0] n U . u· . 
t,) t,) 

[1] ul~] + a1 [Ri,j + Rf,j] u· . 
t,) 

[2] ul~] + a2 [Ri,j + Rf,j] U . 
2,) 

[k] ul~] + ak [Ri,j + Rf,j] 
(9) 

U . 
t,) 

[m] ufO] + am[Ri j + Rav] U . 
t,) ~,J ,t,J 

un+! [m] 
u· . 

t,) t,) 

where aj is the multi-stage time-stepping coefficient of stage j. Then the amplifi­
cation factor can be written by 

(10) 

where u denotes the amplitude of Fourier symbol u, z is the Fourier symbol of 
the residual, and (3i = a ma m-1··· a m-i-1. m is the number of the explicit time­
stepping stages. 
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3 Forward-Backward Residual Smoothing 

ONE-DIMENSIONAL SMOOTHING MODEL 

The forward-backward residual smoothing approach called hereafter FB-RS was 
proposed in [9]. For one-dimensional problems, it is defined by 

(11) 

where E f' Eb are forward or backward smoothing parameters, and 8-,8+ are for­
ward or backward operators respectively. It contains both central (C-RS, Ef = Eb) 

and upwind residual smoothing methods (U-RS, Eb = 0). According to the one­
dimensional analysis, the stability region of FB-RS is shown in figs. 1 and 2. 

fb 

1 :.".'"~ 
Fig. 1 Stability limit for central schemes Fig. 2 Stability limit for upwind schemes 

The maximum ratio of the CFL numbers of the smoothed to unsmoothed multi­
stage scheme was estimated for central schemes as 

u* 
= 1 + Ef + Eb (12) 

and for upwind schemes: 

(13) 

The relation between two parameters (E f' Eb) decides the effect of the implicit resid­
ual smoothing. Theoretically, it should be taken according to the high-frequency­
damping properties of the smoothed scheme. Since it seems difficult to find an 
analytical relation, even from the one dimensional linear equation, the following 
simple linear relation is assumed. 

(14) 

where 0 S Gfb S 1. In addition, relation (12) can replace relation (13) for simplic­
ity, since it is more severe. For all the schemes (central, 1st-order and 2nd-order 
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upwind), the FB-RS will be given by: 

(15) 

TWO-DIMENSIONAL SMOOTHING MODEL 

For two-dimensional problems, several sweeping forms are proposed in [9]. Here 
only Alternative Direction Residual Smoothing is selected since it will be imple­
mented in the 3D code which also allows to run 2D testcases. 

where 10 fx, cbx, 10 fy, Cby are smoothing parameters. Ri,j is the smoothed residual. 
The Fourier symbol of the smoothed residual can be described as: 

Z 
ZR = 

with 

Zp,x 1 + 10 fb,x(1 - cos cPx) + I'f/fb,x sin cPx 

Zp,y 1 + 10 fb,y(1 - cos cPy) + I'f/fb,y sin cPy 

where I = A, cPx, cPy is a phase angle, and 

Cfb,x 

Cfb,y 

10 J,x + lOb, x + 210 f,xcb,x 'f/fb,x = 10 J,x - cb,x 

10 J,y + Cb,y + 210 f,yCb,y 'f/fb,y = 10 f,y - Cb,y 

FOURIER ANALYSIS OF HIGH-FREQUENCY-DAMPING 

(17) 

(18) 

Referring to equation (10), the stability region of the multi-stage schemes can 
be drawn in the complex plane (shown fig. 3). The Fourier symbol of smoothed 
residual ZR should be inside this region to make the scheme stable. Further when 
the Fourier symbol of the residual in the high frequency region (see fig. 4) is taken 
as Z H F, better smoothing properties can be obtained if G (z H F) is less than a small 
constant value. 
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Fig. 3 Stablity limit of time-stepping Fig. 4 Two-dimensional high frequency region 

2D Convection Equation 

The residual of the 2D convection equation (1/ Re=O.O) can be written as (see 
equation (8)): 

(19) 

For the second-order upwind scheme (1/J=I, ~=-1), the Fourier symbol of the 
un smoothed residual is: 

Re(z) 

Im(z) 

-o"x[(1- cos <Px)2 + 8>'(1 - cos <py)2] 

-ax [sin <Px(2 - cos<Px) + 8>' sin <py(2 - cos <py)] 
(20) 

If the high frequency point (<Px = <Py = 7r) is considered, the Fourier symbol of the 
smoothed residual has the following form: 

_ 1 + E f,x + Eb,x * ( ) _ ( ) * ( ) ZR - -( )( )4ax 1+8>' - -f Ef,Eb 4ax 1+8>' 
1 + 2E fb,x 1 + 2E fb,y 

(21) 

where a; is a CFL number of the unsmoothed scheme (see equation (12)). Since 
the function f(E f, Eb) is less than one, then IZRI ::; 4a;(1 + 8>') = 14 If the multi­
stage coefficients are optimized based on the unsmoothed residual z, the residual 
smoothing method will increase the smoothing factor because it makes the real 
part of the residual away from the original optimial value and close to zero. In 
addition, considering E f + Eb=const. (see equation (15)), the maximum of f(E f, Eb) 
is obtained at Eb = 0, while its minimum corresponds to E f = Eb. Hence the 
following relation can be easily found 

(22) 
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It means that U-RS will bring the real part of ZR close to the original optimal value 
and show good high-frequency-damping. C-RS gives the poorest high-frequency­
damping since it brings the real part of the residual to zero. FB-RS is between 
them. Further, under the stability condition, in order to obtain the function f 
as large as possible, the same ratio C fb = cb/ C f should be taken along x- and 
y-direction. 

It should be noted that under certain condition, e.g. flcb=O :2': 1.0, U-RS will 
increase the amplification factor, even cause the scheme unstable since it brings 
the real part of the residual too much to the stability limit. In this case, FB-RS 
exhibits its advantage. For other kinds of schemes, the same conclusion can be 
drawn. 

2D Convection-Diffusion Equation with High-Aspect-Ratio 

In order to numerical simulate boundary layer flow, a mesh with high-aspect-ratio 
has to be used. That is 

Llx = constant, Lly -+ 0 
Llx 

).=--+00 
Lly 

(23) 

Since normally the flow angle is also very small in the boundary, the product (}). 
-+ 0(1). Then the unsmoothed residual becomes (referring to equation (8)): 

and its Fourier symbol is: 

ax 2 2 R i ,)· = --). (j u· . Re y .,) 

Z = -2 ax ).2(1 - coscp ) 
Re Y 

For the m-stage Runge-Kutta scheme, the stability condition is 

0::; IRe(z)1 ::; Csmax Csmax = {max[Re(Cs )]: IG(Cs)1 = I} 

(24) 

(25) 

(26) 

Combining equation (25) and (26), the stability condition for 2D convection­
diffusion equation in the case of high-aspect-ratio is: 

(27) 

when). increases, the CFL number has to be reduced to keep the scheme stable. 

For the high-frequency-damping, since the Fourier symbol of the residual z is 
only function of Cpy, z is always zero in the high frequency region (1f /2 ::; CPx ::; 
1f,cPy=O.). It is impossible to reduce the amplification factor by an implicit residual 
smoothing method. However, for other high frequencies, such as (CPx=O,CPy=1f), 
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the improvement of amplification factor can be obtained. In this case, the Fourier 
symbol of the residual is: 

ZR = _ 40"x ),2 1 
Re 1 + 2cfb,y 

(28) 

From above expression, it is seen that the same or large CFL number can be 
taken in the high-aspect-ratio case with residual smoothing methods. In a similar 
way, the same relation as (22) can be easily derived. The FB-RS can give better 
smoothing properties. 

Numerical Investigation 

In the numerical analysis, the smoothing factor, defined as the maximum of am­
plification factor in the high-frequency region (seeing fig. 4), is used to measure 
the high-frequency-damping. For the FB-RS, the same ratio Cfb = cb/cf is taken 
for both directions according to previous theoretical analysis and numerical calcu­
lation of the smoothing factor. 

The central scheme with 4th-order artificial viscosity is used with five-stage Runge­
Kutta time-stepping and optimal coefficients (1/4, 1/6,3/8, 1/2, 1). The artificial 
viscosity term is re-calculated only at the first two-stages. 

K, = 1, l/Re = 0.0, >. = 1.0, 0"/0"* = 2, J1> = 1/32 

e No-RS C-RS U-RS FB-RS (Cfb,x, Cfb,y) 
1.0 0.8914 0.8724 unstable 0.8137 (0040, 0040) 
0.5 0.8879 0.9144 unstable 0.8716 (0.30, 0.30) 
0.1 0.9770 0.9568 unstable 0.9567 (0.60, 0.60) 

Table 1 Smoothing factor of central scheme with 5-stage Runge-Kutta optimal 
coefficients (0"* = 1.85) 

The smoothing factor ofthe central scheme at 0"/0"* =2.0 with the different residual 
smoothing approaches is shown in the table 1. With the increment of flow angle 
(e), the smoothing factor with C-RS or FB-RS decreases. FB-RS shows better 
smoothing properties than C-RS. U-RS causes the instability of the central scheme. 
At very small flow angle, the smoothing factor is close to one for all the methods. 

The first-order upwind scheme with four-stage Runge-Kutta explicit time-stepping 
is considered first. The optimal coefficients (0.0796, 0.2026, 004285, 1.0) are taken 
from [10]. 
Table 2 shows the comparison of smoothing factor among the different residual 
smoothing methods with the increment of flow angle (e). The smoothing factor of 
upwind scheme with C-RS is reduced by increasing e. The further improvement 
of smoothing properties is obtained by using U-RS instead of C-RS. FB-RS is 
between them. In addition, in the case of e = 0.5,1.0, the smoothing factor with 
C-RS is larger than without residual smoothing, but the smoothing factor with 



18. A New Residual Smoothing Method 353 

'IjJ = 0, l/Re = 0.0, A = 1.0, a/a' = 2 

() No-RS C-RS U-RS FB-RS (Cfb,x, Cfb,y) 
1.0 0.2369 0.5112 0.1560 0.1942 (0.20, 0.20) 
0.5 0.5207 0.5654 0.3533 0.3865 (0.20, 0.20) 
0.1 0.8791 0.7793 0.7730 0.7733 (0.20, 0.20) 

Table 2 Smoothing factor of 1st-order upwind scheme with 4-stage Runge-Kutta 
optimal coefficients (a*=1.29) 

U-RS is even smaller than without residual smoothing. This confirms the previous 
analysis. 

For the second-order upwind scheme, the optimal coefficients (0.0934, 0.2331, 
0.4788, 1.0) are also taken from [lOJ. Based on the table 3, the same conclusion 
as the first-order upwind scheme can be obtained. Again U-RS shows the best 
smoothing properties, and C-RS is the poorest. FB-RS is between them. 

'IjJ = 1, /'i, = -1, l/Re = 0.0, A = 1.0, a/a" = 2 

() No-RS C-RS U-RS FB-RS (Cfb,x, Cfb,y) 
1.0 0.5095 0.7007 0.4768 0.5316 (0.20, 0.20) 
0.5 0.7300 0.7907 0.6717 0.6972 (0.20, 0.20) 
0.1 0.9405 0.9013 0.8905 0.8887 (0.80, 0.80) 

Table 3 Smoothing factor of 2nd-order upwind scheme with 4-stage Runge-Kutta 
optimal coefficients (a*=0.62) 

4 Application to The N avier-Stokes Equations 

The FB-RS approach can be applied to the Navier-Stokes equations after the 
following modifications are made. In order to satisfy the stability condition (c f ~ 
cb), the local smoothing parameters are given according to the sign of velocity. 

1 
"2 {[I + sgn(u()] cft; + [1- sgn(ud] cbd 

1 
"2 {[I - sgn(u()] Cf( + [1 + sgn(u()] cbd 

(29) 

where u( = if· fit; with fit; as a surface normal. It is same for other directions. In 
order to deal with the high-aspect-ratio, Martinelli and Jameson [5] proposed the 
variable coefficient model: 

(30) 
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with 
<p(r) = l+r<:t 

l+r 

where a is a parameter (O~ a ~1), and r is given by 

where if is a velocity vector. 

(31) 

(32) 

The FB-RS approach was developed within the framework of a 3D Multiblock/ 
Multigrid Navier-Stokes solver, called EURANUS (European Aerodynamic Nu­
merical Simulator) [3]. It comprises a variety of upwind/central schemes, and uses 
both explicit solvers and implicit solvers. The multigrid method is the FAS scheme 
and V-, W- or sawtooth-cycles can be chosen. The grid loop is outside the block 
loop, so that all blocks are treated in phase. 

5 Numerical Results and Discussions 

Two-dimensional fiat plate laminar calculation with 49x41x2 mesh points is used 
to illustrate the FB-RS efficiency. The inlet Machnumber, Reynolds number is 0.52 
and 1.0x106 respectively. Both central and upwind schemes are chosen. Conver­
gence is accelerat~d with 3-level V-cycle multigrid and with the FB-RS method. 

20 Flal PI.,. lamlO8l Flow 
.5 meoh ' 49x4Ix2. '-'_0.52. Re- I 000 000 CFL-5 0 

-6.5 -!-~~~::__~____:=:-~~__=' 
O. 1 667. 3333. 5000. 

nG! 

Fig. 5 Central scheme (X-momentum) 

20 Flal PIal. lam.na< FlOW 
1.0 meoh: 49x41x2. '-'_0.52. Ae_I .OOO.OOO CFL-4.0 

\~ · 1.0 
R8$ ••••••.•• ______ 

~ 
·3.0 

MG ,C·RS 

MG. ·RS -
-5.0 !-~-----:--:-'C=__~____:=:-~~~ 

O. 2667. 5333. 8000. 
iter 

Fig. 6 Upwind scheme (X-momentum) 

For the central scheme, artificial viscosity (2nd-order (0.05), 4th-order(0.05)) which 
is only re-calculated at first- and third stage of five stage Runge-Kutta scheme is 
used. The optimal coefficients for the explicit time-stepping are taken from [1]. 
Fig. 5 shows that the number of iterations is reduced around 25% by replacing 
C-RS with FB-RS (Cfb,x = 0.75, Cfb,y = 0.90, referring to equation(15)). 
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;w.[~~~~~'l/fx~~'l,)~ab~~~Re = 1,000,000 
1.20 -r:-:=-'-"'-'-'-=-::'----"~'""'-----"'-'c:..c:..:-"---_, 

20 Flat Plate Laminar FlOw.. 
1.20 mesh: 49x41x2, M = 0.52, Re = 1,000,000 

_ 2nd-STVO _ 2nd·STVO 
A A Blasius A A Blasius 

.80 

Flat Plate Length = 0.5m 

1=20 

.40 

.00107 .00160 
y 

Fig. 7a Numerical solution of fiat plate 
(1=20) 

Vx 

.80 

Flat Plate Length = 0.5m 

1=40 

.40 

.00053 .00107 .00160 

Fig. 7b Numerical solution of fiat plate 
(1=40) 

For the upwind scheme, a new second-order symmetric TVD scheme based on an 
effective ratio is used [11] [12]. The optimal coefficients for the four-stage Runge­
Kutta time-stepping are taken from [10]. Fig. 6 shows that the number of iterations 
is reduced by around 30% with FB-RS (Cjb,x = 0.60, Cjb,y = 0.75) instead of C­
RS. In addition, the high-accuracy solutions are shown in figs. 7a and 7b. 

6 Conclusions 

The application of the forward-backward residual smoothing to the Navier-Stokes 
equations is presented. According to the Fourier analysis of the smoothing model 
on the 2D convection-diffusion equation, it shows the improvement of smoothing 
properties with FB-RS compared to C-RS, U-RS in the case of reasonable aspect 
ratio. The numerical results from 2D flat plate laminar calculation confirm the 
efficiency of the new residual smoothing approach. 

Future work will concentrate on the optimization of the smoothing parameters 
combined with the coefficients of multi-stage Runge-Kutta schemes. 
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