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Preface

This volume contains a selection from the papers presented at the Fourth European
Multigrid Conference, held in Amsterdam, July 6-9, 1993. There were 78 registered
participants from 14 different countries, and 56 presentations were given.

The preceding conferences in this series were held in Cologne (1981, 1985) and
in Bonn (1990). Also at the other side of the Atlantic special multigrid conferences
are held regularly, at intervals of two years, always in Copper Mountain, Colorado,
US. The Sixth Copper Mountain Conference on Multigrid Methods took place
in April, 1993. Circumstances prevented us from putting a larger time interval
between the Copper and Amsterdam meetings. The next European meeting is
planned in 1996, a year later than the next Copper Meeting.

When the first multigrid conference was held in 1981 there was no doubt
about the usefulness of a conference dedicated specially to multigrid, because
multigrid was a new and relatively unexplored subject, still in a pioneering stage,
and pursued by specialists. The past twenty years have shown a rapid growth in
theoretical understanding, useful applications and widespread acceptance of multi-
grid in the applied disciplines. Hence, one might ask whether there is still a need
today for conferences specially dedicated to multigrid. The general consensus is
that the answer is affirmative. New issues have arisen that are best addressed or
need also be addressed from a special multigrid point of view. Most prominent
among these issues are parallel computing, adaptive computations and applica-
tions other than elliptic boundary value problems. Multigrid has much impact on
computational fluid dynamics, but also in other fields profitable use of multilevel
concepts is possible and starts to develop. In fact, in almost all areas in which
intensive computing is a major tool, multilevel principles may bring improvements
or even allow major breakthroughs. Hence, to exchange the experiences special
multigrid conferences will continue to be useful in the foreseeable future.

Exchange of information on multigrid research is further aided by MGNet, in
which papers and software are stored electronically, and may be retrieved by ftp.
MGNet is maintained by C. Douglas of Yale University. Information on MGNet
can be obtained by sending email to mgnet-requests@cs.yale.edu.

The papers in this volume are ordered alphabetically by author. The invited
presentations are followed by a selection of contributed papers. Financial con-
straints put a page limit on this volume. Rather than severely limit the number



viii

of pages available for each contribution, reducing these more or less to technical
abstracts, we preferred to give authors sufficient space to show interesting details,
and to accept the consequence, that not all contributions could find a place in these
pages. We made a selection, and the remaining contributions will be published by
the Centre for Mathematics and Informatics (CWI) in Amsterdam in their CWI
Tract series.

Several trends in the field that are discernible at present, are reflected in the
papers presented at the conference. Maturing parallel computing technology has an
increasing impact on scientific computing. This development is of prime concern
to multigrid practitioners. After all, reduction of computing cost, measured in
various norms, such as financial cost or elapsed wall clock time has from the
start been the most (though not the only) appealing aspect of multigrid from a
practical point of view. The holy grail of “just a few work units” takes on a new
aspect in a parallel computing environment. Similar considerations of cost and
quality lead to adaptive discretisation techniques for those applications that go
beyond the realm of the smooth and continuous, to include sharp-edged features
and discontinuities. Multigrid is especially suited here, because of the possibilities
it offers for a-posteriori error estimation, and hence for the detection of special
structures in solutions. Furthermore, multigrid for unstructured grids is actively
pursued. In three-dimensional domains of complicated shape, unstructured grids
are much more easily generated than structured grids and they give more flexibility
when adapting the grid to the behaviour of the solution. However, there is still
a long way to go before efficiency similar to that obtained for structured grids is
obtained, especially for equations of second order. Algebraic multigrid, in which
no reference is made at all to an underlying grid structure, shows progress, but
also needs to be developed further.

Multigrid has become an indispensible tool in computational fluid dynamics.
Significant new developments are seen in the treatment of evolution and hyper-
bolic problems. Steady progress is being made for the multifarious mathematical
models that play a role in fluid dynamics. But other fields present huge compu-
tational challenges as well. A prime example is quantum chromodynamics. Aided
by multigrid, significant breakthroughs seem in the offing. Another example is tri-
bology, where computational models have improved significantly by application of
multigrid. The reader will find papers about these topics in the present volume.

The conference was made possible by the Centre of Mathematics and Infor-
matics (CWI), Amsterdam, and the University of Amsterdam. Financial support
was provided by Akzo NV, IBM Nederland NV and the Royal Dutch Academy
of Science (KNAW). We are also greatly indebted to Mr Frans Snijders and Ms
Simone van der Wolff for their help in organising the conference in the historic
setting of old Amsterdam.

Amsterdam / Delft, October 1993
P.W. Hemker
P. Wesseling
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On Robust and Adaptive
Multi-Grid Methods

P. Bastian and G. Wittum!

ABSTRACT In the present paper we discuss the development and practical ap-
plication of robust multi-grid methods to solve partial differential equations on
adaptively refined grids. We review several approaches to achieve robust multi-grid
methods and describe two special new strategies for anisotropic and convection
diffusion problems. The performance of these algorithms is investigated for three
selected test problems.

1 Introduction

In the present paper we discuss the development and practical application of ro-
bust multi-grid methods to solve partial differential equations on adaptively re-
fined grids. Since a couple of years multi-grid methods are well established as fast
solvers for large systems of equations arising from the discretization of differen-
tial equations. However, it is still a substantial unresolved question to find robust
methods, working efficiently for large ranges of parameters e.g. in singularly per-
turbed problems. This applies to diffusion-convection-reaction equations, arising
e.g. from modelling of flow through porous media, the basic equations of fluid
mechanics and plate and shell problems from structural mechanics.

Multi-grid methods are known to be of optimal efficiency, i.e. the convergence
rate x does not depend on the dimension of the system, characterized by a stepsize
h. Following [28] we call a multi-grid method robust for a singularly perturbed
problem, if

k(h,e) < ko<1, Ve>0, h>0, (1)

¢ denoting the singular perturbation parameter. Up to now multi-grid methods

satisfying (1) have been studied in the literature only for special model cases using
structured grids, see [25], [26], [15], [27], [28], [29].

!Interdisziplinires Zentrum fiir Wissenschaftliches Rechnen (IWR), Universitit Hei-
delberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Federal Republic of Germany,
email: wittum@iwvr.uni-heidelberg.de
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Problems of the type mentioned, typically show degenerations in hyperplanes.
To resolve these zones special dynamic grid adaptation techniques are necessary.
Here it is necessary to rethink standard multi-grid techniques. In §2 we classify
several multi-grid approaches for adaptively refined grids. On the one hand adap-
tively refined grids can substantially weaken the robustness requirement (1) as
outlined in §3. On the other hand the unstructured grids generated by adaptive
refinement require special numbering techniques so that the smoother does a good
job on the problem. It is the main objective of the present paper to present a
strategy to combine the techniques of robust multi-grid and adaptivity.

The techniques have been implemented within the software package ug, which
will be shortly described in §4. Results of numerical tests for several practical
problems are given in §5.

2 Multi-Grid Strategies

2.1 BAsic MuLTI-GRID TECHNIQUES

Let the linear boundary-value problem

Ku = finQ (2)

u = wupg on 0N

with a differential operator K : U — F between some function spaces be given on
a domain Q C R%. Let (2) be discretized by some local discretization scheme on a
hierarchy of admissible grids (cf. [13])

Q , 1=0,... e (3)
G C 41 C0
We use nested grids only for ease of presentation. Most of the methods discussed

below can readily be applied to general loosely coupled grids violating (3). The
discretized equations on ; are denoted by

Ku = fiinQ, forl=1,... e (4)
U = UupR,; on 89[
with
K :U—-F (5)

Uy, F; denoting the discrete analoga of U and F' with finite dimension n. We assume
that the discretized equations are sparse. Further let some “smoother”
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SliUl—>Ul fOI‘l':O,...,lma,; y (6)

and “grid transfer operators”
Pi—1 :Ul—l _)Ula Ti—1 :F‘l _>-F|l—17 for I = ]-a”'vlmaz ) (7)

be given.

Multi-grid methods are fast solvers for problem (4). We basically distin-
guish between additive and multiplicative multi-grid methods. The multiplicative
method is the well-known classical multi-grid (cf. [12]) as given in algorithm 2.1:

Algorithm 2.1 Multiplicative multi-grid method.
mmgm(l, u, f)
integer [; grid function w, f;
{ grid function v, d; integer j;
if (1=0)u:=K"Ff;

else {
u =8 (u, f);
d:=r1(Kwu— f);
v = 0;

for j:=1 step 1 to v do mmgm(l — 1, v, d);
U= U — P

u:=8%(u, f);

The additive multi-grid method is given by the following algorithm.

Algorithm 2.2 Additive multi-grid method.

amgm(l, u, f)

integer [; grid function v[l], d[l];

{ integer j;
dll] :== Ku — f; v[l] := 0;
for j:=l step -1 to 1 do { d[j — 1] := rj—1d[j]; v[j — 1] :== 0;
for j:=1 step 1 to I do v[j] := S5 (v[j],d[]]);
v[0] := K;'d[0];
for j:=1 step 1 to ! do v[j] :=v[j] + pj—1v[j — 1];
u:=u—vl;

The structure of both algorithms can be seen from Figs. 1(a) and 1(b). The
main difference between these two variants is that in the multiplicative method
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S: Smoother
P D: Defect

R: Restriction
P: Prolongation
+: Sum

FIGURE 1. Outline of the V-cycle multiplicative multigrid algorithm mmgm (a) and of
the additive multigrid algorithm amgm (b).

smoothing and restriction of the defect to the next coarser level are performed
on one level after the other sequentially, while in the additve method smoothing
on the different levels can be performed in parallel. Restriction and prolongation,
however, are sequentially in the additive method too. Usually, the additive methods
are applied as preconditioners, since acceleration methods like cg directly pick an
optimal damping parameter, the multiplicative methods are used as solvers and as
preconditioners. According to [31], these methods can be formulated as additive
Schwarz methods.

Applying multi-grid methods to problems on locally refined grids one has
to think about the basic question, how to associate grid-points with levels in the
multi-grid hierarchy. Consider the hierarchy of grids {€,1 =0,...,lmaz } from (3).
Early multi-grid approaches smooth all points in §2;. This may cause a non-optimal
amount of work and memory of O(nlogn) per multi-grid step. This problem was
the starting point for Yserentant , [32], and Bank-Dupont-Yserentant, [1], to de-
velop the method of hierarchical bases (HB) and the hierarchical basis multi-grid
method (HB/MG). These were the first multi-grid methods with optimal amount
of work per step for locally refined grids. This is due to the fact that on level [ only
the unknowns belonging to points in €; \ ;_; are treated by the smoother. How-
ever, the convergence rate deteriorates with logn. For the first time this problem
was solved by the introduction of the additive method by Bramble, Pasciak and
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TABLE 1. Multi-grid methods for locally refined grids.
basic structure

smoothing pattern "~ additive multiplicative
) HB HBMG
(, ) newl Yserentant, 1984, Bank, Dupont,
points only [32] Yserentant, 1987, [1]
(2) refined ~ BPX . local multi-grid, [20],
. Bramble, Pasciak,
region only Xu, 1989, [§] 9], 5]

parallel multigrid . o
(3) all points Greenbaum, 1986, classical multi-grid,

[11] [10]

Xu, [8], (BPX). There on level [ the smoother treats all the points in € \ ©;_;
and their direct neighbours, i.e. all points within the refined region.

Table 1 gives an overview of the multi-grid methods used for the treatment
of locally refined grids and classifies the variant we call “local multi-grid”. The
methods mentioned above differ in the smoothing pattern, i.e. the choice of grid
points treated by the smoother. The methods in the first two lines are of optimal
complexity for such problems. The amount of work for one step is proportional
to the number of unknowns on the finest grid. However, only the methods in the
second line, BPX and local multi-grid converge independently of A for scalar elliptic
problems. The basic advantage of the multiplicative methods is that they do not
need cg-acceleration and thus can be directly applied to unsymmetric problems,
further they show a better convergence rate and on a serial computer the additive
process does not have any advantage. The local multi-grid scheme is the natural
generalization of the classical multi-grid method to locally refined grids, since in
case of global refinement, it is identical with the standard classical multi-grid
method.

The local multi-grid has first been analyzed in 1991 by Bramble, Pasciak,
Wang and Xu, [9]. They considered it as a multiplicative variant of their so-called
BPX-method, [8]. However, they did not consider robustness. Further there exist
predecessors of this method since a couple of years in some implementations (
pers. communication by J.-F. Ma"«tre and H. Yserentant). Without knowledge of
this, the authors developed this method as a variant of standard multi-grid based
on the idea of robustness (cf. [5]). The main advantage of this approach is that
the application to unsymmetric and non-linear problems is straightforward (cf.
[5]). Robustness for singularly perturbed problems is achieved by combining local
multi-grid with robust smoothers (cf. [5]), as explained in the next section.
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3 Robustness Strategies

3.1 ROBUST SMOOTHING

Already in 1981, Wesseling suggested the first robust multi-grid method for singu-
larly perturbed problems discretized on structured grids [25], [26]. The main idea
is to apply a smoother which solves the limit case exactly. This is possible e.g. for
a convection-diffusion equation using a GauB-Seidel smoother and numbering the
unknowns in convection direction. Wesseling however, suggests to use an incom-
plete LU-smoother, since this handles the convection dominated case as well as
the anisotropic diffusion (cf. [15], [28]). Main ingredients, however, are the use of
structured grids and a lexicographic numbering.

A simple analysis of the hierarchical basis methods (HB, HB/MG) shows
that the smoothing pattern is too poor to allow robust smoothing.

Remark 3.1 The hierarchical basis method and the hierarchical basis multigrid
method do not allow robust smoothing for a convection-diffusion equation. The
smoothing pattern used in these methods does not allow the smoother to be an
exact solver for the limit case. This holds for uniformly as well as for locally
refined grids.

Based on this observation, we extended the smoothing pattern, adding all
neighbours of points in € \ ;_;. This allows the smoother to solve the limit
case exactly, provided the grid refinement is appropriate. This is confirmed by
numerical evidence given in Chapter 5.

Up to now some theory is contained in [28],[29] and the new papers by Steven-
son [21], [22] for uniformly refined grids. This theory shows that the basic require-
ment that the smoother is an exact solver in the limit case is not sufficient to obtain
robustness. Additionally it must be guaranteed that the spectrum of the smoother
is contained in [—9,1] for 0 < ¥ < 1. This can be achieved by modification (cf.
28], [22]).

3.2 A ROBUST SMOOTHER FOR CONVECTION-DIFFUSION
PROBLEMS

The construction of a robust smoother, which is exact or very fast in the limit, is the

kernel of a robust multigrid method and makes up the main problem when applying

this concept to unstructured grids. Here we need special numbering strategies.
In the following we present a strategy for the convection-diffusion equation

—eAu+c-Vu=f, (8)

with the convection vector ¢, and € > 0. Discretizing the convection term by means
of an upwind method, we can assign a direction to each link in the graph of the
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stiffness matrix. If the directed graph generated by this process is cycle-free, it
defines a partial ordering of the unknowns. This partial ordering can be used to
construct an algorithm for numbering of the unknowns, which brings the convective
part of the stiffness matrix to a triangular form. The following numbering algorithm
performs such an ordering on general unstructured grids, provided the convection
graph is cycle-free.

Algorithm 3.1 downwind_numbering.

1. Assign the downwind direction from the discretization of the convective term
to each link in the stiffness martix graph. Indifferent links are marked by 0.

2. Put n = number of unknowns.

3. Find all vertices with minimal number of incoming links and put them in a
fifo F.

4. Derive a total order from the directed acyclic graph

For all vertices L initialize Index(L) = 0;
While (F not empty) do
get E from F,
(4a) Put Index(E) := 1; Put E in fifo FP;i:= 1;
(4b) While (FP not empty) and (i < n) do
Get K from F'P;
For all neighbors L of K do
If (L downwind from K') and (Index(L)< Index(K))
i := Index(L);
Index(L) := Index(K)+1,
Put L in FP;

5. Call quicksort with the vertex list and the criterion Index(L) < Index(K) =
L < K. Output: Ordered vertex list.

Remark 3.2 If the edge graph is cycle-free, loop (4b) terminates in O(n)-steps
with FP = 0. Loop (4) has complezity O(q - n) where q is the number of minimal
elements in the edge graph, which is small. Because of calling quicksort in (5) the
complexity of the whole algorithm equals O(q - nlnn).

If loop (4b) terminates with FP # () and © > n, the edge graph contains a
cycle.

This method has been used for the computations described in Section 5 .
Meanwhile it has been improved by Bey (cf. [6]). Cycles in the matrix graph may
occur, if there are vortices in the convection c. If ¢ is vortex-free, cycles can occur
if several triangles with sharp angles are neighbouring each other and are almost
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FIGURE 2. Illustration of semi-coarsening (a) and anisotropic refinement (b).

perpendicular to the flow direction (cf. [6]). These numerically caused cycles, how-
ever, can be simply eliminated by finding and cutting elementwise cycles. This is
possible with O(n) work count.

3.3 SEMI-COARSENING

Another strategy to obtain a robust multi-grid method is the so-called semi-
coarsening approach (cf. [26]). The basic idea is to improve the coarse grid correc-
tion instead of the smoother. Starting with a fine and structured grid, coarsening
is performed only in those co-ordinate directions, in which the scale of the equation
is already resolved. E.g. for the anisotropic model problem

— (e0p +0y)u=f , Q= (0,1)x (0,1) 9)

with corresponding boundary conditions one would coarsen an equidistant carte-
sian grid in case of small € as shown in Figure 2(a).

Remark 3.3 Such a sequence of coarse grids yields a robust multi-grid method
for the anisotropic model problem (9) without using a special smoother, since the
coarse grid resolves the scale in the direction where the smoother does not work.
This semi-coarsening approach, however, is based on the use of fine grids
which do not resolve the differential scale, otherwise there would be no semi-
coarsening. Consequently this approach is not applicable as soon as the finest grid
resolves the problem scale, which is crucial when solving differential equations.

This does not apply to so-called multiple semi-coarsening approaches, since
these methods are able to construct sequences of coarse grids from any struc-
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tured fine one, no matter if the scale is resolved. Thus we mainly have to look for
an approach which allows to adapt the grid to the differential scale by adaptive
refinement and to solve efficiently on the hierarchy of grids generated this way.

3.4 ANISOTROPIC REFINEMENT

Instead of starting with a fine grid and constructing the grid hierarchy by coarsen-
ing we start with a coarse grid and refine that anisotropically in order to resolve the
scale successively. Such a refinement process is given e.g. by the “blue refinement
strategy” due to Kornhuber, [16]. The basic idea is just to refine quadrilaterals
with a “bad aspect ratio” by halving the longer edge. Bad aspect ratios can be
introduced either by element geometry or by anisotropic coefficients in the equa-
tion. This is shown for the anisotropic model problem (9) in Fig. 2(b). Note that
the discretization error is balanced on the coarsest grid for semi-coarsening, while
it is balanced on the finest grid for the anisotropic refinement approach. Korn-
huber described how to generalize this approach to triangular unstructured grids.
Following this process we finally obtain a grid €; which resolves the scale of the
problem.

From this grid on we refine regularly and so the multi-grid process will obvi-
ously work without problems.

Remark 3.4 A proof of robust multi-grid convergence is straightforward since the
asymptotic behaviour is determined by the isotropic problem. So we need a robust
method only for a finite sequence of grids up to a fized h > 0, weakening the
robustness requirement (1) to

k(h,e) <ko<l, Ve>e>e>0,Vh>h>0, (10)
which makes the job much easier. Thus it is sufficient in many cases to use just
a lezicographically numbered ILUg, since we do not need the property that the
smoother is exact in the limit case. It is sufficient that it reasonably accounts for
the “main connections” up to a fized range of € > 0 and for finite h.

Since this process improves the approzimation of the differential problem at
the same time, this will be the appropriate approach to follow.

An example of that type is the skin problem described in §5.

3.5 ALGEBRAIC MULTI-GRID

Another approach yielding robustness is the family of algebraic multi-grid meth-
ods, see e.g. [24] and the references there. A new algebraic multi-grid approach is
described by Reusken, [23], which shows to be fairly robust in practice. The basic
idea of algebraic multi-grid is to decompose the stiffness matrix K into

_( Krr Kpe
Kl n < ch ch ) (11)



10 P. Bastian and G. Wittum

FIGURE 3. Overview of the internal structure of the ug code.

where Ky; denotes the part of K; acting on the grid points which belong to the
finest grid only, K. the part of K; acting on coarse grids points only and the
off-diagonal blocks represent the coupling between coarse and fine grid. The ap-
proximation of K. and the off-diagonal blocks within the multi-grid cycle have
to be such, that it yields robustness. This is also satisfied for the frequency-
decomposition multi-grid method, [14], and other multiple correction schemes,
see ([18], [19]). However, these methods typically work only on structured grids
and do also not provide a strategy to improve the approximation of the differential
equation.

4 The Software Toolbox ug

The code ug (“unstructured grids”) is used as a test-bed for the robustness strate-
gies mentioned above and has been designed as problem independent as possible in
order to allow reuse of its components for many different applications. It is a lay-
ered construction of several libraries, see Fig. 3 for an overview. The bottom layer
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contains all components that are totally independent of the PDE to be solved,
e. g. grid I/0, grid refinement, device independent graphical output and the user
interface. The next layer is the so-called problem class library that implements
discretization, error estimators and solvers for a whole class of PDEs, e. g. a scalar
conservation law. On top of that resides the user’s application that provides the
domain, boundary conditions and problem coefficients to the lower layers.

The relative code size of these layers indicates that the proper abstractions
(interfaces) have been chosen: The ug layer typically makes about 75% of the
executable, the problem class layer takes 20% in the convection-diffusion case (with
many different solvers) and a main program typically is only 5%. This means in
practice:

o 75% of the code can be reused without any change when switching to more
complicated equations. This has been proved already for incompressible
Navier-Stokes equations.

e The user interested in implementing new numerical algorithms (a problem
class library) will never be concerned with low level programming.

e As a consequence of that his code is portable since machine dependencies
typically arise only in the ug layer.

The concept of code reuse becomes even more important in a parallel envi-
ronment, see [4] for a parallel implementation of ug.

5 Numerical Results

In the following we discuss the application of the above-mentioned robustness
strategies to three problems, serving as paradigms for typical singularly perturbed
problems.

5.1 THE SKIN PROBLEM

As a first test problem we take the following one which is used to model the
penetration of drugs through the uppermost layer of the skin (stratum corneum).
The stratum corneum is made up of corneocytes which are embedded in a lipid
layer. The diffusion is described by the diffusion equation

0
~V(D(z,y)Vu) + a—'t‘ = 0 uQ (12)
u = 1 onl},
v = 0 onl,
8_u = 0 onlUIy
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FIGURE 4. Right hand side: Structure of skin made up from corneocytes (white) and
lipid layers (gray/black). The considered block of stratum corneum is 11pm by 60.2pm.
Left hand side: Elementary cell consisting of a corneocyte surrounded by one half of the
lipid layer.

where ) is the unit square and the diffusion coefficient D(z,y) is given by

_ [ Dy it (zy) € lipid
D(z,y) = { D, if (z,y) € corneocyte )

i.e. it may jump by some orders of magnitude across the corneocyte edges. The
corneocytes are very flat and wide cells which in a two-dimensional cross-section
are approximated by thin rectangles as shown in Fig. 4.

From Fig. 4 we see that the lipid layer is 0.1pm thick while the corneocytes are
1 by 30um of size. Since the permeability may jump by some orders of magnitude
between lipid and corneocyte, we must align the coarse-grid lines with the inter-
faces. So we just take the corners of the corneocytes as points for the coarse grid
connecting them to form a tensor product grid. Thus we get rid of the problems
induced by jumping coefficients. However, we obtain highly anisotropic grid cells
in the lipid layer with an aspect ratio of approx. 1:150. Since such an aspect ratio
makes the approximation strongly deteriorate and the multi-grid method as well,
we use the anisotropic (“blue”) refinement strategy to derive a robust multi-grid
method and to create a grid which after 5 levels of blue refinement has elements not
exceeding an aspect ratio of 1:5. Above that level we refine uniformly. To obtain
a robust method on the coarser grids we use an ILUg-smoother, cf. [28]. Average
convergence factors for a (1,1,V)-cycle are given in Table 2. For more details on
this problem see [17].

5.2 CONVECTION-DIFFUSION EQUATION

As a second example we show results for the convection-diffusion equation
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TABLE 2. Convergence rate of a (1,1,V)-mmgm applied to the stationary skin problem
for various values of Dy (D; = 1). The number of unknowns was 54385 on level 5 (6 grid
levels).

D, 1 10-1 1072 107° 107% 10 10°°
p 008 022 039 041 045 045 043

TABLE 3. Robustness of a (1,1,V)-mmgm with ILU-smoother and downwind numbering.
The method used 8 locally refined grids to discretize problem the convection-diffusion
problem with over 10.000 unknowns on level 8. The convergence rate x(10) is averaged
over 10 steps and refers to the finest grid.

€ 1 10-Y 1072 1073 107* 107° 10°® 1077
£(10) 0.068 0.067 0.075 0.102 0.092 0.068 0.033 0.018

—eAu+c-Vu=f (13)

in the unit square with Dirichlet boundary conditions. We choose c¢ as follows

c=(1—$M@)P<x+%)—l}+2wd®{y—ﬂ>4@%mL$MaDT (14)

where « is the angle of attack. The boundary conditions are: u = 0 on {(z,y) :
t=00<y<Bu{(zy :0<z<ly=1}U{(zy):z2=10<y<
1JU{(z,y): 0<z<05,y=0} and u=1on {(z,y) : 0.5 <z < 1,y = 0}. The
jump in the boundary condition is propagated in direction a. We have dive = 0
and c varies strongly on 2 such that the problem is convection dominated in one
part of the region and diffusion dominated in another part. As discretization we
use a finite volume scheme with first order upwinding for the convective terms
on a triangular grid. The grid is refined adaptively using a gradient refinement
criterion. As smoother we took a Gauf-Seidel scheme with downwind numbering
using algorithm 3.1 in a (1,1,V)-cycle mmgm. It is important to note that the
smoother itself is not an exact solver. Thus we should see the benefit of multi-
grid in the diffusion dominated part and of the robust smoother in the convection
dominated one. This is confirmed by the results given in Table 3. There we show
the residual convergence rate averaged over 10 steps for problem (13) on adaptively
refined unstructured grids versus ¢.

For the same problem with ¢ = 10~7 the same mmgm but without downwind
numbering shows a convergence rate of 0.95 averaged over 40 steps and taking the
smoother with downwind numbering but without coarse grid correction as a solver,
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-«
Dirichlet 0.0 4 mm >
N
N
D N NDNDND N

Zoom \

> l | ¢ N: Neumann b.c. between wires ﬂ

D: Dirichlet 1.0
0.01 mm at "wires"

FIGURE 5. Problem definition, coarse grid and zoom for the drift chamber problem.

we end up with a convergence rate of 0.949 as well. This confirms the outlined
concept of robust multi-grid. Results of 3d computations can be found in [6].

5.3 DRIFT CHAMBER

This problem solves the Laplacian —Au = 0 in the domain given by Fig. 5. The
boundary conditions are of Dirichlet and Neumann type as indicated in the figure.
The feature of this problem are the small wires with Dirichlet boundary conditions
that must be resolved on the coarse grid. The smallest wire has a radius of 0.005
mm, while the whole chamber is 4 mm wide and 1 mm thick. So one has to trade
off between a coarse grid with few unknowns but a large aspect ratio in grid cells
and a coarse grid with equal sized triangles but a large number of unknowns. The
grid in Fig. 5 is a reasonable compromise with 85 nodes and 112 triangles but still
aspect ratios are large and a robust smoother is required.

Table 4 shows the results of multiplicative and additive multigrid with sev-
eral different smoothers applied after 3, 4, 5 and 6 levels of uniform refinement.
Specifically the smoothers were damped jacobi with w = 2/3 (djac), (symmet-
ric) GauB-Seidel (gs, sgs) and ILU without modification and with 8 = 0.35 (ILU,
ILUg). We make the following remarks:
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TABLE 4. Results for different solver/smoother combinations for the drift chamber prob-
lem. Multigrid data: (2,2,V) cycle for jacobi smoother, v = 1 for amgm, (2,2,V) cycle for
all other smoothers, initial solution u = 0, numbers are iterations for a reduction of the
residual by 107¢ in the euclidean norm. The grid nodes have been ordered lexicographi-
cally, iteration numbers exceeding 100 are marked with an asterisk, diverging iterations
are marked with T.

highest level 3 4 5 6
grid nodes 3809 14785 58241 231169
mmgm djac * * * *
gs 79 99 * *

sgs 48 59 66 70

ILU 33 1 7 7

ILUg 9 9 9 9

mmgm+cg  djac 31 38 43 43
sgs 13 16 17 18

ILU 10 T 1 1

ILUg 6 6 6 6

amgm+cg  djac 74 99 * *
sgs 36 46 53 57

ILU 62 7 1 7

ILUg 20 24 25 26

1. h independent convergence is only achieved with the ILUg smoother. The
optimal value was # = 0.35 but the choice is not very sensitive and good
results are achieved with values between 0.2 and 0.5. This corresponds nicely
with the theory in [28].

2. The additive method shows qualitatively the same behaviour as the multi-
plicative multi-grid method but has worse numerical efficiency.

3. Multiplicative multi-grid with a symmetric Gau8-Seidel smoother used as
preconditioner in a conjugate gradient method is the only combination giving
also relatively satisfactory results, being only a factor 3 slower in computation
time than the ILUg smoother.

4. The diverging iteration for ILU without modification can be explained by
accumulating roundoff errors. Since the global stiffness matrix is symmetric
positive definite but not an M-matrix due to obtuse angles the diagonal
elements in the ILU decomposition can become very small which leads to
instabilities. The modification helps in this case too, since it enlarges the
diagonal.
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A Generalized Multigrid Theory
in the Style of Standard Iterative
Methods

Craig C. Douglas!

1

In

ABSTRACT A basic error bound for multigrid methods is given in terms of
residuals on neighboring levels. The terms in this bound derive from the iterative
methods used as solvers on each level and the operators used to go from a level
to the next coarser level. This bound is correct whether the underlying operator
is symmetric or nonsymmetric, definite or indefinite, and singular or nonsingular.
We allow any iterative method as a smoother (or rougher) in the multigrid cycle.
One of the advantages of this theory is that all of the parameters are available
during execution of a computer program. Hence, adaptively changing levels can
be achieved with certainty of success. This is particularly important for solving
problems in which there is no known useful convergence analysis. Two problems
arising in modeling combustion problems (flame sheets and laminar diffusion flames
with full chemistry) are discussed.

While this theory is quite general, it is not always the correct approach when
analyzing the convergence rate for a given problem. A discussion of when this
theory is useful and when it is hopelessly nonsharp is provided.

Introduction

this paper, linear problems

Au+ f=0, u,feM, AecL(M) (1)

are solved using a nested space multigrid iterative method. The operator (matrix)

of

A is typically the discretized (by finite elements, differences, or volumes) version

a partial differential equation.
Many multigrid papers begin by narrowing their scope just to problems which

are symmetric and positive definite, symmetric and indefinite, or nonsymmetric
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and indefinite. In each case, these papers assume the problem is nonsingular, a
set of smoothers is defined, and one or more specific multigrid algorithms are
defined (e.g., a V, W, or F cycle). Finally, analysis is provided, usually in only
one particular norm. For excellent traditional multigrid theoretical treatments of
problems, see [1], [8], [17], and [21].

The analysis in this paper is correct whether the underlying operator is sym-
metric or nonsymmetric, definite or indefinite, and singular or nonsingular. Any
iterative method is allowed as a smoother or rougher in the multigrid cycle. Any
multigrid cycle is allowed, including adaptively chosen ones. Finally, the analysis
is not dependent on any specific norm. In fact, different norms can be used on
different levels (though doing this can produce misleading convergence rates).

The purpose of this paper is to provide a discussion on when to use the theo-
retical tool in [12] for analyzing nested space multilevel algorithms that are applied
to any problem with any set of properties. The approach is simple enough to im-
plement in computer programs without adding an excessive amount of overhead.
There are similar procedures, known as aggregation-disaggregation methods (see
[6]) when A is not derived from partial differential equations; the theory in this
paper applies directly to these methods.

The basic correction multigrid algorithm is defined in the traditional recursive
style in §2. This is then rephrased into a nonstandard form in §3. This leads to
the two flavors of analysis in §4, one quite simple (and rarely sharp) and the other
somewhat more complicated (and sharper). Examples and the practicality of this
analysis are given in §5.

The theory in §4 depends on three sets of parameters which are available
either dynamically or in advance. The basic convergence (divergence) result is not
stated in a “nice” closed form, as is usual in multigrid papers, but in terms of the
convergence rate of the next coarser level’s rate.

2 A standard multilevel formulation

Suppose that there is a set of solution spaces { My };_,, which approximate M=M
in some sense, and that dim(My) < dim(Myy1). In the partial differential equa-
tion case, the M, correspond to discrete problems on given grids (which are not
necessarily nested). Then the multigrid approximation to (1) requires solving a
sequence of problems of the form

Agug + fio =0,  uk, fx € My, Ax € L(My). (2)
That there exist mappings between the neighboring spaces is assumed:

Ry : My > Mp_1 and Py_1: Mp_1 — Mg
as well as mappings

Qr : My — My_1 suchthat Ax_1 = QrArPr_1.
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For partial differential equations, there are natural definitions of @)y depend-
ing on the discretization method and the grids. See [12] for a more complete
discussion of natural choices for Q.

Since for most applications, dim(My) < dim(Mp41), Qk cannot be inverted.
However, the theory in §4 uses Q;l. Thus, the interpretation of Q;l must be
explained. For finite element methods commonly used in practice, M, represents
a refinement of My_; and

I on Mk—la
Qk =
0 on Mk — Mk—l;

this is true for both the h-version and the p-version of the methods.

The same relation holds for refinements in the finite difference case. Hence,
Q,;l can be taken to be injection of Mj_1 into My, in each of the cases described;
otherwise Q;l should be taken as a pseudoinverse. Note that a Moore-Penrose
type pseudoinverse may not be the best choice; a Drazin type pseudoinverse may
be better.

For k > 1, assume there are iterative methods, represented by M} and Ny,
and possibly dependent upon the data (e.g., conjugate gradients), which are used
as smoothers (or roughers) on level k before and after, respectively, the residual
correction step (on level 1, note that there is never a residual correction step nor,
usually, a smoother N7). .

In the multigrid literature, the term smoother has become synonymous with
the direct or iterative methods My and Ni. The term was used in [4] to de-
scribe the effect of one or more iterations of a relaxation method on each of the
components of the error vector. For many relaxation methods (e.g., SSUR and
Gauss-Seidel), the norm of each error component is reduced each iteration; hence,
the term smoother. For many other iterative methods (e.g., SSOR or conjugate
gradients), while the norm of the error vector is reduced each iteration, the norm
of some of the components of the error may grow each iteration; hence, the term
rougher. For some iterative methods (e.g., Bi-CGSTAB), the norm of the error
vector does not necessarily decrease each iteration, much less smooth all of the
error components. The term smoother in the traditional multigrid sense will be
used, even though it is technically wrong.

Standard multigrid analysis assumes the smoothers have the form

Bi(wit! —wp) = fr + Agwl, £=0,1,--- f,

where By, corresponds to some scaled iterative method on each level k (e.g., sym-
metric Gauss-Seidel or conjugate gradients). This frequently leads to an analysis
which assumes a fixed ¢ throughout the multigrid iterations. Neither assumption
is required in §4.

There are two principal variants of multigrid algorithms. One variant is com-
posed of correction schemes, which start on some level j and only use the coarser
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levels k, k < j, for solving residual correction problems. The other variant is com-
posed of nested iteration schemes, which begin computation on level 1 and work
their way to some level j, using each level k, k < j, both to generate an initial guess
for level k41 and for solving residual correction problems. Analysis of nested iter-
ation algorithms in the context of this paper can be found in [12]; more traditional
analyses can be found in [2], 7], [8], and [17].

In this paper, only correction schemes are considered. Define a k-level (stan-
dard) correction multigrid scheme by

ALGORITHM MG(k, {pe}5_1, k, fi)

(1) If k = 1, then solve Ajz; = f; exactly or by smoothing

(2) If k> 1, then repeat ¢ = 1,-- -, ug:
(2a) Smoothing: zy, « M,gi)(xk,fk)
(2b) Residual Correction:

@, — zx+Peo1 MGk — 1, {ue}j=], 0, R (Agzy + fi))

(2¢) Smoothing: zj — N (xx, fi)

(3) Return z

This definition requires that p; = 1. Steps (2a) and (2b) are sometimes referred to
as pre-smoothing and post-smoothing, respectively, in the literature.

Symmetric multigrid schemes assume that My = Ni. Nonsymmetric multi-
grid schemes usually assume that Ny = I, where I is the identity. However, it is
computationally more efficient to assume M} = I since the residual on level k — 1
is fx—1 and does not need to be recomputed. Only rarely is the complete algorithm
analyzed.

The standard V and W cycles correspond to Algorithm MG(3,{1,---,1},-,")
and Algorithm MG(5,{1,2,---,2,1},-,-), respectively (the definition of the W cy-
cle frequently causes confusion). The F cycle [5] corresponds to something “in
between” the V and W cycles.

3 A nonstandard multilevel formulation

In this section, a subtle change is made to Algorithm MG, which produces a
simplified analysis for multigrid methods.

To make the notation of this section consistent, a fake (extra) level j + 1 is
introduced. Define

M1 =M, Pi=Rjy1=Qjn=1, Aj;1=4,
and the initial residual on level j + 1, z;11, by
-1
Al ) + f =z
This transforms the problem on all computational levels to one of solving a residual

correction problem instead of the real problem on the finest grid and residual
correction problems on the coarser grids.
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Associated with each level k is a norm || - ||, which can be arbitrary. The
norms can be different on each level, though the usefulness of this is unclear. For
simplicity, the subscript from the norm symbol will be dropped.

Define a k-level (nonstandard) correction multigrid scheme using parameters
zk+1 (the residual on level k£ + 1 at some step) and xfc_l) (the initial guess for
level k, which is normally 0, except at the finest level) by

ALGORITHM NSMG(k, zg41, xfc’l))
(1) Initial residual: Rk+1zk+1 € Mk

(2) Pre—Smoothmg x M(l)a:k such that

Az + Riprket = 2, where 27|l < o[l zk41]]

(3) Letz A(l) (0) A(l) z,(co), and 'yil) =0
(4) Repeat i= 1 o,,uk
(4a) Ifi> 1, then
(4al) Residual: Akx( Uy Rk+1zk+1 = éff)

(4a2) Pre-Smoothlng A(l M(i '—1) such that

i) ()

Ak$k +Rk+12k+1 =2,

where
B

(4b) Ifk > 1, then
(4bl)  Correction: 'y =P_ 1x§€)1,where
29 = NSMG(k - 1,2, 0)
and

A 1xk 1+RkA(l _Zl(c)l
(4c) Residual: A;C(a:,C +'y( )) + Riy12k41 = «9,(:)

(4d) Post- Smoothing :1:(') N(i)( 20 4 'y,(:)) such that
Ak.’E +Rk+12k+1 = Z](C),
where
1281 < 1)

(pk)
(5) Return z;'*

Algorithm MG was defined in §2 in an intentionally imprecise manner. Al-
gorithm NSMG is a precise, but nonstandard definition of Algorithm MG. The
first smoothing reduces the norm of the residual on level k by a factor involving
the norm of the residual on level k£ + 1, which is nonstandard. For subsequent
smoothings, this factor involves the norm of the residual on level k instead. The
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parameters {p¢}, which determine how many iterations of the multilevel algorithm
to do on each level, can be considered either fixed or adaptively chosen during the
course of computation.

Standard multigrid theory analyzes the case when a certain number of smooth-
ing steps are used. This may be explicitly stated (e.g., [1]), or it may be phrased
as to require the choice of a constant number of smoothing iterations such that
some error reduction condition is satisfied (e.g., [7]). This is worst case analysis
and rarely models the behavior seen in practice. However, it allows the proof of
certain complexity results of optimal order.

The nonstandard formulation allows two interpretations of smoothing: first
as the standard form, and second as fixing the factors eg) and p,(:) and letting the
number of smoothing steps vary per iteration.

4  Analysis
In this section, assume that {My} is nested and analyze zj(.z) under minimal as-
sumptions. Two flavors of analysis are considered. The first is a trivial analysis
that should not be used when anything is really known about the problem. The
second is an affine space decomposition analysis that is somewhat sharper than
the first treatment.

The first result assumes only a simple property about each of the restrictions
Ry: there exists a constant, 6, € IR, such that

(I = Qi Re)ull < Sllull, we My. ®3)

Since normally dim(Range(Qy ")) < dim(My), 8 > 1. In many cases it is possible
to choose norms for which 6, = 1 and which are meaningful for the underlying
elliptic problem. o

The problem is to determine conditions for { p,(:),e,(:)} in order to guarantee
convergence of Algorithm NSMG. The results do not depend directly on properties
of the A and f.

The basic theorem is as follows.

Theorem 1 Assume that z;4, is the residual on level j +1 > 2 and that the pro-
longation operators Py, 1 < k < j, are imbeddings and the inverse of the operator
restrictions Q,:l, 2<k<j+1, are embeddings:

PkEiMk—'Mk-H and Q;lE’L’Mk_l_»Mk. (4)
Let

Hi . .
ED = o) and EM =] (eg)pg) [6k + E,(c’ikfl)]) , k>1.

i=1
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Then,
1Q7 12| < BV

The proof of Theorem 1 is a double induction argument and can be found in [12].

Remark 1 In some instances, different restriction operators Rgci) are used during

a multigrid cycle. Substituting 6,(:) for by, covers this case.

Remark 2 For the V cycle with ey) =¢; and pgi) =pj,j=1,---,k, the definition
of E,(cl), k > 1, simplifies to

ko/e-1 k
E,(cl) = Z (H fk—mPk—m> Ok—e + p1 H €mPm-

£=1 \m=0 m=2

Remark 3 When adaptively choosing when to change levels, the error term for the
coarser level will be different each time a correction step is performed. Substituting
i)

(
E,(c”’“ for E,ﬁ“k) covers this case.

Remark 4 For numerous problems, 6y > 1 guarantees that Theorem 1 is not
sharp nor even realistic. See §5 for another interpretation of & that is compu-
tationally useful since for specific residual vectors u in (3), 8 can be much less
than 1.

Remark 5 Many papers have been written analyzing multigrid using a variational
point of view instead of an algebraic one. Rewrite (2) as

find up € My such that ak(uk,vk) + fk(vk) =0, Vv € M.
Then Theorem 1 can be rewritten in a variational form.

Now consider an affine space analysis. Each space M; is decomposed ap-
proximately into the parts which are corrected by the residual correction steps,
and the parts which are relatively unaffected. This theory is considerably more
complicated, but sharper than that in Theorem 1.

Each space M} is assumed to be decomposable into a smooth part S; and a
rough part 7;, e.g.,

M;=8;&T;, where T,=M;_; and S;=M;_NM, (5)
So, §; contains the high frequency components and 7; contains the low frequency
ones. Note that other definitions for S; and 7; can be used.

Let 1 < k < j. Assume that v, € M. Let

lowlll = lvkllle = llvkls, |
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and

<V > =<V > = “’Ukh'kn
If vy are wy are the residuals before and after a post-smoothing iteration using
Ni, and |Jwg|®> = einvk||2, then there exist € g and e, 7 such that

2 2
llwill® = € slllvelll” + € < v > (6)

Similarly, if vy are wy, are the residuals before and after a pre-smoothing iteration
: — 112 2 2 .
using My, and |[wg||” = pillvkl|”, then there exist p ss, pk,sT, pk, T, and pg s
such that ) )
W@kl = pi ssllloklll” + pf sp< vk >*  and
(7)

_ 2
<o >* = g pgllloalll” + pf pp< vk >

As was noted at the end of §3, these parameters will probably only be bounded
with estimates of some form.

The result here requires more precise knowledge than (3), namely that for
any u € My, there exist constants 0 s and éx v € IR such that

_ 2 _ 2
117 - Q" Re)ull|” < & sllull[* and < (I - Q' Re)u>" < 8 p< u >

The problem is to determine conditions for { p,(:)xy, efg)x}, X,Y € {S,T}, in order
to guarantee convergence of Algorithm NSMG. As before, the results do not depend
directly on properties of the A and f.

A sharper convergence result than Theorem 1 is as follows.

Theorem 2 Assume that z;y 1s the residual on level j +1>2 and that P,
1<k<j,and Q;', 2<k <j+1, satisfy (4). Let

1 _ 1 1 1
E§ )= 5(1139/’51)5 = Eiz)as and Ei !Z“T = E1 TS = EiT)’T =0.
For1<k<j, let
El(c ss = fk s [(5 kst Ek#kl é)s) Pg)ss l(c“kﬂé)TPg,)ST] )

P ZTS + Ekﬂk1 })s)/-’f:)ss]

) ok
) (Mk—l) ) (1) ]’

EI(cZTS = fk T [ ok,T + El(c}ikf})T

(Hk-1)
k TT = fk T [<5k,T + Eklikl,TT

Pk rr T £k—1,15)Pk, 5T
and
El(cl?ST = [ bks + B é)s) prstt El(clikl_,é)T)P;:,)TT] :
Then,

Q5= <Hmax{E“ + Bs Bsr+ Bt lzml. (8)

=1
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The proof of (8) is a double induction argument and can be found in [12].

Remark 6 For a symmetric multilevel algorithm (see §2), all of the terms in
Theorem 2 exist. It is possible to to see that whenever an individual term is large,
there is another term multiplying it that is small.

Remark 7 For nonsymmetric multilevel algorithms, the expressions simplify since
some of the individual terms are either 0 or 1.

Remark 8 For simple enough the §; 7 ~ 0 and 05 ~ 1.

Special care is required when using this theory since it is, in some sense,
too general. It is quite easy to calculate various terms in the two theorems using
incompatible norms, resulting in nonsensical results.

5 Examples

In this section, 6 is computed for several examples. The first is for Dirichlet prob-
lems on IR? with simple, but not entirely trivial meshes. While the estimates are
rather pessimistic, some advice is offered on practical uses of the simple theory in
§4. Next, an example is presented where Theorem 1 is sharp. Finally, two problems
arising in attempting to numerically simulate flames are examined.

Assume that for each k, £k = 1,---,j, the spaces M; has a bilinear hat
function basis over uniform squares of side length hy. This does not imply that
the domain (2 is either rectangular or convex, just polygonal (possibly with holes)
with boundary segments either parallel to the axes or inclined 45° to the axes
(which requires appropriate modifications to some of the basis functions).

Set
Dij ={(i+1,75), (@ —1,7),(,5 +1),(4,j — 1)}
and X
Dij={(i+1,j+1),(i+1,j-1),(i-1,j+1),(i—1,5-1)}
Let Rk(g)vij be the following weighted sum of v;; and its eight neighbors from
level k:

1 1 1
R = 1%ty D vt 4 2w
(k,£)€D;; (k,0)€D;;

We approximate 51(69) = 5k(Rk(9)) using a piecewise bilinear hat function v on

level k — 1 Whi‘ch is centered at some point (i + 1,7+ 1) on level k. Note that,
if vj; = (—1)**7, then Ryv;; =0 at any interior point of the (k — 1)-grid. Thus,
Ok > 1; since Ry, satisfies a maximum principal, it then follows that

I = Q7 R ol e < [0l
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and that
5O =1,

Let Ry ®v; ; be the following weighted sum of v;; and its four neighbors from
level k:

1 1
5 Z
B )Uij "1 20+ 2 (k,£)eD "
y ij

Again, the same argument shows that, with respect to the £>°,
(5 _
6, =1

If there are boundary elements associated with the edges at 45° to the axes,
Rk(g) and Rk(5) can be mixed to form Rjy.

Besides motivating the affine space analysis, the theory of this section can
actually be used in computer programs to adaptively change the parameter choices
on coarser levels k (1, and the number of iterations in the smoothers). Consider
Laplace’s equation on the unit interval, two levels, a uniform mesh, a central dif-
ference discretization, linear interpolation and projection, and one Jacobi iteration
as the smoother. Sharp theory says that the convergence rate is bounded by 0.5.
In a strictly nonrigorous exercise, 5000 randomly chosen problems were generated.
In theory, 6&3) =1, where 653) is derived using a three point restriction operator
R5. However, for individual residual vectors v, the following was calculated:

= Q5 Ry
o) = o —

The following was observed.

Statistic 6(v)

Minimum | 0.3444
Maximum | 0.9312
Average 0.7126

Further, there was a direct correlation between the size of the estimated 6(v) and
the actual error reduction produced by one multigrid iteration.

Now consider the affine space analysis. Assume that only post smoothing is
performed; this causes many of the terms in Theorem 2 to be either 1 or 0. In this
case, Theorem 2 predicts that the convergence rate is bounded by 0.5, which is
sharp. Unfortunately, Theorem 2 predicts an overly pessimistic convergence rate
when two post smoothing steps are used (c.f., [1] which gets the right bound in
both cases).
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For some problems, multigrid with particular smoothers is known to be a
terrible method. For example, let ¢ > 5 in

—10%, — 107 %, = fin (0,1)%,

u =0ond(0,1)%

and choose a central difference discretization on a uniform mesh and Jacobi as
the smoother. Then the coarse grid corrections do not necessarily improve the
approximation to the solution. In this case, Theorem 1 actually is sharp. (The fix
to making multigrid work well for this problem is to use either a line relaxation or
a conjugate gradient method as the smoother or rougher.)

The examples given so far were not the of interest to the authors of [12]
when this theory was developed, however. Two problems which are currently being
studied arise in numerical simulation of flames. These are complicated nonlinear
coupled partial differential equations which are amenable to solution by multigrid
methods provided that the right solvers are used on each level. The first is a flame
sheet model (see [13]) while the second is a laminar, axisymmetric diffusion flame
model (see [16]).

In the flame sheet model, the chemical reactions are described with a single
one step irreversible reaction corresponding to infinitely fast conversion of reac-
tants into stable products. This reaction is assumed to be limited to a very thin
exothermic reaction zone located at the locus of stoichiometric mixing of fuel and
oxidizer, where temperature and products of combustion are maximized. To further
simplify the governing equations, one neglects thermal diffusion effects, assumes
constant heat capacities and Fick’s law for the ordinary mass diffusion velocities,
and takes all the Lewis numbers equal to unity. With these approximations, the
energy equation and the major species equations take on the same mathematical
form and by introducing Schvab-Zeldovich variables, one can derive a source free
convective-diffusive equation for a single conserved scalar. Although no informa-
tion can be recovered about minor or intermediate species in the flame sheet limit,
the temperature and the stable major species profiles in the system can be ob-
tained from the solution of the conserved scalar equation coupled to the flow field
equations. Further, the location of the physical spatially distributed reaction zone
and its temperature distribution can be adequately predicted by the flame sheet
model for many important fuel-oxidizer combinations and configurations. Since
being studied as a means of obtaining an approximate solution to use as an initial
iterate for a one dimensional detailed kinetics computation in [19], flame sheets
have been routinely employed to initialize multidimensional diffusion flames.

A schematic of the physical configuration is given in Figure 1 (though not
drawn to scale). It consists of an inner cylindrical fuel jet (radius R; =0.2cm),
an outer co-flowing annular oxidizer jet (radius Rp =2.5cm) and a dead zone
extending to R, =7.5cm. The inlet velocity profile of the fuel and oxidizer are
a plug flow of 35cm/s. This yields a typical value for the Reynolds number of
550. Further, the flame length is approximately L; =3cm and the length of the
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FIGURE 1. Flame sheet physical configuration

computational domain is set to L =30cm. Although the fuel and oxidizer reservoirs
are at room temperature (300°Kelvin), we need to assume, in the flame sheet
model, that the temperature already reaches the peak temperature value along the
inlet boundary at r = Rj. This peak temperature is estimated for a methane-air
configuration to be 2050°K. Hence, the inlet profile of the conserved scalar, S°(r), is
specified in such a way that the resulting temperature distribution blends the room
temperature reservoirs and the peak temperature by means of a narrow Gaussian
centered at R;. The narrowness of the Gaussian profile has a relevant influence
on the calculated flame length, so that its parameters have to be determined
appropriately.

A damped Newton multilevel solver is used (see [3] and [18]). Due to the
model used, nonstaggered grids can be used, though they are tensor product grids
with quite variable mesh spacings. The linear problems solved on each level are 36
point operators. We found that GMRES with a Gauss-Seidel preconditioner was a
very good solver for each level. The code uses a left preconditioned residual norm
to determine when the solutions are adequate. In calculating 6,(;) in this norm, we
found it to be in the interval [106,108] frequently. This required that the €’s and

p’s be quite small in order to achieve convergence. However, 6,(:) & ||zk+1]| so that
this is not really an imposition. Even so, we saw speed ups of a factor of 10.5 on
an IBM RS6000-560 workstation over the unigrid solution approach (see [13]).

While 6,(;) was reduced dramatically by using a semi-coarsening approach,
the overall run time increased by 50% over the traditional multigrid approach.

We used a damped Newton multilevel approach instead of a full approxima-
tion scheme (see [20]) because experiments us to believe that in the full chemistry
case, FAS will be too expensive.
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The second flame numerical simulation is of a laminar, axisymmetric, methane-
air diffusion flame using nonlinear damped Newton multigrid (see [16]). The phys-
ical configuration is based on an inner cylindrical fuel stream surrounded by a
coflowing oxidizer jet and the inlet velocities are high enough to produce a lifted
flame with a triple flame ring structure at its base. Computationally, we solve the
total mass, momentum, energy, and species conservation equations with complex
transport and finite rate chemistry submodels. The velocity field is predicted using
a vorticity-velocity formulation and the governing partial differential equations are
discretized on a nonstaggered grid. The numerical solution involves a pseudo tran-
sient process and a steady-state Newton iteration combined with nonlinear damped
Newton multigrid. Coarse grid information is used to provide initial starting es-
timates for the Newton iteration on the finest level and also to form correction
problems, thus yielding significant savings in the execution times.

The physical configuration consists of an inner methane-nitrogen jet (with
radius 0.2cm), an air coflow (with radius 2.5cm), and the computational domain
is [0,7.5] x [0,30] (all units are centimeters). The temperature and species mass
fractions values for the surrounding air are the same as the ones for the dead zone.
This physical configuration was chosen because experimental data and a numerical
solution using primitive variables were already available for this problem.

Once again, a variable width tensor product set of grids was used. Due to the
high number of chemical species in the calculation, the discrete Jacobians were 270
point operators. In the left preconditioned norm, (5,(;) was frequently in the interval

[10%, 101°]. However, 6,(:) & ||zk+1]| so that this is not really an imposition. Still, a
factor of 9.7 speed up was achieved on a 57 x 73 fine grid over a unigrid approach.

In this example, 6,(:) was not reduced dramatically by using a semi-coarsening
approach.

6 Multiple coarse grid methods

In [12], the Theorems 1 and 2 are extended to a multiple coarse space model.
In this case, there are multiple ¢’s for each level, the quantity depending on the
number of coarse level correction problems that are associated with each level.
While the theorems of §4 may not be satisfactory for simple problems, the
multiple coarse space theory is for these problems. This style of analysis is much
more accurate due to the fact that we can show that the é’s can be quite small,
including being 0 for the case of the domain reduction method (see [9], [14], and

[15]).
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7 Conclusions

It is possible to prove a convergence result for multigrid and aggregation-disaggregation
methods with minimal knowledge about the problem. By treating multigrid as a
simple iterative method, almost nothing needs to be known about the grids, solu-
tion spaces, linear systems of equations, iterative methods used as smoothers (or
roughers), restriction and prolongation operators, or the norms used on each level.

Being able to prove such a result is much easier than showing that it is
useful all of the time. In fact, this theory is normally not sharp enough to satisfy
theoreticians. It should be used in computational settings in which almost nothing
is known about the convergence rate a priori.

One of the advantages of this theory is that all of the parameters are available
during execution of a computer program. Hence, adaptively changing levels can
be achieved with certainty of success.

CODE AVAILABILITY

A series of codes, Madpack (see [11] and its references), are available from MGNet
[10] which are compatible with the philosophy applied here and with the earlier
theory in [8].
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Turbulence Modelling as a
Multi-Level Approach

L. Fuchs!

ABSTRACT Large Eddy Simulation (LES) of turbulent incompressible flows is
shown to be directly related to the concept of multi-level approximation of a dif-
ferential problem on a sequence of successively refined grids. We discuss how a
“Dynamic”’-LES (D-LES) turbulence model can be modified so that it fits natu-
rally into an adaptive Multi-Grid scheme. The modified model assumes that the
functional form of relationship between the (time- and/or space-) averaged second
moments and the averaged variables, is grid independent. This assumption, and the
other assumptions on the averaging operator, are satisfied also by several artificial
viscosity forms.

1 Introduction

In many situations the fine structures of a flow field are not of interest. In most
cases, the level of spatial and temporal resolution, that is of practical interest is
by several orders of magnitudes larger than the Kolmogorov (i.e. smallest) scales
of the turbulent field. Thus, we face a rather intricate situations: we need infor-
mation only on the “large eddies”, but these depend also on the smaller ones
that we are completely uninterested in. It is interesting to note that these small
scales, cannot be computed anyway for engineering problems, due to the enormous
(and non existing) computational power required for such calculations. Thus, the
natural approach has always been to use a “model” that functionally simulates
the interaction between the fine- (unresolved) and the large- (resolved) structures
of the flow field. There are several “main-stream” models for this purpose: Eddy
viscosity type models (using commonly the two equation, e.g. kK — ¢ model), the
Reynolds Stress Model (RSM) and models that use the so called Large Eddy Sim-
ulation (LES) approach. The eddy-viscosity concept is introduced into the LES
approach, by estimating an equivalent turbulent viscosity from the resolved field
(see below). A review of these different models, their background and applicability,
can be found in many papers (c.f. [1-5]).

'Department of Mechanics/Applied CFD,
Royal Institute of Technology, S-100 44 Stockholm
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This paper considers the so called “Dynamic LES” turbulence model. In this
model one does not assume a “calibrated” value of a model paramter, but rather
computes the modal parameter locally in each instant (time step). To be able to do
so, one has to assume that the form of the model is filter independent. If the spatial
filter that is used, is a local polynomial (similar to the one used to approximate
the derivatives by finite-differences), one may compute the model “constant” from
a double filtered relation, that is equivalent to the defect that is computed in
the Multi-Grid (MG) process. We also discuss how one may simplify the “eddy
viscosity” model, by applying the basic LES assumption on the generalized second
moments of the mean components of the velocity vector. Furthermore, we point
out how the basic LES assumption can be integrated into an adaptive MG solver.

2 Averaged Equations

Consider incompressible flows:

ukk =0, (1)
Ui + (i) g = —Pi + ik » (2)

where
05 =285 ;5 Sij= i(uz"j +uj;) . (3)

These equations can be solved in principle, numerically. Accurate numerical
solutions require that all spatial and temporal scales are resolved. Even if we ne-
glect the potential difficulties due to solution multiplicity and bifurcations, one
still cannot solve the discrete system with adequate resolution, for Reynolds num-
bers (Re = U L /v), that are not small enough. Furthermore, for most practical
applications the fine details of the flow are not of interest and it suffices to obtain
time-averaged values of the dependent variables at some discrete set of points in
space. Thus, for these reasons it is natural to seek the space- and/or time-averaged
values of dependent variables. Averaging the governing equation is not new and in
fact it has already been carried out by Reynolds about hundred years ago. Inciden-
tally, Reynolds considered the space averaged quantities and not the time-averaged
quantities that one often associates with “Reynolds averages”. In general terms,
Germano [6] carried out a formal averaging of the Navier-Stokes equations. The
highlights of this derivations are given here for the sake of discussion.

Consider averaging dependent variables:

< ui(x,t) > 9= /ui(x',t’) G(x—x',t—t;1,0) dx' dt’, (4)

with
/G(x~x’,t—t’;l,0) i dt' =1, (5)
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[ and 6 are characteristic space- and time-scales which are the smallest to be of in-
terest. Examples for such averaging are pure time-averages (often called “Reynolds
averages” ), where one “filters-out” all smaller time-scales. Local spatial averaging
(a “hat-function” or a Gaussian filter) is a corresponding averaging that is used
in so called “Large Eddy Simulations (LES)” [3-5]. The classical decomposition
of the dependent variables into the sum of the average and a fluctuating compo-
nent, is not always convenient. This is so whenever the average of the fluctuations
and the average of the mean times the fluctuations do not vanish. When such
averaging is applied to the Navier-Stokes equations, one ends-up with additional
(cross-correlation terms) that are unknown and therefore such averaging does not
contribute to the solution of the equations. If on the other hand, the above men-
tioned averages vanish, one ends-up with the “Reynolds averaged” Navier-Stokes
equations. These equations are identical to the non-averaged equation with an
additional term in the momentum equations (the divergence of the “Reynolds-
stresses” ). Germano [6] generalized this concept by requiring the averages (spatial
and/or temporal) have the following properties:

<fHg>=<f>+<g>, (6)
<af>=a< f> for a= constant, (7)

and
<fi>=<f>i5 <fr>=<f>i . (8)

One may define a “generalized central moments” (second and third, respectively)
by:

T(f,9) =<fg>—-<f><g>, (9)

m(f,9,h) =
< fgh>—-<f>7(g,h)—<g>7(f,h)—<h>7(f,g)— < f><g><h> .
By applying the average < * > to the Naver-Stokes equations one obtains: 1o
<ug>rp=0, (11)
<up > H(<u ><up >)p=—<pi >+ <o >k —[T(wnue)k . (12)

This definition of 7(u;,u;) leads to “averaging invariance” of the Navier-
Stokes equations. In this formulation, one still has to compute 7(u;, u;), or other-
wise model it. One may compute 7(u;, u;) by deriving transport equations for the
second moments. However, these equations contain in turn third-moments. This
“closure” problem is the prime difficulty in modelling turbulent flows.

Our aim here is to show how certain models (the one that we refer to here
as "Dynamic Large Eddy Simulations - D-LES) can be related to a hierarchical
modelling and how this model can be consider as a natural element of a multi-level
approach.
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3 Turbulence Modelling via Eddy-Viscosity

The closure problem of turbulence has been handled traditionally by different
models.  An often used model is the concept that the “Reynolds stress” can
be modeled as being proportional to the rate of shear of the averaged flow field
< 8;,; >. This relation is also known as Boussinesq’s assumption. The underlying
assumption is that turbulence can be modeled by an equivalent viscosity (the
“eddy viscosity”); typically:

1
Tij — §6i’ka’k =2 < Sij > (13)

where
Ti,j = TA(’U,Z‘,’U,]') . (14)

A is the characteristic (spatial) length and < x > is the corresponding space
averaging. By dimensional analysis, and by assuming a balance between production
and dissipation of turbulent fluctuating energy, one finds that the eddy-viscosity
is proportional to the square of the characteristic length-scale. A typical eddy-
viscosity model based upon spatial averaging is the Smagorinsky [3-5] model:

vy = cA?(2 < Sim > < Sim >)% . (15)

The model “constant” ¢ in the Smagorisky model, is unfortunately not
universal and even it is not a constant within a given flow field. Thus, the numerical
value of ¢ has to be “calibrated” for each type of problem. An alternative approach
has been proposed recently [6-13]. In this approach one leaves the numerical value
of the constant, as a problem dependent parameter to be computed as part of the
solution. Furthermore, the value of ¢ may vary both in space and time.

In the following we assume that < * > corresponds to a polynomial aver-
aging. We use the following notation:

<f >AE? and < f >/A~E ]?, (16)

Then, by definition
Tij = Wl — U 1 (17)

Smagorisky’s model can be written as:

1 _ _
Tij — g(si,ka,k = _2Vt5i,j 3 s = CA2|81‘71‘| . (18)

The main point of the so called “dynamic” LES model is that one assumes
that the same functional relation exists between the second central moment and
the rate of shear of the averaged velocity field. The form of this relation should be

independent of the filter size A. Thus, we apply a second filter (with [ = A) after
the first filter (I = A)
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Denote the generalized turbulent stress by T; ; as:

— A~ A~

Tij = uiu; — u; uj , (19)

Germano [G2| noticed the following identity:

— A~ o~

Lij=Tyj—Tij =0t = uj , (20)

or by using the eddy viscosity model:
1 No—~, —~ ==
Li,j — g‘si,ij,k = —20A218i7]'| Si,j + QCAQISI'J'I Si,j . (21)

It is evident that L; ; ,5; ; and ﬁ can be computed explicitly. Since all com-
ponents in (21) above are known, with the exception of ¢, the model parameter
can be computed locally. However, since (21) is a tensorial relation with six in-
dependent components (symmetric tensor), one has to make further assumptions.
One may assume that c¢ itself is a symmetric tensor, or else to assume a scalar
approximation (times the identity tensor) to this tensor. In recent two years sev-
eral approaches have been reported: Germano et al [8] used an approximate local
value of ¢ which was later averaged to filter out high frequency fluctuations in
c. Lilly [10] has suggested a least square approximation of the six components:

L, .M
cA\?2 = _ZmniTmn 22
My My, (22)
where R
A o= ==
Mo =23 (X)°[5351 505 = 521 523 ¢ - (23)

From the relation above it is obvious that ¢ may vary in space and time.
It is also clear that the dissipation rate (of fluctuation energy) is proportional to
c. Negative values of ¢ imply that energy is being transferred into the system.
This effect is called “back-scatter” since normally energy is transferred from the
large scales to the small ones, where they dissipate. In the back-scatter mechanism,
energy is being transferred from the small scales to the large scales. This back-
scatter process is now accepted as being physically valid [7]. A third important
property of the model is that ¢ vanishes for laminar flows. Thus, the averaged
equations become identical to the original equations when the flow is not turbulent.
This property is not found in most other turbulence models that require an external
(often manual) switching mechanism to turn the turbulence model on and off.

It should be noted that the “eddy-viscosity” model is not the only one that
can be derived by pure dimensional considerations. It is easy to show that very
conventional terms that are often called (or implicitly act as) artificial viscosity,
may function as closure models for the second moments. Such terms can often be
expressed as:

[7i,5],; = cA™ [ug |0k V™ u; . (24)
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With n=1 one obtains the classical upwind scheme (or the “hybrid” scheme for
larger cell Re, when combined with central differences). For n =3 one recovers
Kuwahara’s [14] third order upwind scheme (a non-linear form of a fourth order
artificial viscosity as is often used in compressible flow calculations; c.f. Jameson

[16)).

4  Multi-Level Adaptive Modelling

As noticed above, one has to apply at least two filtering functions. From the two
filtered values, one may deduce the local value of the second moments (provided
that the functional behavior of the moments is the same for both filters). This
is exactly the way we compute the coarse grid solution in the Multi-Grid (MG)
process. The defect that is added to the governing equation on a coarser grid, is the
difference in the residual on the coarse grid (double filtered function; corresponding
to T} ;) and the filtered residual on the finer grid (corresponding to 7; ;). That is,
the defect is corresponding to L;; in (21). Thus, turbulence modelling can be
considered as solving the differential equation on a rather coarse grid with a local
mean value at the computational points. In terms of MG process this means that
one has to correct the equation by a defect as is usually done in the MG process.
Thus, the LES-process described in the previous section is nothing else but a
standard coarse grid solution with a so called 7-correction. Bearing this in mind,
one may now skip altogether the need to rely on the “eddy viscosity” concept.
Instead one may compute directly the divergence of the second moment tensor
(Iris],4)-

With this interpretation one may compute directly the defect
(Liyj)j = cAgi (25)

where g; is the divergence of the difference in the second moments in (20). To
compute ¢ one may use a root-mean-square fitting, yielding simply that

cA?* = (Li ;) ;9i/9:9: - (26)

The only possible source for difficulty here, is when g; = 0; In such cases however,
one has also that ¢ = 0. This type of situation occurs for laminar regions in the
flow field!

The suggested approach has another advantage over the “eddy viscosity”
model, when the model coefficient, ¢, varies in space. Large spatial variations
cause large “spikes” in the defect and requires therefore smoothing as is done by
Germano at al [8]. With this type of “dynamic-LES” it is natural to consider
artificial viscosity as a “high-frequency spatial filter”. The second moments can
then be identified as the (explicit) high-order artificial viscosity terms. This would
also supports the observations of Kuwahara that LES-like results are obtained
without adding an explicit Sub-Grid-Scale (SGS) model [14,15]. A more closer
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comparison of the above mentioned D-LES models (based on the “eddy viscosity”
assumption or on the defect of the second moments) is given in [13].

The other issue associated with the above described procedure is the question
when can the model be applied. That is, one has to ensure that the underlying
assumption is valid. This happens when the spatial resolution is high enough so
that the smallest resolved scales belong to the “inertial sub-range” of the turbulent
spectrum. This scale is not known in advance, though it may be estimated (to its
order of magnitude). For practical purposes one should rely on adaptive methods,
that will introduce (local) grid refinements as long as the asymptotic behavior
of the model is not reached. As MG processes yield data required for adaptive
refinements as part of the solution procedure, it is natural that the D-LES scheme
should be tightly connected to a MG-process.

5 Concluding Remarks

The Multi-Level philosophy can be directly extended to the modelling of turbulent
flows in the frame work of Large Eddy Simulations (LES). The basic “dynamic”
LES turns out to be identical to the calculation of the defects in the MG proce-
dure. The main issue of this type of modelling is whether or not one may assume
the same functional relationship, used for modelling the second moments on the
different grids. This assumption is presumably correct once one has entered to
the “inertial subrange” of the turbulent spectrum. To ensure this, one has to use
an “adaptive” scheme that refines the spatial discretization, locally, to the level
required by the particular flow. All these aspects fit naturally into the concept of
Multi-level computation of turbulence.
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The Frequency Decomposition
Multi-Grid Method

Wolfgang Hackbusch!

ABSTRACT The FD (frequency decomposition) multi-level algorithm is pre-
sented. It uses multiple coarse-grid corrections with particularly associated pro-
longations and restrictions. We discuss the construction of the algorithm and the
proof of robustness by means of the techniques from domain decomposition meth-
ods.

1 Introduction: Smoothing versus Coarse Grid
Correction

Multi-grid methods are known as very fast solvers for a large class of discretised
partial differential equations. However, often, the components of the multi-grid al-
gorithm have to be adapted to the given problem and sometimes the problems are
modified in order to make them acceptable for multi-grid methods. In particular,
singular perturbation problems require special care. In latter case, the problem
depends on the discretisation parameter and an additional parameter of the differ-
ential equation. An iteration is called robust, if the convergence speed is uniform
for all of these parameters.

The traditional remedy is the choice of a special smoothing iteration, while
the coarse-grid correction is the standard one. For instance, block-versions of the
GauB-Seidel iteration, the alternating line-GauB-Seidel smoothing (cf. Stiiben -
Trottenberg [9]), the incomplete LU-decomposition (ILU) and its block version
(cf. Hemker [11], Kettler [13], Wittum [21]) were introducted for this purpose.

The simplest but typical example of this kind is the anisotropic equation

_auzz(xa y) - ﬂuyy(xa y) = f(.’L‘, y) (11)

with non-negative coefficients. As soon as the ratio a/3 approaches 0 or co, the
multi-grid method with pointwise Gauf3-Seidel converges very slowly. The obtained
convergence rates are independent of the discretisation parameter but not of the

nstitut fiir Informatik und Praktische Mathematik,
Christian-Albrechts-Universitat zu Kiel, D-24098 Kiel, Germany
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ratio a/f. Using line-GaufB-Seidel smoothing, one obtains good convergence for
a/f < 1 or a/B > 1 depending on the line direction, while alternation line-
relaxation as well as modified ILU version yields uniform convergence for all a/3
(cf. Hackbusch [3], Wesseling [19]).

The Fourier analysis leads to the following explanation. Region I of Fig. 1.1
consists of the “low frequencies”. Components of this part are reduced by the
coarse-grid correction. All other (high frequency) components must be eliminated
by the smoothing process. In the case of a/f < 1 and pointwise relaxation, the
frequencies in region II are poorly reduced, while for a/3 > 1 region III fails.

A slight modification of the standard coarse-grid correction is the semi-
coarsening (cf. Brandt [1], Hackbusch (3 §3.4.1]).

In the frequency decomposition multi-grid algorithm we follow an alternative
approach. We perform a more complicated coarse-grid correction using multiple
coarse grids, while the smoothing iteration may be as simple as possible (e.g.,
damped Jacobi method). In the one-dimensional case, the standard coarse grid
Qe ! consists of the grid points indexed by even numbers. The grid consisting of
the odd points represents a second coarse grid Qe ! In the two-dimensional case,
there are four coarse grids as indicated in Fig. 1.2.

The subscripts ij of ij_l indicate that the grid is obtained from the standard
one by a shift of ik in z direction and jh in y direction. We will see that together
with the special choice of prolongations each coarse-grid will contribute a correction
to one of the four regions in the frequency diagram of Fig. 1.1.

There are also other multi-grid approaches with multiple coarse-grid correc-
tion. Mulder’s [14] method uses a coarse-grid correction involving three grids: the
standard one and the semi-coarsened grids w.r.t. both directions (cf. Fig. 1.3). The
related prolongations are the usual ones. The aim of the method is the robustness.
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Fig. 1.2a Q5" Fig. 1.2b Q4;! Fig. 1.2c Q! Fig. 1.2d Q47!
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Fig. 1.3 The three coarse grids of Mulder’s coarse-grid correction

This is discussed in the recent papers of Naik - Rosendale [15] and Oosterlee -
Wesseling [16].

The same coarse grids as in Fig. 1.2a-d are used in the PSMG method of
Frederickson and McBryan [2]. The name PSMG (parallel superconvergent multi-
grid) indicates the aim of the method. The convergence of standard problems (not
singular perturbation problems) is accelerated by tuning the parameters of the
nine-point prolongation, which are the same for all four coarse grids.

The frequency decomposition multi-grid method will be defined in Section 2
and analysed in Section 3. It has first been presented in Hackbusch [4]. For details
we refer to Hackbusch [6,7].

2 Construction of the Frequency Decomposition
Multi-Grid Method

Let the fine grid correspond to level ¢. The four different coarse grids Qggl, anl,

Q571, Q47! at level £— 1 are defined as in Fig. 1.2a-d. The set of these four indices
is denoted by

J ={(0,0),(0,1),(1,0),(1,1)}. (2.1)

REMARK 2.1. The fine grid ¢ is the union of the grids Q¢! k € J.
Each grid is associated with a prolongation

pe Q5T S Qf (k€ J). (2.2)

For k = (0,0), px is the standard one: for the other indices, p. represents a
nonstandard prolongation:

1 1 21 1 -1 2 -1

poozz 2 4 2 y pl():Z -2 4 -2 ; (23&)
12 1 -1 2 -1
-1 -2 -1 L[ -2+l

pOIZZ 2 4 2 y pn:Z -2 4 -2 . (23b)
-1 -2 -1 +1 -2 +1
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The use of completely different prolongations for each coarse grid is characteristic
for the frequency decomposition multi-grid algorithms. The other variants with
multiple coarse grids mentioned in Section 1 involve a standard interpolation. The
range of the prolongations p,, k # (0,0), contains also high frequencies. pious—1
is oscillatory in x direction, pojue_; in y direction, and p;jue—; is oscillatory in
both directions.

REMARK 2.2. The span of range (p,) for all k € J is the space of all fine-grid
functions.

REMARK 2.3. For different indices ¢,k € J, range (p,) and range (p,) are ortho-
gonal.

As in standard multigrid methods, the restriction is defined as the adjoint of
the prolongation.

re = pH (k€ J). : (2.4)
Remark 2.3 is equivalent to

REMARK 2.4. r,p,. = 0 holds for different indices ¢,x € J.

In each coarse grid Qf;‘l we will have to solve a coarse-grid equation with a
coarse-grid matrix A%~!. As in the standard case, these matrices are defined by
the Galerkin product
A = Alp, (k € J) (2.5)

K

from the fine-grid matrix A°. Note that positive definiteness of A¢ implies positive
definiteness of all coarse-grid matrices.

The new part of the algorithm is the multiple coarse-grid correction. Let Jy
be a subset of the index set J. The simplest choice would be Jy := J. At least Jy
has to contain the index (0,0). Using all coarse grids Q¢! with k € Jo, we are
lead to the multiple coarse-grid correction

up g — Y pu(AT) i (Alug — f). (2.6)

k€Jy

If (0,0) is the only index in Jy (2.6) represents the standard coarse-grid correction.
The purpose of the additional terms in (2.6) is to correct also oscillatory errors from
the regions II to IV of Fig. 1.1. More precisely, the index x = (1,0) corresponds
to region II k = (0,1) to III, and k = (1,1) to IV. Since the different parts of the
spectrum should be corrected by the different coarse-grid corrections, the resulting
method is called the frequence decomposition (FD) two-level iteration.

In order to demonstrate that the robustness is a consequence of the multiple
coarse-grid correction (2.6) and not of a suitably chosen smoothing iteration, we
choose the damped Jacobi iteration. Of course, the choice of more sophisticated
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smoothing processes can only improve the convergence.

The FD two-level method consists of pre-smoothing ( v steps) followed by
the multiple coarse-grid correction (2.6). The two-level method depends on the
choice of Jy. For Jo = {(0,0)} one obtains the standard two-grid method.

As for the standard multi-grid method, the straightforward version of the FD
multi-grid algorithm is obtained from the FD two-level algorithm by replacing the
exact solution in the coarse-grid correction (2.6) by the recursive application of
the same method. Note that the treatment of the different coarse-grid equations
can be performed in parallel.

If the FD multi-grid algorithm is performed with a fized subset Jy, the fol-
lowing operation count holds in the two-dimensional case.

REMARK 2.5. If #Jy < 4, the V-cycle requires O(n;) operations. For #Jy = 4 the
V-cycle takes O(n; logn,;) operations.

The W-cycle with #Jy > 2 requires a too large amount of work. Therefore, a
modification will be discussed in §4. The statement in three dimensions is similar:
One has to replace #Jy < 4, #Jy =4 by #Jy < 8, #Jo = 8, respectively.

Numerical results are reported in Hackbusch [6]. In addition, we show the
convergence for the three-dimensional anisotropic equation czg + Buyy + Yu,, +
u = f in [0,1]® with o = 0.05, 3 = 0.001, and v = 1. The involved coarse
grids carry three subscripts indicating the shift into the z,y, and z direction. Let
Jo comsist of (0,0,0), (1,0,0), (0,1,0), (1,1,0), and (0,0,1). Choose smoothing
by the Jacobi iteration damped by w = 1/2. Then the FD V-cycle produces the
following rates depending on the number v of smoothing steps.

v 1 2 3 5 10
rate 0.524 0.275 0.235 0.226 0.203

Using all coarse grids (Jo = J), we obtain rates which are only weakly dependent
on v.
v 1 2 3 5 10
rate 0.245 0.240 0.235 0.226 0.203

From these results we can draw the following conclusions. It is not true that
the convergence rate behaves like 1/v as for standard multi-grid methods (cf.
Hackbusch [3]). Furthermore, the smoothing may play a minor role if Jy = J.
Consequently, in the next chapter we will study the convergence of the FDE two-
level method without any smoothing (i.e., v = 0).

3 Convergence Analysis

We will formulate the FD-multigrid method as a special variant of the addi-
tive Schwarz iteration. Then the convergence analysis for domain decomposition
methods applies to the frequency decomposition multi-grid method and yields
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robust convergence. Since the convergence analysis for Schwarz-type iterations is
restricted to positive definite problem, we have to restrict our considerations to the
symmetric and positive case, although the FD multi-grid method is also applicable
to nonsymmetric problems.

First, we remind the reader to the convergence theory of the additive Schwarz
method (for more details compare Hackbusch [8]). Then, we raise the question of
robustness, i.e., we want to obtain convergence estimates independent not only
of the dimension of the problem but also of the inherent parameters. It turns
out that this question is easy to answer if the class consists of all non-negative
linear combinations of positive semidefinite matrices. Finally, we make use of the
orthogonality of the subspaces (cf. Remark 2.3).

We consider a general system

Az =b (3.1)

with a Hermitian and positive definite matrix A of the size n X n. We denote the
linear space of the vectors z, b by X. The characteristic feature of the subspace

iteration is the (approximate) solution of smaller subproblems, which we denote
by

Agy® =c" (k € J). (3.2)

Here J is an index set. The size of Ay is n, X n,. The vectors z,b from (3.1)
and y*, c* from (3.2) belong to the respective vector spaces X, X.(k € J). The
connection between X, and X is given by an injective prolongation

P Xeg— X (k€ J). : (3.3)

Endowing X and X, with the standard Euclidean scalar product (-, -), we are able
to define the transposed (Hermitian) mapping

=0 : X X, (k €J). (3.4)

By assumption, 7, is surjective. The (positive definite) matrices A, from (2.2) are
defined by the Galerkin product

A =T Aps. (3.5)

In the case of the FD multi-grid method, p, from (3.3) are the prolongations
(2.3a,b), (3.4) describes the restrictions to the coarse grids, and (3.5) coincides
with (2.5).

The corresponding additive Schwarz iteration

™ 2™t =™ — ZpKAglrn(Axm —b). (3.6)
keJ
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is a damped variant of the FD two-level method (2.6).

Using the second and third normal forms z™*! = 2™ — N(Az™ — b) and
W (z™*! — ™) = b — Az™ of the linear iteration (cf. Hackbusch [7, §3]), one can
represent the additive Schwarz iteration by the corresponding matrices

N=w) N, with Ne:=peA 'r., W:=N" (3.7)
r€J

The convergence is described by the constants v and I' in
YW <ALTW (y>0). (3.8a)

Here, B < C means that C' — B is positive semi-definite. If v and I' are the best
possible bounds in (2.8a),

k=T/y (3.8b)

is the condition number of W' A4 (cf. Hackbusch [7, §8.3]).
Choosing the optimal damping factor wopt = 2/(y +T') in (3.6), we obtain the
convergence rate

1M 4 = [AYV2MATY?| = (T = 7)/(T+7) = (k= 1)/(x + 1), (3.9)

where M = I — N A is the iteration matrix. Using the additive Schwarz iteration
(3.6) as basic iteration of the Chebyshev or cg-method, we obtain an asymptotic

rate equal to (\/k — 1)/(v/k + 1).

Concerning the construction or estimation of the bounds v and I' in (2.7),
two wellknown lemmata are applied (cf. Widlund [20], Hackbusch [7, §11],).

LEMMA 3.1. T := #J satisfies (3.8a). Since for the FD two-level methods #J is
the number of coarse grids, I' < 4 is a bound independent of any parameter.

LEMMA 3.2. Assume that for any x € X there is a decomposition T = X pz"
such that

D (Apz®,z") < C(Az, z). (3.10)
keJ

Then, (2.8a) holds with v =1/C.
Next, we study the uniform convergence for a class U of matrices A =

A(ay,ag,...) depending on parameters ag, as, . ... The set U is defined as follows:
U={A=> 0,A >0 with a, >0}, (3.11)
vel

where A®) (v € I) are positive semi-definite matrices. In the case of the anisotropic
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equation (1.1), the linear combination A + BA®) of the one-dimensional sec-
ond differences A(1?) = [~1 2 — 1] in 2 and y direction yields the standard
discretisation. '

For the determination of v = 1/C by Lemma 3.2 one may use

LEMMA 3.3. Let A¥) (v € I) be the positive semi-definite matrices from (3.11) and
assume that (3.10) holds for each AW, v € I, with a constant C,,:

Z(A,({”)x",a:”) < C AWz, z)
keJ (312)
(z anx“ from Lemma 3.2, v € I),

where Afi") = r.AWp,. Then (3.10) holds for all A € U with the constant C =
max{C, : v € I'}.

The hypothesis of this paper is the orthogonality as stated in Remark 2.3:

range(p,) and range (p,) are orthogonal for different

indices ¢,k € J. (3.13)

The products ryp«(k € J) are positive definite. Therefore, the orthogonal
projection onto X, =range(p,)

Qx = pn(rzpn)_lrn (K? € -]) (314)

are well-defined. The orthogonality (3.13) allows a unique and easily describable
decomposition of vectors k € X. For all x € X the identities (3.15a.b) hold:

r=) (Qu2), Qur € range (px), (3.15a)
keJ

T = anx“ with % := (repe) 'rez. (3.15b)
KEJ

In the following we derive sufficient conditions for inequality (3.12) of Lemma
3.3.

The (Euclidean) scalar product, on which the definition of the transposed
matrices and the orthogonality are based, is denoted by (-,-). The corresponding
norm is ||z|| := (z,z)'/2. We use identical symbols | - ||, (-,-) for elements from X
(fine grid functions) and X, = range (p,). In addition, we define the energy norm
on X:

lz|]| := (Az,z)/? for x € X. (3.16a)

For the space X, we choose suitable positive definite matrices B, and define the
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(energy) norm
[|z%]]| = (B, z")'/? for z* € X,. (3.16b)

In the sequel, we consider the following estimates:

pxlll < Cpoxs (3.17a)
llrslll < Cr (3.17b)
1repe) Il < HlICrps. (3.17¢)
Here, ||| - ||| also denotes the induced matrix norm, e.g.,
lllp<lll == max{|{[pez®[[|/I[l"||| : 0# 2" € X}.

LEMMA 3.4. Condition (8.17a) is equivalent to the inequality
A, < CZ’,{B,.E with A, from (3.5).

LEMMA 3.5. Assume that the matrices B, and r.p. commute. Then condition
(3.17¢) holds with the constant

Crpx = 1/ smallest eigenvalue of r,p,.

From (3.17a-c) and (3.14) we conclude
1Qulll £ Co.  with Cg . = CpxCrCrp . (3.18)

LEMMA 3.6. Let Cg . be the bound in (3.18). Then inequality (3.12) holds with

C = ZC’%N
reJ
To obtain parameter and dimension independent convergence, one has to prove
(3.17a-c) with dimension independent constants CJ"2, Cﬁ”,c) , CY). for all AW
(v € I) instead of A. Note that A is involved in |||z||] := (Az,z)Y/2. Also the
matrices BY") involved in [||z*]|] may depend on v € I.

As mentioned after (3.11), the first matrix A() may represent the second
difference [-1 2 —1] in z direction, which can be regarded as the tensor product
of the one-dimensional stencil [~1 2 —1] w.r.t. z times the one-dimensional identity
[010] w.r.t. y. It is not astonishing that the analysis of A = A reduces to the
analysis of the one-dimensional cases (cf. Hackbusch [7]), where only two coarse
grids (indexed by k = 0, 1) and the associated prolongations

po=[1/211/2, p=[-1/21 -1/2]
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are involved. To illustrate the proof technique, we demonstrate the estimation
(3.18) for AV and & = 0, 1. The results are stated in Lemmata 3.7 and 3.8.

Let (N — 1) x (N, — 1) be the size of the matrix A("). For simplicity, we
assume N, to be even. The energy norm |||¢||| = (A&, €)'/2 from (3.16a) can also
be represented by

1€l]* = Zlég &1l

The index j refers to the z-location © = jh. For j > Ny or j < 0, & := 0. We
choose By := [-1 2 — 1]. Then, the squared energy norm (3.,16b) related to the
coarse grid Qo5 = {0,2h,4h,...,1} equals

No/2

NIENP = (Bot®, &) = Z|§° J_1> for & € Xo,

where the index j refers tot the grid point x = 2jh € Qgj,. We prove

LEMMA 3.7. In the given case, the inequalities (3.17a-c) hold with the constants
Cpo=1/V2. Cro=V8, Cppo=1L1 (3.19)
PROOF. (i) Let z € X and £ = roz € Xo. From
§ = &1 = (321 + 325 + 32541) — (3T2j—3 + T2 + $225-1) =
= 3(z2j—2 — w2j-3) + 3(w2j-1 — @j-2) + § (w25 — @25-1) + §(22541 — 725)
one concludes that

lsj & < (12+f +V3 412 /22
X {|w2j—2 — Toj-3|* + 3|zo;- 1Ty o+
+3|zoj — zoj_1 +|$2J+1—af2g| } =
_8{ leJ 2 — T25— 3] +4|x2j 1—332j 2| +
+3 |£L‘2]—.’E2j 1] +4|$2]+1—.’132J| }

for 2 < j < N,/2—1 (use the Schwarz inequality). For j = 1 one has to note that
éj—l = 0. Then

6 =& =& =
= |%CI: + .232 + 11‘3' = [2(333 — 1E2) + %(ibg — CL‘1) + 2(.’131 — 5130)]2 <
<32+ (32 + 2] [(x3 — 22) + (22 — 21)% + 2(21 — 20)?)-

The index j = N, /2 is treated similarly. Summing over 1 < j < N,/2, we obtain
I11€]11? < 8]||z|||?, which proves C;.o = /8.

(i) The product Ag := roApy equals Ag = [-1 2 — 1]. Hence, 49 < 1By
and Lemma 3.1 prove Cy 0 = 1//2.



4. The Frequency Decomposition Multi-Grid Method 53

(iii) The product ropg equals 1[1 6 1) = 2I—1[-1 2 —1]. Since it commutes
with By, Lemma 3.5 can be applied. The smallest eigenvalue of 1[1 6 1] is bounded
from below by 1(6 —1 — 1) =1 proving Cy,0 = 1. O

For the case of Kk = 1, i.e., py = [-1/2 1 —1/2], choose By = I in (3.16b).
LEMMA 3.8. In this case, the inequalities (3.17a-c) hold with

Cp,l = \/g, CT‘,I = 1/\/§> Crp,l =1L (320)

PROOF. (i) Let 7 € X and ¢ = pfz € X;. Summing

€1* = |4 (225 — w95-1) — $(w2541—25)
< 3 (Jogy — x5 + w41 — 325 ?)

over j, one obtains ||¢]|* = |[[¢[I[* < [I§]IZ = 4[l|=|||2 proving Cr1 = 1/v2.

(i) The product A; = ry Ap; yields the tridiagonal matrix

Its largest eigenvalue is bounded by (10 + 3 + 3) = 8 proving 4; < 81.
From Lemma 3.1 the estimate C,,; = /8 follows.

(iii) The product r1p; equals

—_ ot
S =
[a—y

W=

1 61
15
Its smallest eigenvalue is 1. Hence, Lemma 3.5 yields Cyp 1 = 1. a
The bounds (3.19) and (3.20) result in Cg o = Cg,1 = 2. Since the same esti-

mates hold for the second difference w.r.t. y, Lemmata 3.6 and 3.3 prove uniform
convergence of the anisotropic equation discretised by

A=

Q o Q
QO o O
e o Q
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with b = a, ¢ = 3, a = e = 0. Inequality (3.12) can also be proved for A®) =
identity and the rotated difference star

-1 0 -1
AW = 04 0
-1 0 -1

According to Lemma 3.3, the nine-point star (4.2): A = bA®) +cA®) +eAB) +44@)
with a,b,c,e > 0 leads to uniform convergence of the additive Schwarz method
and hence of the FD two-level method.

A diagonally second difference is not allowed in this context, but another FD
approach including this term is described by Katzer [12].

4  The Multi-Level Version

In the following, we discuss the generalisation of the two-level iteration (2.6) to
a multi-level iteration corresponding to the well-known V- and W-cycles of the
multi-grid method (cf. Hackbusch [3]). Before analysing the W-cycle, we have to
discuss the form of the auxiliary systems (3.2): A,y" = ¢*, which now are to
be solved recursively by the same additive Schwarz method. One may check that

the Galerkin products AV = rH AW)p,. belong again to the same class U. The
Galerkin product of a general matrix A € U does not leave I and the convergence
analysis of the two-level iteration is also true for the subproblems (3.2).

Let & = k™0 be the uniform condition number of the two-level iteration at
all levels. As in the standard case, we can prove the following result (cf. Hackbusch
[7]): If the two-level convergence is fast enough, it implies multi-grid convergence.

THEOREM 4.1. If kWO < 4, the convergence rate py of the W-cycle is bounded
uniformly: py < p* < 1, where p* is the solution of p = (kW0 — 1+ p?) /(K10 +
1-p?).

The unmodified W-cycle is unpractical because of the unfavourable (sequen-
tial) operation count. There are 4' coarse-grid problems at level £ — i of dimension
Ny_; ~ Ny/4" summing up to N; = dim(X). But since the W-cycle induces 2°
recursive calls of the method at level £ — 1, the total amount of computational
work is of order Ny + 2Ny + 22N, + ... + 26N, = O(N?).

However, most of the coarse-grid matrices have a constant (parameter inde-
pendent) condition number. Hence, the approximate solution of the coarse-grid
equation by two W-cycles can be replaced by one (or few) steps of the Richardson
iteration. The analysis (Hackbusch [7]) shows that only O(2!) of the 4* coarse-grid
problems can lead to a larger condition number. Together with the number of 2¢
recursive calls at level £ — i, we arrive at O(2%)2!N,_; = O(N;) operations. Sum-

ming over all levels, we obtain a total amount of work (sequential version) in the
order O(¢Ny) = O(Nylog Ny).
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Finally, we add that the corresponding V-cycle or F-cycle requires only a work
of O(Ny), while without modification an additional logarithmic factor appears as
mentioned in Remark 2.5.

References

[1] BRAND., A.: Stages in developing multigrid solutions. In: Numerical Methods
for Engineers (eds.: E. Absi, R. Glowinski, H. Veysseyre), Paris, Dunod, 1980,
pages 23-43.

[2] FREDERICKSON, P.O. and O.A. MCBRYAN: Recent developments for the
PSMG multiscale method. In Hackbusch - Trottenberg [10] 21-39.

[3] HAackBUSCH, W.: Multi-grid methods and applications. Springer, Heidelberg,
1985.

[4] HACKBUSCH, W.: A new approach to robust Multi-Grid methods. In:
McKenna, J., Temam, R. (eds.) ICTAM ’87: Proceedings of the First Interna-
tional Conference on Industrial and Applied Mathematics, SIAM, Philadel-
phia 1988.

[5] HACkBUSCH, W.: (ed.): Robust Multi-Grid methods. Proceedings, 4th
GAMM-Seminar Kiel, Jan. 1988. Notes on Numerical Fluid Mechanics, vol.
23, Vieweg, Braunschweig, 1989.

[6] HackBUsCH, W.: The frequence decomposition multi-grid method I. Appli-
cation to anisotropic equations. Numer. Math. 56 (1989) 229-245.

[7] HAcKBUSCH, W.: The frequency decomposition multi-grid method II. Con-
vergence analysis based on the additive Schwarz method. Numer. Math. 63
(1992) 433-453.

[8] HAckBUSCH, W.: [terative Lésung grofer schwachbesetzter Gleichungs-
systeme. Teubner, Stuttgart 1991. English translation: Iterative Solution of
Large Sparse System of FEquations. Springer-Verlag, New York 1993.

[9] HACKBUSCH, W. and U. TROTTENBERG (eds.): Multi-Grid Methods, Pro-
ceedings, Lecture Notes in Mathematics 960. Springer Berlin-Heidelberg,
1982.

[10] HACKBUSCH, W. and U. TROTTENBERG (eds.): Multi-Grid methods III. Pro-
ceedings, Bonn, Oktober 1990. ISNM 98, Brikh&user, Basel, 1991.

[11] HEMKER, P.W.: The incomplete LU-decomposition as a relaxation method in
Multi-Grid algorithms. In: Miller, J.J.H. (ed.): Boundary and interior layers
- computational and asymptotic-methods, Boole Press, Dublin, 1980, pages
306-311.

[12] KATZER, E.: A subspace decomposition two-grid method for hyperbolic equa-
tions. Contribution to this volume.

[13] KETTLER, R.: Analysis and comparison of relaxation schemes in robust multi-
grid and preconditioned conjugate gradient methods. In: Hackbusch - Trot-
tenberg [1] 502-534.



56 Wolfgang Hackbusch

[14] MULDER, W.: A new multigrid approach to convection problems. J. Comp.
Phys. 83 (1989) 303-323.

[15] NaIK, N.H. and J. VAN ROSENDALE: The improved robustness of multigrid
elliptic solvers based on multiple semicoarsened grids. SIAM Num. Anal. 30
(1993) 215-229.

[16] OOSTERLEE, C.W. and P. WESSELING: On the robustness of a multiple
semi-coarsened grid method. To appear in ZAMM

[17] STUBEN, K. and U. TROTTENBERG: Multi-grid methods: fundamental algo-
rithms, model problem analysis and applications. In Hackbusch - Trottenberg
[1] 1-176.

[18] WESSELING, P.: Theoretical and practical aspects of a multigrid method.
SIAM J. Sci. Statist. Comput. 3 (1982) 387-407.

[19] WESSELING, P.: An introduction to multigrid methods. Wiley, Chichester
1991.

[20] WIDLUND, O.: Optimal iterative refinement methods. In: Chan - Glowinski -
Périaux - Widlund (eds.), Domain decomposition methods. Proceedings, STAM
Philadelphia 1989. Pages 114-125.

[21] WITTUM, G.: On the robustness of ILU-smoothing. In Hackbusch [3] 217-239.



)

Multiscale Methods for
Computing Propagators in
Lattice Gauge Theory

P. G. Lauwers!

ABSTRACT Gauge theories, a special kind of Quantum Field Theories, are the
best mathematical framework to describe all known basic interactions in nature. In
particular, the theory of the strong interactions (nuclear and subnuclear forces) is
a four-dimensional SU(3) gauge theory called Quantum Chromodynamics (QCD).
In state-of-the-art QCD simulations, requiring massive amounts of computer time,
more than 95% of the CPU-time is spent computing propagators, i.e., inverting
the huge fermion matriz. Although a multiscale approach may be called for to
speed up many aspects of QCD simulations, first real breakthroughs should be
expected thanks to more efficient multiscale algorithms for inverting the fermion
matrix. Several strategies, proposed recently by different groups, are presented and
discussed.

1 Brief introduction to lattice gauge theories

During the last fifty years, one of the great achievements in the physical sciences
has definitely been the development of Quantum Field Theory (QFT) as the de-
scription of basic interactions in nature. That quantum gauge theories, a particular
kind of QFT, are now generally accepted to be the correct description of at least
three out of the four known types of interactions, is an intriguing fact [1]. Elec-
tromagnetism is described by Quantum Electrodynamics (QED), a U(1) gauge
theory. The weak interactions, e.g. responsible for 3-decay, have been unified with
QED in the Glashow-Salam-Weinberg theory(GSW), an SU(2) x U(1) gauge the-
ory. Finally, the strong interactions, e.g. binding protons and neutrons within the
nuclei, are described by Quantum Chromodynamics (QCD), an SU(3) gauge the-
ory. Even gravitation, the fourth basic interaction, is generally assumed to be a
gauge theory [2].

In the framework of QED, extremely precise predictions can be made by

!German National Research Center for Computing Science (GMD)
Institute I1.T, P.O.B. 1316, D-53731 Sankt Augustin, Germany
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means of perturbation expansions. Many of them have been verified experimentally
in high-precision measurements. In QCD the situation is completely different. Some
of the most relevant aspects of the theory, e.g. the hadron spectrum, can not be
investigated by perturbative methods. Although protons and neutrons, the main
constituents of the nuclei, are generally believed to be composite states made
up of three quarks bound together by QCD, no analytic method has been found
enabling us to derive this simple fact from first principles. At present, the only tool
for investigating this and many more equally essential properties of the theory is
the Monte Carlo simulation of lattice QCD [3].

1.1 THE MODEL

Lattice QCD is defined on a finite four-dimensional hypercubic lattice A, usually
with periodic boundary conditions. L denotes the number of lattice points in each
direction and h is the basic lattice distance. To obtain real physical predictions, a
highly nontrivial double limit must be taken in the end: (i) Lh — oo (the physical
extent of the lattice goes to infinity) and simultaneously (ii) h — 0 (the lattice
distance goes to zero).

The first kind of variables in the theory are the link elements U /‘j‘ﬂ , located
on the links of the lattice. They are elements of the fundamental representation
of the gauge group SU(3), i.e., three-dimensional special unitary matrices. The
upper indices a and 3 are SU(3) indices, taking the values 1 through 3; the lower
index u takes the values 1 through 4 depending on the direction of the link. The
second type of variables are the fermion fields ¥, located on the lattice points.
They are anticommuting complex variables (Grassmann variables), transforming
under the fundamental representation of the gauge group: the upper index « is
the gauge group index, taking the values 1 through 3. A given state of the system,
with values for all variables specified, is called a configuration.

A gauge transformation of a configuration is defined by means of a map g:
A — G, where G is the gauge group; in two dimensions this means that a group
element g(i,j) (fundamental representation) is assigned to each coordinate pair
(¢,7). Under the gauge transformation g, the fermion field (7, j) is transformed
into ¢(4, j)¥ (i, j). The link element Uy (i + %,j), i.e. the group element located on
the link connecting the points (4, j) and (i + 1, §), is transformed into g(i, j)Uy (2 +
%, 3)g'(i 4+ 1,5), where gt denotes the hermitian conjugate of g. It is evident, that
many structures can be built with the U’s and the ’s that are invariant under
any gauge transformation. An important gauge invariant quantity is the plaquette
action Splaq, defined for every plaquette on the lattice; a plaquette is an elementary
square consisting of four lattice links. In two dimensions a typical plaquette has the
corners (1,j), (i+1,), (i+i,j+1) and (i,j+1). For this plaquette the gauge invariant
SU(3) plaquette action is defined by

1 A . o1 N |
Splaq = §Trace [U.l(Z + 5»])U2(Z + 1?.7 + E)UI(Z + 5’.7 + 1)U2T(7’a.7 + 5)] . (1)
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Another gauge invariant quantity, containing fermion fields as well as link variables,
is YT (4, UL + 5, 7)P(i + 1, 7).

A very important entity in lattice gauge theories is the fermion matriz M, a
huge nVj x nVj complex matrix, where Vi denotes the number of lattice points of
the lattice A and n the dimension of the fundamental representation of the gauge
group. In two dimensions, the explicit expression for the fermion matrix is

o 1. .35, 1. wg,. 1.
M ey = g0 G+ 52005000k = UL = 5. 5)8106i-1.4]
_1i aB/. - 1 o 1
* : 2h) U5 (0d + ikdivie = U3 (i, - 5)0ik6i-11]
+ mqéwéj’léaﬁ
= Dep T mabindis® (2)

where m, denotes the quark mass. The explicit form of the fermion matrix M is
not unique; Eq. 2 is the two-dimensional version of the staggered formulation [4].
An important alternative is the so-called Wilson formulation [5]. Which version is
better, is still an open question, which should be decided on physical grounds.

In lattice gauge theories, the content of the model is defined by the action S,
a function of all the variables of the theory. In the case of lattice QCD, this action
S consists of two terms: S = Sg + Sp . The gauge part S¢ is a simple function of
the plaquette action Spiqaq, defined in Eq. 1:

Sg =0 Z[I — Real(Spiaq)] (3)

plag

where the sum runs over all plaquettes of A. The fermionic part Sg, expressing the
dynamics of the fermion fields as well as their interaction with the gauge fields,
can be written as a function of the fermion matrix M and the fermion field ¢ in
the following way:

in two dimensions the explicit expression is

3
SF = Z Z Z "-/JTa(i»j) M(O;g‘)(k’l) d}ﬂ(k,l) . (5)

(i,7)EA (k,1)EA a,B8=1

A fundamental property of gauge theories is that all physical quantities in the
theory are gauge invariant. As a consequence, all physical quantities corresponding
to a configuration can be expressed as gauge invariant combinations of ¢'s and U’s:
e.g. the plaquette action Sp,4 is directly related to the encrgy density. Predictions
for a physical quantity F[i1,1, U] come, as is the case in all quantum theories, as
its expectation value < F > given by the following expression:

< F>= %/[dzpf] [dy] [dU] F[y', %, Ul exp| =S[¢t, ¢, U]], (6)
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where the partition function Z, serving as a normalization factor, is defined by
2= [ (a9} d) 40 expl =Sl V1) (7

In these expressions the integration [ [dy'][dy][dU] stands for the integration
over all possible configurations of the system. The fermion fields, being Grassmann
variables, can be integrated out. After this integration has been carried out, Eq.
6 and 7 take the following form:

<F>= % / (U] F[M~Y, U] det(M[U]) exp( —Sa[U]) (8)

with
2= [ la0) dex(M{U)) exp(~Scl0)). o)

Notice the appearance in these expressions of both the determinant det(M[U])
and the inverse M ~![U] of the fermion matrix. The expectation value < F >
can now be given a simple interpretation: it is the weighted average of F[M ™!, U]
over all possible U-configurations with the expression det(M[U]) exp(—S¢[U]) as
weighting factor. Exactly for this type of problems, at least if the weighting factor
is real and nonegative for all configurations, Monte Carlo simulation methods were
developed many years ago [6]. For a more rigorous and complete introduction to
lattice gauge theories I must refer to the literature [3].

1.2 MONTE CARLO SIMULATIONS: QUENCHED AND FULL

The ideas behind a Monte Carlo (MC) simulation are simple. Instead of computing
the weighted average of F[M~1,U] over all possible U-configurations — an impos-
sible computational task for the large systems being studied — a Markov chain
of sample configurations is generated with det(M[U]) exp(—S¢[U]) as probability
distribution. If all the rules of the game are carefully followed, then the regular
average of F[M ! U] over the sample configurations is a good estimator for the
expectation value < F >, at least for long enough Markov chains [6, 7].

For reasons having to do with the double limit required for physical predic-
tions (see Section 1.1), reliable MC simulations of lattice gauge theories must be
carried out on large systems - at least 24* and preferably much larger. This re-
quirement turned the simulation of the full theory into a computational task that,
until recently, was unmanageable on the available computer systems. If one wanted
physical predictions from lattice gauge theories anyway, one was forced to use the
quenched approximation, a drastic, but in many cases acceptable, approximation:
det(M([U]) is set equal to 1 in Eq. 8 and 9. In the framework of this approxima-
tion, one should clearly distinguish two computational tasks: (i) the generation
of statistically independent gauge field configurations with probability distribu-
tion exp(—Sg[U]) by means of a MC update algorithm; (ii) computation of the
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measurements F[M 1 U] for these configurations, requiring the computation of
M~YU]. The traditional update algorithms for QCD are local and suffer from
Critical Slowing Down (CSD). Much effort has gone into the search for efficient
nonlocal update algorithms for lattice QCD and also for simpler, but physically
equally relevant, models in statistical mechanics. This search was very successful
for a whole series of models, leading to very efficient algorithms of two types: (i)
Swendsen-Wang cluster algorithms [8] and (ii) Multigrid algorithms [9]. For QCD
in four dimensions, however, the search still continues. The computation of the
measurements F[M~1, U] requires for most relevant physical quantities the inver-
sion of the fermion matrix M, a task that can be accelerated by multigrid methods.
Because this inversion plays an even more important role in the simulation of the
full model, it will be discussed in that context.

Over the years, as computer power increased, the interest in MC simulations
of full QCD was renewed, especially after the invention of a much faster exact
algorithm: the Hybrid Monte-Carlo algorithm [10]; in this context the word exact
means introducing no additional approximations. Using huge amounts of computer
time on some of the biggest computers available at present, this algorithm enables
us to take a first glance at some of the most fundamental properties of QCD,
albeit on lattices, barely large enough to guarantee reliable physical results [11].
The main computational obstacle preventing us from obtaining sufficient statistics
for larger systems is the fact that the Hybrid Monte Carlo Algorithm requires
the frequent inversion of the fermion matrix M as part of the updating process.
In all recent large-scale full-QCD simulations, more than 95% of the CPU time
was spent inverting the fermion matrix by means of standard algorithms as the
conjugate gradient algorithm and the preconditioned minimal residual algorithm.
A direct consequence is that any real breakthrough in inversion algorithms will
almost certainly lead to a breakthrough in lattice QCD. Because of the nature
of the problem, a multiscale approach looks very promising. Several groups are
pursuing this approach with somewhat differing methods and goals. This variety
of efforts will be the topic of the following sections.

2 Parallel-Transported Multigrid (PTMG)

Although gauge theories require extra precautions, PTMG is, in spirit, close to
multigrid methods used for solving elliptic partial differential equations. Naive
PTMG, was proposed and tested for inverting the fermion matrix M in the massive
Schwinger model: two-dimensional U(1) lattice gauge theory [12]. Afterwards a
more stable version was developed — standard PTMG, — one order of magnitude

faster than the conjugate gradient algorithm [13]. It was successfully generalized
to SU(2) [14] and SU(3) in two dimensions [15].
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2.1 THE COMPUTATIONAL PROBLEM

The inversion of the fermion matrix M is achieved by solving the linear system

DD MU, ULy = 826528 (10)

(k1) B

For simplicity’s sake, explicit formulae are given for the two-dimensional case; the
generalization to four dimensions is almost always straightforward. The numerical
solution ®[U] is one of the columns of M ~1[U]. A measure for the accuracy of the
approximate solution ®[U] is the residual defined by

a B
ri) = 616,08%1 =D MUY, (00 @UGy (11)

(k) B

or its norm |r|, given by
> =3 "> IrgP (12)
(i,5) o
If we denote the exact but unknown solution of Eq.10 by ®[U] and define the error
E, corresponding to the present approximation ®[U], by

E(ai, ) (I)[U](z i) @[U]t();y]) ) (13)

then Eq. 10 can be rewritten in a completely equivalent form:

Z ZM[U](” ), (k) (k D= TGg) - (14)

(k1) B

The method, used for solving the problem iteratively, is the Kaczmarz local re-
lazation procedure [16]. As is always the case for local algorithms, it suffers from
Critical Slowing Down (CSD), caused by the existence of Approzimate Zero Modes
(AZM), eigenvectors of M with very small eigenvalues (absolute value). In general
it can not compete with the conjugate gradient algorithm. The situation changes
completely, if the Kaczmarz algorithm is used as the smoother of a multigrid al-
gorithm.

2.2 THE MULTIGRID APPROACH (MG)

The main idea of MG is trying to solve the problem on a coarser lattice A! with
mesh size h(!), where the smooth AZM of A° are less smooth. For this purpose,
we need a restriction (coarsening) operator I}, which transforms the components
of the residual on A° to the coarse grid A':

r) = [0 (15)
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On the coarse grid we then solve
MWOE® = 1) (16)

where M) stands for the appropriate “translation” of the fermion matrix on
the coarse grid A'. Finally, we need the interpolation operator I, translating the
solution of Eq. 16 back to A°:

EO© = 0p® (17)
The interpolated E© is then used to obtain a better approximation on A°:
3O (new) — 9 (old) + E© . (18)

The steps described here constitute the definition of a two-level process. The real
MG process is generated by observing that the solution on the coarse grid Al
may be accelerated in turn by an analogous procedure, involving an even coarser
lattice A%, etc. . In this way, the familiar V- and W-cycles can be defined. In
some cases, it is for theoretical or practical reasons not advantageous to carry
through the coarsening as far as possible. We call this procedure a A = n cut-
off cycle, where n denotes the distance (expressed in number of levels) between
the finest and the coarsest grid used. A cut-off A = 1 cycle corresponds exactly
to the two-level process discussed earlier. On all levels, vy, Kaczmarz relaxation
sweeps are carried out before a restriction operation; similarly after a coarse- grid
correction (interpolation) v Kaczmarz sweeps are done on the finer lattice. For
gauge theories, the restriction and interpolation operators, as well as the coarse
grid fermion matrix, must be selected with care; standard PTMG is such a choice.

2.3 RESTRICTION, INTERPOLATION AND COARSE-GRID M

A special property of the staggered form of M is that the fermion fields v, and
consequently also the solutions ®, located at the lattice points of the different grids
A® are not all equivalent. One must distinguish pseudoflavors: in two dimensions
there are 4 pseudoflavors and in four dimensions 16. As an example, we show in
Fig. 1, how the solutions ®,, &3, ®., and &4, corresponding to the four pseudofla-
vors a, b, ¢, and d in two dimensions are distributed over the lattice. Because the
equation to be satisfied by the solution ® (Eq. 10) depends upon the pseudofla-
vor, the fields ®,...9, are treated by PTMG as independent fields, i.e., they are
restricted and interpolated separately.

In gauge theories, the physical content is gauge invariant: the physical prop-
erties of a configuration do not change under a gauge transformation defined in
Section 1.1. All configurations differing only by a gauge transformation are there-
fore physically equivalent. Assuming that the link variable U; (i + %, J) connects
pseudoflavor a to b in Figure 1, it does not make sense to compare the specific
value of this link variable with e.g. the link variable U, (i + %, J+2), although this
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FIGURE 1. Staggered fermions in two dimensions: geometrical distribution of the four
pseudoflavors of the field ® over the lattice.

link connects the same pseudoflavors. Even if these U’s are equal, a random gauge
transformation, will destroy any relation between them. If, on the other hand,
Ur(i+5.4) = U2(i,j + 3)U2(i,+ )Us(i+ 5, + U i+ 1,5+ $US(i+1, 5+ 3),
this relationship remains invariant under any gauge transformation. In the lan-
gauge of gauge theories, we say that U; (i + %, j+2) has been parallel transported to
the location of Uy (1 + %, j). Consequently, only averaging over parallel-transported
quantities should be allowed as part of the definition of the coarse-grid M; the same
holds for the definition of the restriction operator IiiJrl for the ®’s. Summarizing,
parallel-transporting the relevant quantities removes completely the unphysical
gauge disorder from the MG process. More details on the precise definitions of
restriction, interpolation and coarse grid M may be found in [13, 14, 15].

2.4 RESULTS AND OUTLOOK

The first goal of the authors of PTMG was to develop an efficient inversion al-
gorithm, which outperforms the commonly used algorithms in all or part of the
physically relevant region of the parameters § and m,. Starting with the massive
Schwinger model, this goal was also reached for SU(2) and SU(3) lattice gauge
theories in two dimensions.

As a typical example, I present data of a numerical experiment for SU(3)
lattice gauge theory on a 128 x 128 lattice, with quark mass mq = 0.01 [15]. M
is inverted, or to be more precise Eq. 10 is solved, for 20 statistically independent
gauge configurations, produced by the quenched SU(3) Monte Carlo algorithm,
based on a heat-bath algorithm for three different SU(2) subgroups [17], with
B = 400 (gauge field correlation length £ = 10). W-cycles, with on each level two
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FIGURE 2. Comparison of convergence: PTMG (v = 2, 11 = v = 2, several cycle-depths
A) vs. Conjugate-Gradient algorithm for the inversion of the SU(3) staggered fermion
matrix in two dimensions with mg = 0.01. The norm of the residual is plotted vs. the
CPU time in seconds (one processor of a CRAY-YMP). The data shown are averages over
20 quenched SU(3) configurations for L = 128 with 3 = 400 (£ = 10). The data points
for the CG represent 50 CG sweeps, those for the multigrid algorithm two W-cycles.

relaxation sweeps before each coarsening and two sweeps after each correction, are
used: v = 2 and v; = v = 2. The effect of the cycle depth A, defined in section
2.2, was also investigated. The numerical experiment consists of measuring for each
configuration the norm |r| of the residual after every cycle as well as the amount
of CPU time used (one processor of a CRAY-YMP). The results are summarized
in Fig. 2, proving at least for this particular experiment the superiority of PTMG
over conjugate gradient in realistic computer time.

Although these results are very encouraging, one should not forget that the
real goal should be fast solvers for lattice gauge theories in four dimensions, not
two. There are good reasons to believe that for correlation lengths £ around 10,
i.e., for configurations with relatively little physical disorder, and with lattice sizes
of the order of 1284, PTMG will also beat conjugate gradient. Especially with
full QCD, however, simulations of this size will remain too big a computational
task for many years to go, even with strongly increased computer power. Tests
with somewhat smaller systems have not been carried out yet because of memory
requirements: an efficient implementation of PTMG in four dimensions requires
approximately ten times the amount of memory needed for one gauge configura-
tion.
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3 Ground-state projection multigrid

It became clear in the previous section that smoothness is not an obvious concept
in gauge theories, because of the presence of gauge disorder and its interplay with
real physical disorder. Based on the expected connection between smoothness and
low-energy eigenstates, several groups of investigators, with varying degrees of
sophistication and success, chose their MG interpolation operators in such a way
that they project on the ground-state (smoothest) solution of the finer lattice in
some sense (18, 19, 20, 21, 22|. In this section I can only give a brief outline of
one particular way, how this idea can be realized [18, 19]. For more details and a
complete description of the results I must refer to the literature.

3.1 PHYSICAL SMOOTHNESS

Instead of solving

(D+mg) X=F, (19)

where D is the anti-hermitian matrix defined in Eq. 2, the equivalent system
(-D*+m2)®=f (20)

is solved. If @ is a solution of Eq. 20, then X = (D + m,)'® is the corresponding
solution of Eq. 19. The main reason for solving Eq. 20 instead of Eq. 19 is that an
appropriate choice of interpolation and restriction operator, e.g. by the variational
method, leads to an algorithm that can never diverge.

In the framework of solving Eq. 20, smoothness of an approximation or so-
lution @ is given a quantitive meaning by means of the functional

_ (=Dt m)e
oo ‘

s[®P] (21)
If s[®] < s[¥], then ® is said to be smoother than W. As a consequence, the
smoothest field @ is the eigenstate of the operator (—D? + mg) corresponding to
the lowest eigenvalue Ag of this operator. It is important to note that by this defi-
nition smoothness depends on the problem to be solved, because D, is a function
of the gauge configuration (Eq. 2). The interpolation operator T Z ~! as well as the
restriction operator I ii_l, must now be defined in such a way that the coarse grid
corrections can “take care of” the smooth components on the fine grid.

3.2 LOCAL GROUND-STATE PROJECTION KERNELS

Instead of treating a realistic but complicated problem, I will present explicitly,
how these kernels may be constructed for a one-dimensional case: inverting a one-
dimensional version of the covariant Laplacian plus mass term. I want to stress
that this one-dimensional model is used only to show how to construct the kernels
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— it does not have any meaning as a bona fide lattice gauge theory. Let us define
the one-dimensional covariant “Laplacian” in the following way:

1 1 1
Agj) = ﬁ[_25i’j +U(i+ 5)5j,i+1 + UT(’L - 5)(5]"2‘_1] . (22)
We take the coarsening factor for the MG to be 3, i.e., the number of point on the
grid A* will be % the number of points on the next-finer grid A*~! (in one dimen-
sion). The restriction from A*~! to A¥, is carried out by means of the operator
I ,’g_l in the following way:

q,(k)(i(k)) — Z I,’f_l(i(k),i(k_l)) q)(k—l)(i(k—l)) : (23)
i(k—-l)eAk—l

the interpolation operator is taken to be the hermitian conjugate of the the restric-
tion operator: I,’j_l =1 ,’c“_lT. We use non-overlapping restriction operators, setting
IF (%) kD) = 0if §*=D ¢ {3¢®) 3K 4+ 1,3i(®) 42} i.e., each point i) € A*
gets contributions from three points on A*~!. The interpolation operator is now
selected as the lowest eigenstate of a cut-off version of the operator to be inverted:
19 € {0,1,2},iM) = 0) is the solution of the following set of equations that
corresponds to the lowest eigenvalue Ag:

1

1

+5[=210(0,0) + U (5)1(1,0) ] +m2I1(0,0) = X I9(0,0)
1 3 1

3 [=20(1,0) + UG)L(2,0) + U()T(0,0)] +m§ I}(1,0) = X0 [}(1,0)
1 3

7zl—21(2,0) FUGIILO0)] +mg [}(2,0) = X I1(2,0) .

Methods similar in spirit but considerably more complicated have been developed
for inverting the fermion matrix. The details may be found in the literature cited
above.

It is not a priori clear that defining the “local” kernels as the solution of an
eigenvalue problem with some cut-off version of the operator (—D? +m?) is really
the best one can do. This may well be the reason, why the results obtained with
this method are not as good as one could hope for. One way to circumvent this
problem will be treated in Section 4.

3.3 RESULTS AND OUTLOOK

Several variants of this method have been investigated, not only for the staggered
fermions [18, 20], but also for the Wilson fermions [22]. Most of the work was
limited to lattice gauge theories in two dimensions. SU(2) lattice gauge theories
with staggered fermions in four dimensions were also investigated [19]. In the latter
study, lattices of sizes up to 184 were used and it is shown that a break-even with
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traditional methods may be reached for not too large systems, albeit with much
larger memory requirements.

There seems to be a consensus that, although the practical implementations of
projective multigrid methods seem to suffer less from Critical Slowing Down than
the traditional algorithms, this problem has not been completely eliminated for the
realistic case with non-trivial link variables U. It is completely eliminated, however,
if “ideal” kernels are used [23], long-range kernels first proposed and used in the
framework of Renormalization Group studies. This result is of theoretical interest
only, because the complexity of these kernels makes them useless for practical
simulations.

Summarizing, it can be said, that, in spite of some encouraging results, no
real practical alternative has been found yet to replace the traditional inversion
algorithms in four-dimensional QCD simulations, at least not for the system sizes
that will be used during the next few years.

4 Tteratively Smoothing Unigrid (ISU)

As the name says, this method is not a MG algorithm in the usual sense, but rather
a unigrid method. The smoothness concept behind this method is the same as for
the ground-state projective method (Section 3.1). This method is very recent and
not many results have been published yet: a brief outline and the first promising
results can be found in [24], more details are contained in [25].

4.1 INTERPOLATION KERNELS A%(z, 2)

The problem solved is the same as in the previous section: Eq. 20. As in all unigrid
methods, no coarse grid representations of the system and of the operator (—D? +
m?) are computed. Coarse grid corrections are made directly on the variables of
the original grid A° by means of interpolation kernels A% where j refers to the
coarse grid A7.

An important difference with the practical projective multigrid algorithms is
the fact that the range of the interpolating kernels, especially the ones responsi-
ble for very coarse corrections (high value of j), strongly overlap. In Fig. 3, the
different grids and the range of the interpolation kernels are presented for the
one-dimensional toy-problem of Section 3.2.

The interpolation kernel for the corrections from level A7 is denoted by
Al%l(z, 2), where € A7 and z € A°. The way these interpolation kernels are
selected is very similar in spirit to the method for the local ground-state projec-
tion kernels in Section 3.2. First of all, the condition A%(z,z) = 0 is imposed,
if z lies outside the range of z. Then, the remainder of the elements is deter-
mined by finding the eigenstate corresponding to the lowest eigenvalue A\g(z) of
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FIGURE 3. Grids and range of interpolation kernels for one-dimensional ISU: (a)
schematic picture of A° through A%, (b) range of interpolation kernels A°Y, (¢) range of
interpolation kernels A1,

the eigenvalue problem:
[~ A +m2 A (2, 2) = Ao (2)AY) (2, 2), (24)

where [—A +m?], acting on the coordinates z € A°, is the operator to be inverted.
An important question to be asked about this algorithm is the amount of
computational work involved. The projection kernels ALl ie., the kernels used
for the corrections from A!, are computed directly by inverse iteration. One then
computes the remainder of the kernels A%, with j > 1, iteratively by means of
a MG scheme. As a consequence, the amount of computational work to build the
kernels is estimated to be proportional to Vi x ]—V@Z’;l), where V stands for the
volume of the lattice and N is the number of grids. After the kernels have been
found, the computational work to find the solution ® is proportional to V4 x N.

4.2 RESULTS AND OUTLOOK

In a careful study, the authors of the method have shown that it eliminates
CSD completely for the inversion of the covariant Laplacian plus mass term in
two-dimensional SU(2). In fact, they consider the operator (—A — €y + 6m?). In
this expression, A stands for the covariant Laplacian in two dimensions, the two-
dimensional generalization of Eq. 22. The parameters ¢y and ém? are introduced
to study the behavior of the inversion algorithm near criticality (lowest eigenvalue
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FIGURE 4. Convergence of the inversion of the operator (—A — €y + ém?) by means of
ISU: correlation time 7 vs. §m? for three different lattice sizes. The data are averaged over
40 quenched two-dimensional SU(2) configurations generated with heat-bath algorithm
for B = 1. (unpublished data, courtesy of M. Béker, G. Mack, M. Speh [24])

of the operator to be inverted near zero). Because A is a function of the link vari-
ables U, also its spectrum and in particular its lowest eigenvalue depend upon the
specific gauge configuration. The authors therefore subtract the lowest eigenvalue
€o of the operator —A and then add by hand the parameter ém? to have complete
control over the approach to criticality. Using two-dimensional quenched SU(2)
configurations (3 = 1.0), they compute for several values of ém? and for different
lattice sizes the correlation time 7. This quantity is defined as the decay constant
of the exponential decay of the norm of the residual as a function of the number
of Unigrid-sweeps: 7 = 1 means that one unigrid-sweep reduces |r| by a factor
e. From the data, collected in Fig. 4, it follows that CSD has been eliminated
completely, actually the method seems to become even more effective for larger
lattices. These results are very encouraging and the method will be tried out for
the inversion of the fermion matrix.

Although CSD has been eliminated completely, this method might only be-
come competitive with the traditional algorithms in practical QCD simulations for
very large lattices, due to the large computational work required for building the
kernels.

5 Gauge-Potential Multigrid

Although the physics of a configuration can be completely expressed in gauge in-
variant terms, this does not necessarily mean that algorithms used e.g. to invert
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the fermion matrix must be gauge covariant. Just because the physics hidden in
a particular configuration does not change under a gauge transformation, it is
perfectly acceptable to subject the configurations to a gauge transformation and
then work with the transformed configurations. Removing the gauge disorder in
the configurations by a gauge transformation and then using traditional MG tech-
niques on this gauge-fixed configuration are key ingredients in a recently proposed
MG method to invert the fermion matrix [26, 27].

5.1 THE NUMERICAL PROBLEM

This investigation is carried out for U(1) lattice gauge theory with reduced stag-
gered fermions [28]. This fermion formulation is similar to the usual staggered one
introduced in Section 1.1, but the number of lattice locations, where the fermion
field v is defined, is reduced by a factor 2. Just as in the case of the usual staggered
fermions, one should distinguish pseudoflavors both for the fermion field 1 and for
the field ® (the solution of the linear system to be solved). In two dimensions there
are now two pseudoflavors instead of four: a and d; in four dimensions the num-
ber of pseudoflavors is eight. ®, and ®, are distributed over the two-dimensional
lattice as in the usual staggered case: Fig. 1; the fields ®, and ®., however, are
missing in the reduced staggered case.

The reason for distinguishing pseudoflavors is that the equations they must
satisfy are different. Let us assume that (in two dimensions) the pseudoflavor a
fields are located at the lattice points (1 + 2n,0 4+ 2m) and correspondingly the
pseudoflavor d fields at the points (0 + 2k,1 + 2[) where n,m,k,[ are integer
numbers. In this case the numerical problem to be solved can be described by
giving the two generic equations:

1 1 1
5rlU12+ 5,2)24(3,2) — U] (2 5,2)84(1,2)]

1 1 1
+55 (V22,24 5)®a(2,3) — U (2,2~ 5)®a(2,1)]

HU2 2+ 2)0a(2,8) + UJ2,2 - a2 1) = f(2.2),

~ i 023,34 3)2a(3.4) = UJ(3,3 — )2 (3,2)

4o 013+ 3,3)20(43) - U](3 — 1, 2)a(2,3)

+%[U2(3 + % 3)®4(3,4) + US (3 - %,3)%(3,2)} = f.3.3). (25)

5.2 GAUGE-POTENTIAL REPRESENTATION AND GAUGE-FIXING

In Section 1.1, lattice gauge theories were defined using two types of variables:
the link variables U, and the fermion fields . There is a completely equivalent
description, where gauge potentials A, take the place of the link variables U,,. If
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Ng is the number of generators of the gauge group G (Ng = 8 for QCD) and
7% are the generators of the fundamental representation of G, then the relation
between link variables U, and the gauge potentials A, is given by

Ng
U, = explih Y _ A7) . (26)
a=1

This relation becomes considerably simpler for small gauge potentials (|hAf| < 1):

Us=1+ ih Zivjl Af7e. For the gauge group U(1), this reduces even further to
U, =~ 1+ihA,. Using this A-field discretization for restrictions and interpolations
as part of a multi-grid approach may have theoretical advantages [26].

In Section 2.3 the concept of parallel-transport was introduced to remove
gauge-disorder and still keep a gauge-covariant formulation. Another well-known
method to avoid the problem of gauge-disorder consists of removing, as well as pos-
sible, the unphysical degrees of freedom by gauge-fixing in an appropriate gauge.
The configurations are subjected to gauge transformations selected in such a way
that the A-fields of the gauge-transformed configurations are as smooth as possi-
ble, where the word smooth now has its traditional meaning. For their work with
U(1) lattice gauge theories in two dimensions, the authors use the Landau-gauge,
i.e., they impose the condition div A, = 0, or in discretized form

.1 .1 L1 |
Al(l + 57]) - Al(l - 57.7) + AQ(%] + 5) - A2(Za.] - '2') =0. (27)
After this gauge-transformation, the gauge-disorder of the discretized fields A and
® has been removed and the full range of MG-techniques can now be used to tackle
the physical disorder.

5.3 RESULTS AND OUTLOOK

In a series of controlled experiments for U(1) lattice gauge theories in two dimen-
sions, the effects of the details of the MG-procedure are investigated. Different
ways to discretize the equations - central and backward-forward - are tried out; in
the latter case a generalized Kaczmarz relaxation scheme, allowing for the simulta-
neous relaxation of two equations, is found useful. The importance of polynomial
acceleration, removing slowly convergent (or even divergent) modes by linearly
combining iterants, is investigated as a function of quark-mass m, and 3. The
effects of different ways of building the averages for the restriction operator and
the corresponding interpolation operators are investigated. Until now the numer-
ical experiments have been carried out on configurations generated by a gaussian
approximation [27]. Only configurations with zero global topological charge have
been considered and a method has been proposed to handle configurations with
non-zero charge [26].

The preliminary results are very encouraging [27]. Although the efficiency
decreases for increasing physical disorder (decreasing values of () and smaller
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values of the quark-mass mg, full MG-efficiency is reached for probably the whole
physically relevant range of the parameters. Polynomial acceleration seems to be
necessary for small quark masses, especially if they are combined with small values
of B (large physical disorder).

Although these experiments are very interesting by themselves, the main
interest of the lattice gauge theory community is QCD in four dimensions. The
generalization of some of the ingredients of this approach to such four-dimensional
non-abelian gauge-theories is nontrivial. The urgent need for faster algorithms,
however, more than justifies the effort.

6 Concluding remarks

In this survey of attempts to build fast multiscale algorithms for inverting the
fermion matrix in QCD simulations, I was forced to be incomplete. I was only able
to briefly sketch some approaches and present a couple of results. One multigrid
method, based on the Migdal-Kadanoff renormalization group transformations, I
had to skip completely [29] and no attention could be paid to more theoretical
investigations of the problem [30]. Still I hope that I succeeded in conveying an
impression of the very active search for multiscale algorithms in an important field
of research.

MC simulations are and will remain an important tool, in some cases even
the only tool, to obtain nonperturbative information about physical models. These
models describe a wide range of important physical phenomena: elementary par-
ticles and their interactions, solids and their phase-transitions, etc. . In these phe-
nomena and in their simulation, many different physical length scales play an
essential role. Hence, a multiscale approach may reduce considerably the overall
computational work, required to obtain the relevant physical information. For a
discussion of ideas and also some results in applying a multiscale approach to many
different aspects of MC simulations, I refer to the contribution of A. Brandt at
this conference.

In the MC simulations of full QCD, the real computational bottleneck, at this
moment, is the inversion of the fermion matrix. Although multiscale approaches
may be needed for many more aspects of the simulation (efficient gauge-fixing,
efficient updates, etc.), I expect the first contribution to come in the form of a fast
multiscale inversion algorithm. If such a solver is found for QCD in four dimensions,
the quality of the physical predictions will improve dramatically. Also the need for
a multiscale approach to the other aspects of the MC simulations will then become
apparent.
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Adaptive Multigrid on
Distributed Memory Computers

Hubert Ritzdorf and Klaus Stiiben!

ABSTRACT 2 A general software package has been developed for solving sys-
tems of partial differential equations with adaptive multigrid methods (MLAT)
on distributed memory computers. The package supports the dynamic mapping
of refinement levels. The general strategy is described and results are reported on
compute-intensive problems as well as on some simple problems representing worst-
case situations from a parallel efficiency point of view. Inherent limitations of the
parallel efficiency will be discussed.

1 Introduction

Generally, adaptive grids are a result of the computation, and dynamically map-
ping the work load to the processors and achieving load balance are tasks which
have to be performed at run time. Careful strategies must be employed in order not
to destroy the parallel efficiency through communication overhead. In this paper,
we present results obtained for the multi-level adaptive technique (MLAT [1],]2])
on 2D block-structured, boundary-fitted grids which are widely used in aerody-
namic applications. Such grids permit the numerical solution of partial differential
equations on geometrically complex domains while keeping regular the local data,
structure (within each process). We will discuss communication and mapping as-
pects, the way in which local refinement areas are generated and distributed to
the available processors.

MLAT is known to provide very fast solvers on sequential computers and the
question is how far this is applicable to parallel machines. While dynamic mapping
is required by any adaptive algorithm, an additional problem occurs in MLAT,
namely, the problem that each cycle requires substantial global communication
(data re-distribution before switching refinement levels). It turns out that the latter
has no severe consequences in connection with “complex problems”. However,

! Gesellschaft fiir Mathematik und Datenverarbeitung mbH,
Postfach 1316, 53731 Sankt Augustin, Germany

2This work was supported by the Federal Ministry of Research and Technology
(BMFT) under contract no. ITR 9006 (PARANUSS project).
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for applications with low arithmetic per grid point, the corresponding overhead
may seriously limit the achievable parallel efficiency. Although still acceptable for
environments with “ideal” interconnection networks, this limitation is fatal for
bus-connected systems like workstation clusters.

Results will, in particular, be presented for the steady-state Euler equations.
The emphasis is laid on the adaptive refinement of the shock position. High parallel
efficiencies are obtained even for relatively small problems. As worst-case examples,
we consider scalar problems with singularities induced by the shape of the domain
(re-entrant corners). Based on some simple analysis, we will point out the crucial
aspects.

2 Adaptive multigrid (MLAT)

MLAT is essentially an FMG-like process (full multigrid, [1], [2]) which initially
works merely on a hierarchy of “global” grids, Q% (¢ = 0,1,2,...,£.), where Qf
denotes the finest global grid given by the user. Only at run time, controlled by
certain criteria, local refinement levels Q" o (0 =1,2,...,¢5), extending over in-
creasingly smaller subdomains of the original domain, will be detected and succes-
sively added to the grid hierarchy. If no more local refinement levels are detected,
mere multigrid cycling is continued until a reasonable convergence criterion is sat-
isfied.

Let the number of points on the global and the locally refined levels be de-
noted by Ny and N_,, respectively. We will consider only standard coarsening. In
particular, the global grids are nested and the number of points on Q? is (approx-
imately) Ny = Np/ 4%: the refinement grids are locally nested, and the coarse-level
restriction of grid 0h ¢ is denoted by

Q=0 N0, (1)

Throughout this paper, we tacitly assume that N_; decreases for increasing £ such
that N,,; = O(Ny) where Ny, denotes the total number of grid points involved
in the multigrid process.

Analogous to non-adaptive cycles, adaptive ones are defined recursively by
means of two-grid methods. Besides the fact that, in the adaptive context, FAS (full
approximation scheme [1], [2], [14]) is employed, the only essential difference is that
— on any refined grid Q" ¢ — the corresponding two-grid method uses grids Q" , and
Qh 011 (rather than 0k 011 ). Along the artificial inner boundaries of ok ¢» boundary
values are usually interpolated from the current approximation on grid Q" , 4+1- The
concrete type of interpolation used may be crucial for the speed of convergence
as well as for the global discretization error. In many cases, sufficiently accurate
standard interpolation may be used (e.g., in case of Poisson-like equations). In
other cases, e.g. compressible fluid flow problems, more care has to be taken (cf.
Section 3).



6. Adaptive Multigrid on Distributed Memory Computers 79

Due to the above assumption, the computational work per V-cycle is O(Np).
Since this is no longer true for different cycle types like F- or W-cycles, such cycles
should be avoided in the adaptive context. Moreover, applying FMG in the above
fashion, even if it is based on V-cycles, does not yield an O(Ny)-method. Instead,
one should employ FMG in a more sophisticated way (e.g. A-FMG [1], [2], [12]).
If robustness requires, for instance, the use of F-cycles rather than V-cycles, one
should not use F-cycles directly; more efficiently, for instance, the particular re-
cursive structure of an F-cycle can be combined with the A-FMG process resulting
again in an overall computational work of O(Np).

In this paper, we do not consider optimal FMG-implementations, but rather
focus on the most crucial aspects from a parallel point of view, in particular those
which are specific for the adaptive situation. That is, we focus on the parallel
realization of the refinement process itself as well as on the parallel efficiency
of plain multigrid cycles applied to the full sequence of grids. (Unless explicitly
stated otherwise, we have V-cycles in mind, see above.) Clearly, a more in-depth
consideration of the parallel performance has to take the total FMG process into
account.

2.1 PARALLELIZATION ASPECTS

Since the different multigrid levels are treated sequentially, the only reasonable
parallelization strategy is to map each level to as many processors as possible.
Formally, this is analogous to the standard way of parallelizing non-adaptive cy-
cles. The well-known deficiencies — decreasing ratio arithmetic/communication
and, eventually, less points than processors — just not only apply to the global
coarse levels but similarly to the locally refined ones.

There are, however, some new aspects which will be discussed below for the
case of block-structured grids, i.e., grids which are composed of subgrids each of
which is logically rectangular (for a very simple example, see Figure 1). Such
grids are widely used, for instance, in aerodynamic applications. They build a
compromise between geometrical flexibility and simplicity of the data structure.

The block-structure provides a natural basis for the parallelization: Each
block is mapped to a different process. (As usually, overlap regions of a certain
width have to be introduced in order to allow for an efficient communication.) The
minimum number of blocks required to describe a concrete geometry is merely
defined by the requirement that the final grid should be “reasonable”. Usually, this
number is much lower than the number of available processors, P. Consequently, on
a parallel machine, large blocks are subdivided further in order to obtain good load
balancing which typically means that each block should contain the same number
of grid points. For instance, the grid in Figure 1 has originally been created as a
single-block grid (by a biharmonic grid generator) and was then subdivided into
16 equally sized blocks for use on a 16-processor machine. Generally, good load
balancing can be obtained only approximately, which is certainly a tribute we have
to pay for, say, the advantages of block-structured grids as opposed to unstructured
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FIGURE 1. Block-structured grid around the NACAO0012 airfoil (here: 16 blocks)

grids.

Introducing and mapping new locally refined grids

During the refinement phase, the grid data of each new refinement level is initially
distributed across only some of the processes. That is, the parallel FMG process
cannot continue in a load balanced way (with the new level being the finest one),
until that new level has been re-mapped to all processors. Note that this mapping
does not affect the mapping of previous refinement levels.

Generally, obtaining optimal load balancing at each stage of the FMG process
is too complicated and costly. What is required is an algorithm which rapidly
re-maps distributed locally refined block-structures to reasonably load balanced
ones. Omitting complex details as well as some technical restrictions which require
certain natural modifications, the essential steps of such an algorithm are simple
and outlined in the following. We assume that grid Q" ¢+ already exists and that
the next refined grid, Q" ¢, has to be created and mapped.

1. Each process checks for refinement areas independently of the others. Since
we are considering only block-structured grids, each process has to embedd
its local refinement area(s) into logically rectangular subgrid(s). If no process
detects refinement areas, the refinement process is finished.

2. If refinement areas have been detected, communication is required to analyze
the resulting block-structure and to set up the corresponding data-structure.
At this point, local “process blocks” should be joined to larger “superblocks”
whenever possible in order to obtain a final block-structure with as few
blocks as possible. (This gives the maximum freedom for a load-balanced
mapping.) The optimal number of grid points each processor should work
on, N(P) = N_;/P, is computed and broadcast.
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3. All blocks containing less than N (P) points are distributed immediately (each
block to a different process). Small blocks should share the same processor
such that the total number of points treated by a processor is as close to
NP) as possible.

4. Since the previous step will not give optimal load balancing with respect
to the small blocks, the optimal number of grid points for the remaining
processors is re-computed: N(F) = N_, /P where N_; and P denote the
remaining number of grid points and processors, respectively. If there are
blocks left containing less than N(P) points, go back to the previous step.
Otherwise, proceed to the next step.

5. Blocks containing more than N(F) points have to be subdivided. To be more
precise, if a block contains n points, it is subdivided into m subblocks, m
being the largest integer < n/N(P). Each of the subblocks should approxi-
mately contain the same number of points. Note that all blocks can perform
their subdivision in parallel.

6. The total number of subblocks created in the previous step cannot exceed 13,
but it may be smaller, in which case there are free processors (at most equal
to the number of blocks which initially had to be subdivided). If this is true,
blocks which currently contain the largest subblock(s) are re-subdivided with
the number of subblocks increased by one. This is applied to as many blocks
as required to make all processors busy.

The result of this procedure is a new block-structure with each block mapped
to a different process. Note that the main goal is to minimize the size of the largest
block. In fact, this is the most crucial point in trying to obtain approximate load
balancing, much more important than trying to get all the small blocks perfectly
load balanced. For reasons of high parallel efficiency, one might want to impose
additional constraints like, e.g., preserving nearest neighbor relations or minimizing
the cost for data re-distribution within cycling (see Section 2.1). Apart from the
fact that the underlying goals are conflicting, it is very hard to realize “optimal”
algorithms for general block-structured grids. Since it is not clear a priori, whether
or not such more sophisticated algorithms would really pay in practice, we have
not yet invested much work in this direction.

We want to emphasize that each of the essential mapping steps can be per-
formed in parallel and all communication can be arranged to be either nearest
neighbor or along embedded trees. Thus, the communication overhead is merely
O(log(P)). In practice, the total work required for re-mapping is negligible if com-
pared to the rest of the work. An examplary sequence of three successive, block-
structured refinement areas, obtained when solving the Euler equations on the grid
as depicted in Figure 1, is shown in Figure 2 (for more details, see Section 3).
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FIGURE 2. Hierarchy of 3 block-structured refinement areas.

Data re-distribution within each multigrid cycle

Due to the above mapping, data has to be re-distributed whenever locally refined
levels are switched during a multigrid cycle. (This can only be avoided by using
much more complicated mapping strategies, see Section 4.3.) This re-distribution
should be done such that all arithmetic required in the grid transfer (corrections,
residuals) can be performed in a load-balanced way.

To be more precise, let us assume that we have just finished relaxation on
grid 93 011 and that we want to transfer corrections from that level to the next
finer one, Q" ¢~ At this point, the relevant correction data is contained on the
coarse-level subgrid Q" ;. Since this subgrid is distributed only over some of the
processors, one should first distribute the data to the processes of grid Q" , and only
then perform the actual interpolation and correction. Similarly, during the fine-to-
coarse transfer, all necessary computations (evaluation of residuals, application of
the full weighting operator, etc.) should be done on the fine level; only the data
which is really relevant for the coarser level should then be re-distributed. Note
that now, according to the definition of FAS, two types of grid functions have to
be re-distributed, namely, residuals and current approximations.

In addition to load balancing, this way of re-distributing data has another
obvious advantage: the amount of data to be re-distributed is the smallest possible.

Treatment of the critical levels

Both for the coarsest global grids and the finest local grids, the number of grid
points may finally become smaller than the number of processors. We call the
corresponding levels the critical ones.

Concerning the critical fine levels, we reduce the number of processors grad-
ually from level to level. To be more specific, the decision on the number of pro-
cessors which will stay active on grid Q" ¢ is based on the number N_;1 of points
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contained in the coarse-level subgrid Q" ¢41: the number of active processors on
grid Q" is P_y = min{P, N_z41}. Consequently, on each of the critical fine levels,
each processor is acting on a fixed number of grid points (4 on the average). In ad-
dition to the usual communication overhead (inter-level as well as intra-level), this
introduces arithmetic overhead in the parallel cycle. Generally, the total overhead
caused by the critical levels depends merely on P. For instance, it is O(log(P)) if
N_; decreases geometrically®.

Clearly, in order to keep the overhead caused by the critical coarse levels of
the same order, one has to proceed similarly on these levels. For a small number
of processors, however, one might as well skip these levels totally, and simply re-
solve the new coarsest-grid equations sufficiently well (e.g. by additional relaxation
steps).

2.2  AVAILABLE SOFTWARE

The communication tasks required on block-structured grids are independent of
the actual application. A comfortable and flexible library of highlevel FORTRAN
routines has been developed (COMLIB [5]), which perform all communication
required on such grids. This includes both local and global communication on
single grid levels (provision of overlap areas, overlap update, computation of global
quantities, etc.), analyzing, mapping and load balancing of new refinement levels,
global data re-distribution as well as all inter-level communication.

On the one hand side, one may regard the COMLIB as a user interface to
a parallel machine, freeing the user from the need to use any parallel language
construct. In addition, and much more important, the use of the provided routines
drastically simplifies the development of parallel application programs. Each pro-
cess “sees” merely a single logically rectangular grid; the complex grid structure as
a whole is solely managed by the COMLIB and never visible to the programmer.
Thus, basically, the programmer’s work is reduced to what he would have to do
on standard sequential computers and for single-block grids. Finally, the COMLIB
itself is based on a portable message passing programming model which has been
implemented on a wide variety of different architectures, thus giving portability
among all these machines (PARMACS [6]).

Remark: In the current library release, two of the steps described in Section
2.1 are not yet realized. Firstly, the distributed local refinement blocks are not
“joined” as mentioned in Step 2. Secondly, only one grid block is treated by each
processor (cf. Step 3). (The creation of more than one process per processor is not
supported on all new architectures.)

The results presented in the following have been obtained by the general
program package L;SS [11], [8] which has been developed for the parallel multigrid

3We here think of “real” parallel systems. Of course, for workstation clusters this is
not true.
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solution of large classes of systems of partial differential equations on distributed
memory computers. L;SS is based on the COMLIB and can thus handle general
block-structured grids.

3 Results for the Euler equations

In the following, we consider the steady-state Euler equations

pu pv

of | 9g pu® +p _ puv

31‘+8 =0 where f= puw , g= ov? 4 p
(E+p)u (E+pv

with p, u,v, E and p denoting the density, the cartesian velocity components,
the total energy and the pressure, respectively. In addition, we assume the state
equation p = (y — 1)(E — 3p(u? + v?)).

As test examples, we consider flows around the NACA0012 airfoil with M., =
0.85, angle of attack 1.0° (Example 1) and M., = 0.8, angle of attack 1.25°
(Example 2). In the first example, we have a strong shock at the lower surface, in
Example 2 only a very weak one (see Figure 3).

¥
</

FIGURE 3. Pressure distribution for Examples 1 and 2

Following [4], we use a finite-volume discretization based on Osher’s flux-
difference splitter. In contrast to [4], however, we apply it to a vertex-centered
distribution of unknowns. The computational grid, Q%, and its corresponding sub-
division into 16 blocks (for the use on 16 processors) are shown in Figure 1.

Values at points along inner boundaries of refinement arcas are not interpo-
lated from coarse-level values, but rather discretized conservatively by applying
Osher’s scheme to special control volumes (cf. Figure 4a). This turned out to
be important; using non-conservative formulas instead (e.g. cubic interpolation)
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may cause not only a deterioration of the accuracy, but also a considerably worse
multigrid convergence (cf. [3]). Note that the unknowns along inner boundaries
are incorporated into the multigrid process in just the same way as all the other
unknowns.

FIGURE 4. a) Discretization at inner boundary, b) Refinement criterion

For the self-adaptive grid refinement, a heuristic criterion, based on the finite-
element residual, turned out to be well suited (cf. [13]). It not only detects critical
areas but also yields a natural stopping criterion for the refinement process (in
contrast to most criteria used in practice, e.g. those based on gradients). The
essential idea is as follows. For each point of the current level, @, its corresponding
control volume is subdivided into two triangles, Ay and Ay (cf. Figure 4b). For
each triangle, we compute linear functions approximating u, v, p and E (based
on their current nodal values), and — by inserting these functions into the Euler
equations — corresponding residual vectors % and rf. With rlhj denoting the j—th
component of rlh, we define the control quantity

Q=3 [ I as.

i=1 j=1

Figure 5 shows contour lines for the finite element residual r* in case of Example
1, plotted on grid Q.

Given some tolerance, €, points with r*(Q) > & will be marked for refinement.
After all points of the current level have been processed this way, marked points will
be embedded into blocks (Step 1 in Section 2.1) and the refinement and mapping
algorithm outlined in Section 2.1 yields the next refinement level. This process is
applied recursively to add more levels.

For Example 1 and ¢ = 1072, we obtain 3 levels of block-structured refinement
areas (depicted in Figure 2). The corresponding composite grid is shown in Figure
6. Figure 7 compares the pressure distribution, computed on the finest global grid,
QF, and the locally refined one, respectively.
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FIGURE 5. FE-residual contour lines for NACA0012 (Example 1)

FIGURE 6. Composite grid (Example 1)

FIGURE 7. Pressure distribution without/with local refinements (Example 1)
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Generally, the parallel efficiency, F(Ny, P), is defined by

1 T(No, 1) 1 ¥

== 0 No, P) = = —&i=171
P T(No, P)’ £(No, P) P max; (a; + ¢;)

E(No, P) (2)
where T'(Ny, p) denotes the computing time required (by the same program) on
p processors. Since, usually, storage limitations do not permit the solution of the
complete problem on a single processor, we measure parallel efficiency in terms
of £(Ny, P) instead, see (2). Here, a; and ¢; denote the (wall-clock) time for the
arithmetic and the total communication time (including idle times), respectively,
on processor i. We have FE(Ny, P) ~ £(Ny, P) if all processes are synchronized
when the parallel application and the time measurements start, if each process
(block) is mapped to a different processor, if the parallel algorithm does not involve
substantial additional arithmetic, and if the floating point performance of the
nodes does not depend too sensitively on the grid size (such that we can assume
T(Np,1) ~ Zil a;). Below, all this is approximately true.

Table 1 shows convergence factors (p), number of grid points on the composite
grid (N,y) and parallel efficiencies € per cycle! measured on the Intel iPSC/860
for P = 16. The first row contains results for the finest global grid Q% (i.e. no
refinements), the other rows refer to an increasing number of refinement levels (3
and 4 in case of Example 1 and 2, respectively).

Example 1 Example 2
finest level | p Ny | Efeye | p Ney | E/cyc
0 0.33 | 3200 | 71.4% | 0.31 | 3200 | 70.8%
-1 0.43 | 8446 ! 0.31 | 11224 !
-2 0.56 | 12123 ! 0.37 | 21507 !
-3 0.5 13866 | 67.3% | 0.40 | 26925 i}
-4 — — — 0.40 | 28771 | 69.4%

TABLE 1. Numerical results measured on the iPSC/860 (P=16)

Although the finest global grid is relatively coarse (3200 points, i.e. only 200
points per processor), the parallel efficiency measured for the final adaptive cycles
is rather high, namely, 67.3% and 69.4% for the two examples. Clearly, the best we
can expect, is the efficiency of the corresponding cycles without refinements, i.e.,
71.4% and 70.8%, respectively. That is, the effective loss in parallel efficiency due
to the introduction of refinement levels is very small. It is essentially caused by the
increased number of grids with a deteriorated arithmetic/communication ratio and
by non-optimal load-balancing of the refinement levels. Due to the high arithmetic

*For reasons of robustness, we used F-cycles rather than V-cycles (cf. the correspond-
ing remarks in Section 2).
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work per grid point (many 100 floating point operations), the communication work
required for global data re-distribution has by far the lowest influence (cf. also the
next section).

This indicates that, for compute-intensive problems, we do not have to ex-
pect a severe performance degradation for adaptive multigrid cycles on parallel
machines if compared to their non-adaptive counterparts.

4  Worst-case considerations

In this section, we first consider scalar problems with boundary-induced singulari-
ties. For many such problems, reasonable refinement strategies are known a priori.
Concrete measurements are performed for the Poisson equation. Clearly, this par-
ticular problem can be solved very efficiently by different approaches without using
local refinements. We here regard it merely as a worst-case problem for parallel
machines (low arithmetic per grid point, many refinement levels). Afterwards, we
will consider the limits of the parallel efficiency.

4.1 BOUNDARY-INDUCED SINGULARITIES

It is well-known that a corner at the domain boundary typically causes a singularity
in the solution of elliptic boundary value problems near that corner, the strength
of which depends on the size of the inner angle ¢ (7/2 < ¢ < 27) (cf. Figure 8).
Using second order differencing on a uniform grid Q2 of mesh size hg, generally
results in a global discretization error (measured in the maximum norm) of O(h{)
with some 1 < 2. For instance, for the Poisson equation with Dirichlet boundary
conditions, we have (essentially) n = /¢.

1
r r
q
o o q®
Q Q| <
O0 <> 1

ho =1/Il0
FIGURE 8. Exemplary domains and simplified computational grid

One way to obtain O(hZ) accuracy is to refine the grid locally towards the
corner [1], [7], [12]. The “optimal meshsize” at the distance r from the corner,
H(r), typically is H(r) = ho(r/R)*~"/2 (R denotes the “radius” of the domain,
measured from the singular point). Note that the finest mesh size to be used near
the corner, h,, is defined by H(h,) = h, which obviously satisfies h = O(h2) (i.e.,
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h, is the mesh size which, if used globally, would give a global error of just the
required order).

Since we employ only mesh sizes h_y, = hg/2¢, we may select h_, for all
points with r; < 7 < 7441 where 7y is defined by H(r¢) = h_y, i.e., ry = ¢° R with
q = 0.5%/(=") (< 1/2). Assuming that the singular corner is located in the origin,
a reasonable hierarchy of grids Q", (¢ = 1,2,...,¢;) is recursively obtained by
discretizing

Q_¢ = ([-re,rd] X [-r4,7)) N where 7 =¢'R, ¢=05%%" (3)

with respect to h_,. (We slightly enlarge the size of _; such that its interior
boundary coincides with grid lines of the previous grid, Q" ¢4+1+) The sequence of
grids is terminated for £y = maz {€ : v, > h_;} ~ logaq(ho/R).

To be more specific, let us consider the Poisson equation with Dirichlet bound-
ary conditions on the first domain in Figure 8 (corresponding to the case n = 1/2
and ¢ = 0.5%/3 ~ 0.4). For simplicity, we formally restrict the computations to
the unit square (R = 1), assuming that the refinement strategy (3) is done in one
corner (see Figure 8). Denoting hg = 1/n¢, the number of refined levels becomes

2—-n

Cy & logag(ho) = loga(no) = 3loga(no) (4)
which is three times larger than the number of global multigrid levels.

Figure 9 shows parallel V-cycle efficiencies (3 smoothing steps per level),
measured on the iPSC/860 for different numbers of processors and different values
of ng. For each grid level, the processor mapping is bozwise (cf. Figure 10).

A Efficiency (%) A Efficiency (%)
100
with local without local P=8
refinements refinements
P=32

50 :
16
)

>
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 2048
FIGURE 9. Parallel V-cycle efficiency on iPSC/860 (Poisson equation, n = 1/2)

For the same ng, the total intra-level communication (and also the additional
arithmetic required on the critical levels due to a reduced number of processors)
is of the same order for cycles with and without local refinements. This is because
the number of grid points decreases geometrically both towards the coarsest global
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as well as towards the finest refinement grid (with factors approximately 1/4 and
4¢?, respectively). The corresponding overhead for adaptive cycles is just higher
by a factor depending only on 7.

For small ng, this overhead dominates the additional overhead caused by
inter-level communication (global data re-distribution) in adaptive cycles, and,
consequently, cycles with and without local refinements behave similarly with re-
spect to their parallel efficiency (cf. Figure 9). For increasing ny (and fixed P),
however, the increase of the intra-level communication is of lower order (compared
to the increase of arithmetic), while the inter-level communication overhead grows
at the same rate. (To be more precise, the essential cost is due to the data trans-
mission; the corresponding startup cost is also of lower order). This results in a
saturation of the parallel efficiency of adaptive cycles as clearly seen in the figure.

4.2 MAXIMAL EFFICIENCY

We have seen in Figure 9 that the maximally achievable V-cycle efficiency, Eéf )
(the limit of E(Ny, P) for fixed P and Ny — o0), may be rather low for problems
with low arithmetic per point. In order to discuss this aspect somewhat further, we
want to roughly estimate Eg ). This is fairly simple, since, for increasing Ny, the
only communication overhead left is merely due to the data-transmission in the re-
distribution steps. Compared to the arithmetic, all the other overhead (including
all overhead caused by the critical levels) is of lower order.

Since we are only interested in the most crucial aspects, we make some ide-
alizing assumptions. First, we assume an “ideal” network of processors. That is,
the time required for transmitting i double precision numbers from one processor
to any other one is given by (i) = a + (i (a = startup time, 5 = time for trans-
mitting one number). In addition, any different pairs of processors can perform
their communication fully in parallel. Second, we assume that all levels are load-
balanced and re-mapping has been done such that each processor keeps as many
grid points for itself as possible. Finally, we assume arithmetic and communication
to be fully synchronized.

Let us first consider interpolation from grid Q" 41 to grid Qb , for the par-
ticular refinement process considered in the previous section. All data relevant for
interpolation is distributed across those processors whose geometrical area over-
laps with Q" ¢41 (shaded region in Figure 10). Assuming that Qr ¢41 extends over
the area of at least one processor®, according to our idealizing assumptions, the
amount of data to be sent during re-distribution (worst case among the processors),
is effectively

L_y=(N_g+1—N_¢/4)/P (£>1). (5)
By summing up, and ignoring terms which are not important for our asymp-
totic consideration, the total amount of data to be sent in the coarse-to-fine re-

5This means that the processor grid satisfies P = p1 X p2 with p; > 1/q.
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distribution steps of one V-cycle is seen to be effectively

B 1 3 3[4 3 Ny
L—ZL_Z—F No+4ZN_g = ip §N0+ZN_4 S )

>1 1 >1

> o

FIGURE 10. Data re-distribution involving grids Q" ,,, and Q"
+1 ¢

Although derived for a particular sequence of refined grids, it is clear that
(6) is also relevant in general: Assuming any sequence of locally refined grids, then
(5) is still true

h

if there is at least one processor whose geometrical area on Q| )

lies completely inside the next refinement grid, Q" 01

(This corresponds to the requirement in Footnote 5.) If this happens to be true
for each level, we obtain the same approximation for L as above. In this sense, (6)
characterizes the worst-case for a general sequence of refined grids.

Thus, assuming now more generally that we are solving any elliptic PDE
system of m unknowns by adaptive V-cycles and that the (FAS) fine-to-coarse
data re-mapping costs twice as much as the coarse-to-fine one, the worst-case
total re-distribution cost per cycle is approximately 3mfBL. Assuming finally the
sequential work per cycle to be approximately o Np,4 (with o denoting the cost for
a two-grid-cycle per grid point, not counting the cost for solving the corresponding
coarse-grid equations), we obtain the following worst-case approximation for the
maximum parallel efficiency per cycle:

g = L o Nmg S — (7)
* T P oNug/P+3mBL o+ ImpB

That is, this approximation is valid if (x) is true for each ¢. Otherwise, it is too
pessimistic. Note that (7) is independent of P.

For the case shown in Figure 9 (Poisson equation), we have m = 1 and
approximately o = 25 (in terms of number of floating point operations). Since the
iPSC/860 has as a realistic node performance of about 5 MFlops and a bandwidth
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of 2.7 MBytes/sec, we can assume 8 = 15. From (7) we obtain B ~ 043 it (%)
is true for each £, i.e., if the processor grid consists of at least 3 processors in either
direction (cf. Footnote 5 for ¢ = 0.4). This is in fairly good agreement with the
result shown in Figure 9 for P = 16. For P = 8 and P = 4, the requirement (x) is
never true and thus (7) is too pessimistic.

In this concrete situation, the limitation of the efficiency is not too severe.
However, the current trend in hardware development shows a very strong increase
in node performance while, at the same time, the communication bandwidth in-
creases only slowly. For instance, IBM (with its SP1) aims at a peak performance
of over 500 MFlops per node in the near future. On such machines, the maximally
achievable efficiency will become much worse than above. Assuming a fictitious
machine with 128 MFlops and a bandwidth of 4 MBytes/sec (the approximate

peak values of the CMb5), we obtain 8 & 256 resulting in only Eéf ) 2 0.04.

In any case, however, since the maximally achievable efficiency does not de-
pend on P, asymptotically, the scalability properties of adaptive cycles are sim-
ilar to those of non-adaptive ones. That is, the speedup S(No, P) behaves as
O(P)/log(P) if P — oo and the grid size per processor, Ny/P, is kept fixed.
It is just the constant which is (possibly much) smaller for adaptive cycles.

4.3 CONCLUSIONS

Clearly, the larger o, the less severe (7) becomes. This is particularly the case for
systems of equations where we typically have o = O(m?). In fact, for the problem
treated in Section 3 (Euler equations, many 100 floating point operations per grid
point), the data re-distribution had no essential negative influence on the parallel
performance, at least not within the range of machines and grid sizes which we
were able to test.

However, one should keep in mind that (7) is based on the idealized assump-
tions stated at the beginning of Section 4.2. In particular, the independency of P is
only true for ideal networks for which the re-distribution work can fully be shared
between all processors involved. In a real parallel system, how good this idealiza-
tion is (can be) met, will strongly depend on the concrete network as well as on
the number of processors. Generally, we have to expect that the parallel efficiency
will not only be limited, but that the limit will also get worse for increasing P.

As an extreme case of a more severe situation, consider a single-bus connected
system (e.g., workstation cluster) such that different processors cannot be assumed
to send data in parallel any more. For the particular model problem considered
in Section 4.1, for instance, (5) has to be replaced by L_y = ¢* (N_31 — N_,/4)
resulting in L = %qQng. The corresponding maximum efficiency,

o
o+ 5¢?8P’

now quickly tends to 0 if P increases; adaptive multigrid cycles are not scalable

EQ) = (8)

at all on such systems. In fact, the maximally achievable speedup, & =pEY ),



6. Adaptive Multigrid on Distributed Memory Computers 93

is not only bounded from above })ut is, if %qzﬂ > o, even smaller than 1, inde-
pendently of P! Incidentally, for clusters of high speed workstations (connected by
Ethernet), 8 will typically be of the order of many hundreds. That is, unless ¢ is
very large, we cannot expect any significant speedup on such systems, even not if
Ny is arbitrarily large.

Let us return to systems with a real parallel network. Even if the influence of
data re-distribution then is not substantial for sufficiently complex problems, one
might want to reduce this overhead as far as possible. Clearly, this can only be
achieved by more sophisticated mapping strategies than the one sketched in Section
2.1. The general goal should be to avoid () as far as possible and to map refinement
grids such that as many processors as possible can share the final re-distribution
work. Since the location of new refinement areas is not known in advance, this
means that a complicated multi-stage re-mapping strategy is required.

In case there is some information on the location of refinement grids, there
may be straightforward ways to proceed. For instance, for point singularities as
considered in Section 4.1, one might use stripwise rather than boxwise mapping (cf.
Figure 11a). In our model case, instead of (5), we then obtain L_y = (¢ N_p11 —
N_;4/4)/P. By summing up and observing that N_,/4 =~ ¢*> N_;4;, we obtain

L = § 13 Ning/ P which gives

ED = —7 .
¥ otithS

9)

=)

Compared to (7), the communication term is not only significantly smaller (by at
least 66%) but also decreases for decreasing q.

FIGURE 11. Different mapping strategies

If we assign all processors to both Q*, and Q", 41 for each ¢, re-distribution
may even be totally avoided. Two possibilities are sketched in Figure 11b-c for
the case P = 4. The first one [10] implies that each processor obtains as many
different subregions as there are refined levels, a disadvantage which is avoided
by the second mapping. Note that such strategies, in particular the one in Figure
11b, might be used as a basis for a mapping strategy also in general situations.
The implementation of the multigrid algorithm itself may then however become
quite cumbersome. To our knowledge, such strategies have not yet been tested in
practice.
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Finally, we would like to briefly comment on competitive asynchroneous
multi-level strategies. Due to their additional vertical parallelism, different pro-
cessors can be assigned to different levels which, up to a certain extent, should
remove the typical efficiency degradation of standard parallel multigrid towards
smaller grids in the hierarchy. AFAC (asynchroneous fast adaptive composite grid
method [9]) has been developed (and is meaningful only) for adaptive grids. It al-
lows the finest global grid and all refined grids to be treated simultaneously. There
are, however, two severe drawbacks of this approach.

First, from a convergence point of view, two AFAC cycles roughly corre-
spond to one MLAT cycle. Consequently, for complex problems (such that the
parallel efficiency of MLAT is around 50% or higher), AFAC cannot compete with
MLAT. Second, AFAC requires global data re-distribution in essentially the same
way as MLAT, except that this re-distribution is performed “outside” each cy-
cle. However, just because vertical parallelism is exploited, less processors will be
available per level and, consequently, less processors can share the work for data
re-distribution. In fact, a closer view shows that the essential communication term
of AFAC (corresponding to the one of MLAT in (7)), is no longer independent
of P, but rather grows like O(loga(P)). That is, unless P is relatively small, the
maximally achievable parallel efficiency will be considerably lower for AFAC than
for MLAT.

Summarizing, AFAC might be superior to MLAT only in special situations.
For instance, for applications with low arithmetic per point, solved on machines
with relatively small P and high startup costs. Note furthermore that re-distribu-
tion-free mappings (as indicated in Figure 11 for MLAT) do not exist for AFAC.
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Multicomputer—Multigrid
Solution of Parabolic Partial
Differential Equations

Stefan Vandewalle! and Graham Horton?

ABSTRACT 2 We discuss the numerical computation of approximations to the
solution of parabolic partial differential equations by using multigrid methods on
parallel computer systems. The paper focuses on algorithms that operate on the
whole of the space-time grid, treating the time-dimension as just another spatial
dimension. Three different algorithms that have appeared earlier in the literature
are recalled; their theoretical convergence properties are analyzed by Fourier mode
analysis, and their parallel complexities are investigated.

1 Introduction

The time-accurate numerical solution of parabolic partial differential equations
(PDESs) is a time-consuming computational procedure in many scientific and engi-
neering disciplines. The application of efficient numerical algorithms and the use
of advanced parallel computer architectures are therefore of great importance in
order to lower the required computation time.

Traditionally, time-dependent PDEs are solved as a sequence of boundary
value problems defined on successive time-levels. The great potential of multigrid
as a rapid solver for these boundary value problems was realized from the early
days of multi-level algorithms research, see, e.g., [2, 3, 24, 18]. Over the years
various improvements to the basic algorithm have been suggested: modified nested
iteration techniques based on the similarity of time-dependent PDEs to parameter-
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dependent continuation problems ([9, 11]), modified multigrid cycle types to solve
for an incremental solution instead of the full PDE solution ([4, 8]), T-eztrapolation
and frozen-t techniques which allow time-stepping to proceed on coarse spatial
grids with possibly large time-steps while retaining fine grid accuracy ([3, 18, 7, 8]),
and double discretization methods to circumvent certain stability problems ([7, 8]).

The parallel implementation of the multigrid algorithm for boundary value
problems has been the subject of numerous studies by many authors. A compre-
hensive overview of some this work is given in [20]. A comparison of the parallel
performance of various time-stepping methods for parabolic problems, including
explicit, implicit and line-implicit methods, is presented in [32]. By these and other
studies it was made clear that the essentially sequential nature of the time-stepping
procedure imposes serious limitations on the obtainable parallel performance. No
matter how many time-steps are to be computed, the obtainable degree of paral-
lelism is restricted by the parallelism in the multigrid solver used to compute the
solution in one single time-step. This is especially disappointing as the number of
time-steps is often many times larger than the size of the spatial mesh.

This observation has led to the development of algorithms that operate on
more than one time-level simultaneously; that is to say, on grids extending in space
and in time, further called space-time grids. One such algorithm is the parallel
time-stepping method ([33]). It is closely related to the class of windowed relaz-
ation methods ([23]). The parallel time-stepping method is the obvious extension
of any standard iterative technique to multiple time-levels: while the solution is
being computed on the first time-level by applying the iterative method to a start-
ing approximation, the approximations to the solutions on subsequent time-levels
are being updated by the same iterative method, or, possibly, by an other one.
The overlap of computations on different time-levels enables the use of many pro-
cessors, especially when slowly convergent iterative solvers are used. With rapidly
converging iterative solvers like multigrid, however, only few processors can be
used effectively, and the method loses most of its advantages. A second method,
multigrid waveform relazation, originated by combining the multigrid idea with
the waveform relaxation method, an iterative solver commonly used in electrical
engineering practice for solving large nonlinear systems of ordinary differential
equations ([19, 30, 27, 28, 29, 31, 17]). Parabolic multigrid is a method that ex-
tends the elliptic multigrid idea to the set of equations obtained after discretizing
a parabolic problem in space and time ([10, 5]). Its time-parallel variant was re-
cently the subject of much further study ([1, 6, 13, 15, 14]). The latter two methods
were analyzed and compared in [26]. Finally, a fourth method is the space-time
multigrid method, which was developed only recently by addressing some of the
convergence problems that arose within the time-parallel multigrid method ([16]).

The latter three multigrid methods are presented in §2. They turn out to be
closely related, as multigrid methods defined on grids extending in space and in
time. Their theoretical convergence characteristics are studied in §3 by means of
a two-grid Fourier mode analysis. We derive their parallel complexities in §4, and
compare the results with the complexity of standard time-stepping, and that of
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an 'optimal’ direct solver. We end in §5 with some concluding remarks.

2 Multigrid methods on space-time grids

We shall concentrate on the problem of numerically computing the solution to a
model problem, in case the d-dimensional heat equation,

u—Au=f(r,t) Q=014 0<t<T, (1)
subject to the usual initial and boundary conditions

u(z,0) = g(z), =ze€Q, (2)
w(x,t) = h(z,t), z€dQ,0<t<T. (3)

For notational simplicity, we consider the one-dimensional problem, discretized
in space using central differences on a regular grid with grid spacing Az, and
discretized in time with the backward Euler method, on a set of time-levels with
constant time-increment At. This discretization leads to a large linear system of
equations in the unknowns u; ; with ¢ =1,...,1/Az—1and j =1,...,T/At, that
approximate the PDE solution at the grid points (z;,t;) with z; = i - Az and
tj = j - At. The grid will be denoted further by €, with h standing for the pair
(Az, At) characterizing the size of the grid. The equations on 2, are of the form

1 2 1 1 1
" et e T A T gt T Ayt = S t) s ()

or, with the parameter A\, defined as At/Ax?,

=M tim1j + (A0 + D ugj — Mg w1y — wii—1 = At f(xi,t5) . (5)

Note that parameter Aj, can be considered as a measure of the degree of anisotropy
of the discrete operator. In the case of a very large A,, the set of equations is
essentially decoupled in time, and corresponds to a set of (almost) independent
discrete boundary value problems, one per time-level. In the case of very small ),
the set of equations is (almost) decoupled in space, and corresponds to a set of
first order linear recurrences, one per spatial grid point.

The principal components of any multigrid method are the coarsening strat-
egy, the discretization on each grid level, and the smoothing and intergrid transfer
operators. Each of the three algorithms discussed below uses the 'natural’ dis-
cretization corresponding to (5) on each grid level. (Of course, the value of A\, may
differ from one grid level to the next.) Hence, for a given fine grid, the three meth-
ods solve the same set of equations. They differ only in the choice of coarsening
strategy and multigrid operators.

The multigrid waveform relazation method employs a semi-coarsening strat-
egy, with coarsening only in the spatial dimension. The standard smoother is a
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zebra Gauss-Seidel method (i.e., red/black line-relaxation), with lines parallel to
the time-axis. It can be shown that this smoother is robust w.r.t. Ay ([26]). Note
that the time-line solver is particularly simple as it only involves the forward eval-
uation of first order recurrence relations. The intergrid transfer operators are the
standard ones used in combination with semi-coarsening. In the sequel, we shall
use the linear prolongation (I}) and full weighting (I/) formulae, with stencils
whose non-zero values extend in the spatial dimension only,

1
. = and I7 . =

(6)

o = O
O NN O
O = O
O = O
O NN O
O = O

The method easily extends to higher dimensional problems, and PDEs different
from our model problem (1). The method was first presented in [19] for linear
problems, and in [30] for nonlinear ones. A large number of examples, illustrating
typical multigrid convergence rates are given in [27, 28, 25]. Its application for
solving time-periodic parabolic problems is analyzed in [29]. Its implementation on
small-scale and medium-scale multiprocessors is discussed in the above references.
Large-scale and massively parallel implementation are documented in [31] and in
[17], respectively. :

The parabolic multigrid or time parallel multigrid method differs from the
multigrid waveform relaxation method only in the choice of smoothing operator. It
applies a standard spatial smoother replicated on each time-level. Non-smoothed
old values are used whenever values at grid points on previous time-levels are
needed. The red/black smoother, for example, consists of one point-wise relax-
ation step on all red grid points at all time-levels concurrently, followed by a
similar operation on all black points. Note that colouring is only w.r.t. the spa-
tial dimension. Further inspection reveals an interesting relation to the waveform
relaxation method (for the system of equations (5)). While the waveform method
solves each system of equations in one time-line exactly, the parabolic multigrid
method solves them approximately, by doing one Jacobi relaxation step.

The parabolic multigrid method was described first in [10], and a theoret-
ical analysis for a one-dimensional model problem followed in [5]. The parallel
implementation of the method, its application to the Navier-Stokes equations, and
the use of different time-parallel smoothers is discussed in [1, 6, 13, 14, 21]. Its
combination with extrapolation techniques is the subject of [15].

The most recent method studied in this paper is the space-time multigrid
method. It is based on a semi-coarsening strategy, with coarsening in space or in
time depending on the current value of Ax. If A is larger than a certain threshold
value Aqrit, coarsening is in the spatial dimension, and restriction and prolongation
operators are the standard ones given in (6). If A}, is smaller than A..;;, coarsening
is in the time-dimension. In that case special intergrid operators are used, whose
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TABLE 1. Averaged convergence factor of space-time multigrid V(2,1)-cycle on rectan-
gular grids for the one-dimensional model problem with backward Euler discretization
(ns = 1/Az, ny = T/At, My = At/(Az)?).

ngXxng | 32x32 32x64 32x128 32x256 32x512 32x 1024
Ap=1/64 | 0.023 0.031 0.048 0.061 0.074 0.086

Ap=1/4 0.049 0.077 0.11 0.15 0.14 0.14
Ap=1/2 0.081 0.13 0.14 0.13 0.13 0.13
Ap =1 0.095 0.11 0.12 0.13 0.13 0.12
Ap =2 0.092 0.10 0.10 0.097 0.09 0.082
Ap=4 0.083 0.091 0.093 0.087 0.081 0.081

Ap =64 0.020 0.019 0.021 0.022 0.023 0.023

stencils are given by
01
01

0 ] 0
0| and I . 5 1 (7)
0 1

o O O
o O O

00

The method is further based on a point-wise red/black smoother, with standard
colouring of the entire space-time grid.

As explained in [16], by this choice of operators and smoother the space-time
multigrid method approaches an exact solver in the limiting cases of Aj, going to
oo and Ay going to 0. In [16], the method is also discussed in combination with
different time-discretization methods (Crank-Nicolson and second order backward
differentiation), and numerical results are provided for the two-dimensional model
problem. Some numerical results of a computational experiment are presented in
Table 1. They illustrate the very good convergence of the method, for different
values of A\ and for different mesh sizes. In this table we concentrated on the
most interesting case for practical purposes, where a fixed-size spatial problem is
integrated over various large time intervals.

3 Two-grid Fourier mode analysis

In this section we shall analyze the two-grid variants of the three multigrid methods
presented in the previous section. We consider the one-dimensional model problem,
discretized with the backward Euler method on a space-time grid €, with (ns +
1) x (n¢ + 1) grid points; i.e., ny = 1/Az and n; = T/At. The two-grid method
makes use of an additional grid, 2, derived from Qj by doubling the mesh size
in the space dimension (H = (2Az, At)) or the time dimension (H = (Az,2At)) .

By a two-grid cycle the error e of an approximation to the solution on 2,
is transformed into a new error e™®¥, with ™% = M,{{ e where M,{{ is the
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so-called two-grid iteration matrix. This matrix is given by
M = 8v2 (I, — IEL T Ly) S0 (8)

where Sj, is the smoothing operator on p; v; and v, are the numbers of pre-
and post-smoothing iterations; I, I%, I,{{ , are the identity, prolongation, and
restriction operators. Ly and Ly, are discretized differential operators on Qy and
Q. It can be shown that the entries of M, ,{{ depend on A, and Ay only, and not
of the particular values of the discretization parameters h and H.

The properties of the two-grid iteration matrix are often determined, or ap-
proximately calculated, in the frequency domain, by a so-called exponential Fourier
mode analysis ([2]). This analysis can be regarded as an analysis for special model
problems, namely those with periodic boundary conditions. This analysis shows
that multiplication with matrix M/? leaves certain linear spaces of exponential
Fourier modes invariant. More precisely, it can be shown that M ff{ is equivalent
to a block-diagonal matrix, whose diagonal blocks are matrices of rank at most 4.
The general expression for the diagonal blocks is called the Fourier mode symbol
of the two-grid operator. This symbol is easily found to be

VI 0) = $i20) (1n— T O) L O 1 0) La(0) ) S 0) . (9)

where S5, (6), ff(@), 1%(8), Ly(8), and Ly (6) denote the symbols of the smooth-
ing operator, restriction operator, prolongation operator, fine grid PDE operator,
and coarse grid PDE operator. Precise formulae of these symbols and a further
discussion can be found in [16, 26].

The convergence of the two-grid cycle is characterized by the Fourier mode
conwvergence factor,

p = max{x(M[(0)): 6 € ©;} . (10)

where (-) denotes the spectral radius operator, and where the set of frequencies
O; is given by

05 = {(037 at) (0o = 27Tka/na’ ko = _'na/4a _na/4 +1,... »na/4 - 1} (11)

(We assumed that ns and n; are multiples of 4.) The value of p usually shows very
good agreement with actual convergence factors obtained on 2. Its calculation
is straightforward, by numerically computing x(M H(9))) and by optimizing this
over the discrete set ©;. We have calculated two-grid Fourier mode convergence
factors for the multigrid waveform relaxation method, the parabolic multigrid
method, and the space-time multigrid method. The results are graphically depicted
as functions of the parameter A\, in Figure 1.

The waveform relaxation picture clearly illustrates the robustness of the
method across the entire range of A, values. The parabolic two-grid method per-
forms satisfactorily for large values of Ay, i.e., when the problems on each time-level
are more or less decoupled. In that case parabolic multigrid is equivalent to a stan-
dard elliptic multigrid method for a problem extending in space only. The method
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0.8 1 - 0.8
p 0.6 1 ~ 0.6 P
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FIGURE 1. Two-grid Fourier mode convergence factor for backward Euler discretization
(two-grid cycle with 2 pre- and 1 post-smoothing steps, ns = n; = 128).
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fails, however, completely for small values of Aj. Finally, two curves are drawn in
the space-time multigrid picture. The solid line corresponds to the space-coarsening
strategy, while the dashed line corresponds to the time-coarsening strategy. The
intersection of both curves determines the value of A..;¢. As such for any A it
follows that the p of the space-time two-grid method is always on the lower of the
two curves. Hence, the method is robust for any Ap.

4 Parallel complexity

Parallel complexity is a theoretical measure of an algorithm based on the as-
sumption that an unlimited number of processors is available for its execution. It
describes the asymptotic dependence of the parallel computation time of the algo-
rithm on the size of the input. Any communication requirements are disregarded.
Consider the d-dimensional model problem; let ng; denote the spatial side-
length of the space-time grid and n; the sidelength in the time direction. We shall
derive the parallel complexities of the nested iteration variants of the multigrid
methods described in §2. Standard multigrid arguments show these algorithms to
achieve discretization accuracy, given that the convergence rate of a V-cycle is
independent of the grid size, and a fixed number of V-cycles is used per grid level.
The parallel complexity of a standard time-stepping method is given by

O( ny logQ(ns) ). (12)

This is easily seen by observing that the n; time-steps are executed sequentially,
and by noting that the parallel complexity of the modified nested iteration algo-
rithm on a grid with sidelength n, is given by O(log?(ns)), see, e.g., [20].

As derived in [17], the nested iteration multigrid waveform relazation algo-
rithm with a fixed number of V-cycles per grid level has a complexity equal to

O( log(ns)log®(ns) ) - (13)

The complexity of evaluating the recurrence relations in the smoother is O(log(n;)),
if a parallel cyclic reduction or recursive doubling method is used. This is at the
same time the total complexity of the operations at a single grid level, as the
other operations are O( 1) computations. Summing the total number of grid levels
visited in the nested iteration method on a grid hierarchy with O(log(ns)) grid
levels, we arrive at (13).

The parabolic multigrid method is identical to the previous method, except for
its smoother, which is a point-wise algorithm. The complexity of the latter is O(1).
This immediately leads to the following expression for the parallel complexity of
the nested iteration parabolic multigrid algorithm:

O( log*(ny) ) - (14)
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Finally, from [16] we recall the complexity of the nested iteration space-time

multigrid algorithm,
O( (log(ns) + log(ny))* ) - (15)

The correctness of this formula is easily realized by considering the point-wise
nature of all involved operators, and the fact that the total number of grid lev-
els is given by O(log(ns) + log(n;) ). Note that the complexity of the method is
O(log®(n) ), where n is the total number of variables. This agrees with the classical
formula for the parallel complexity of the multigrid method for elliptic problems.

In [34] an information theoretic lower bound is derived for the cost of solving
linear PDEs. By considering how many data values are required to calculate a
single solution value, it is shown that the parallel complexity must a least grow as
O(log(n) ), independent of the algorithm used. For problem (1) it is easy to come
up with an algorithm that achieves this optimal complexity, see, e.g., [22, §3.3.3]
and [12, §5.6.2].

Spatial discretization and incorporation of the boundary conditions, trans-
forms (1) into a system of ordinary differential equations (ODEs),

U-LU=F(t), U0 =U,. (16)

L is the discrete d-dimensional Laplace operator. Let @ be an orthogonal matrix
that diagonalizes L, i.e., QTLQ = A, with A = diag(A1, As,...). (Its columns are
the eigenvectors of L.) For spatial discretization with standard finite differences,
matrices @ and A are well-known in terms of sine-functions. Setting U(t) = QU (¢),
F(t) = QF(t) and Uy = QUy, system (16) can be rewritten as a system of ODEs
whose equations are decoupled,

U—AU=F@t), U0)=0,. (17)

The following three-step algorithm results. Step 1: Compute Fj = QTF(t;) for
every time level ¢;, and compute Up = QTUy. Step 2: Discretize and solve system
(17) for the values ﬁj ~ QTU(t;), using the Fj and Uy values. Step 3: Compute
U; = QU]- for every time level ¢;.

Steps 1 and 3 require O(log(ns) ) parallel steps, since the computations on
each time-level can proceed concurrently, and since multiplication by @ or QT can
be performed by means of the d-dimensional Fast Fourier Transform (FFT). Step
2 requires O(log(n;) ) parallel computations, when parallel cyclic reduction (CR)
is used to calculate the linear recurrences that arise in the ODE solver. Hence, the
parallel complexity of the FFT/CR algorithm is given by

O(log(ns) + log(ns)) - (18)
5 Concluding remarks

We have discussed various ways of extending standard time-stepping multigrid to
methods that solve on several time-steps simultaneously. The potential for par-
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allelism for this class of problems is thereby greatly increased. We considered
multigrid waveform relaxation, space-time multigrid and the parabolic multigrid
method.

Two-grid Fourier analysis shows both principal methods to be robust w.r.t. the
space-time grid aspect ratio Ay, both achieving a fast two-grid convergence rate.
The parabolic multigrid method is, however, limited to the large Aj, case. The lat-
ter scheme has a parallel complexity which is independent of the number of time
levels n;, whereas that of the former two methods is polylogarithmic in the size of
the time dimension. All three methods compare favourably in this respect to the
standard time-stepping scheme, whose parallel complexity remains linear in ny, a
severe restriction on the achievable parallelism.

The direct method outlined in §4 has a lower parallel complexity than any
of the multigrid methods described in §2. Its application, however, is restricted
to simple linear problems on rectangular grids. (See [22, p.66] for conditions on
the applicability of an algorithm similar to FFT/CR.) Waveform relaxation and
parabolic multigrid have been shown to be applicable to a much wider class of linear
and nonlinear problems. Moreover, they can be extended immediately to non-
rectangular domains. Although current experience with the space-time multigrid
method is limited to the model problem, we expect it to be applicable also to more
difficult problems.

Further work will include the implementation of each method on a massively
parallel computer and the investigation of non-linear problems. In addition we
intend to gain experience with the methods on MIMD machines and demonstrate
the improvements in efficiency obtainable when time-parallelism is introduced into
an otherwise standard multigrid scheme.

References

[1] P. Bastian, J. Burmeister, and G. Horton. Implementation of a parallel multi-
grid method for parabolic partial differential equations. In W. Hackbusch, ed-
itor, Parallel Algorithms for PDEs (Proceedings of the 6th GAMM Seminar
Kiel, January 19-21, 1990), pages 18-27, Wiesbaden, 1990. Vieweg Verlag.

[2] A.Brandt. Multi-level adaptive solutions to boundary-value problems. Math.
Comp., 31:333-390, 1977.

[3] A. Brandt. Multi-level adaptive finite-element methods I: Variational prob-
lems. In J. Frehse, D. Pallaschke, and U. Trottenberg, editors, Special Topics
of Applied Mathematics, pages 91-128, Amsterdam, 1980. North-Holland.

[4] A. Brandt and J. Greenwald. Parabolic multigrid revisited. In W. Hackbusch
and U. Trottenberg, editors, Multigrid methods III (Proceedings of the third
European Multigrid Conference, Bonn, 1990), pages 143-154, number 98 in
ISNM, Basel, 1991. Birkhaiiser Verlag.



7. Multicomputer—Multigrid Solution of Parabolic Partial Differential Equations 107

[5] J. Burmeister. Paralleles Losen diskreter parabolischer Probleme mit Mehr-
gittertechniken. Diplomarbeit, Universitdt Kiel, 1985.

[6] J. Burmeister and G. Horton. Time-parallel multigrid solution of the Navier-
Stokes equations. In W. Hackbusch and U. Trottenberg, editors, Multigrid
methods III (Proceedings of the third European Multigrid Conference, Bonn,
1990), pages 155-166, number 98 in ISNM, Basel, 1991. Birkhaiiser Verlag.

[7] E. Gendler. Multigrid methods for time-dependent parabolic equations. Mas-
ter’s thesis, The Weizmann Institute of Science, Rehovot, Israel, August 1986.

(8] J. Greenwald. Multigrid Techniques for Parabolic Problems. Ph.D.-thesis,
The Weizmann Institute of Science, June 1992.

[9] W. Hackbusch. Multigrid solution of continuation problems. In R. Ansorge,
Th. Meis, and W. Térnig, editors, Iterative Solution of Nonlinear Systems of
Equations, number 953 in Lecture Notes in Mathematics, pages 20-45, Berlin,
1982. Springer-Verlag.

(10] W. Hackbusch. Parabolic multi-grid methods. In R. Glowinski and J.-L.
Lions, editors, Computing Methods in Applied Sciences and Engineering VI,
pages 189-197, Amsterdam, 1984. North Holland.

[11] W. Hackbusch. Multi-Grid Methods and Applications. Springer Verlag, Berlin,
1985.

[12] R. Hockney and C. Jesshope. Parallel Computers : Architecture, Program-
ming, and Algorithms. Adam Hilger Ltd., Bristol, UK, 1981.

[13] G. Horton. Time-parallel multigrid solution of the Navier-Stokes equations. In

C. Brebbia, editor, Applications of Supercomputers in Engineering. Elsevier,
August 1991.

(14] G. Horton. The time-parallel multigrid method. Communic. in Appl.-
Num. Meth., 8:585-595, 1992.

[15] G. Horton and R. Knirsch. A time-parallel multigrid-extrapolation method for
parabolic partial differential equations. Parallel Computing, 18:21-29, 1992.

(16] G. Horton and S. Vandewalle. A space-time multigrid method for parabolic
P.D.E:s. Technical Report IMMD 3, 6/93, Universitiat Erlangen-Niirnberg,
Martensstrasse 3, D-91058 Erlangen, Germany, July 1993.

(17] G. Horton, S. Vandewalle, and P. Worley. An algorithm with polylog parallel
complexity for solving parabolic partial differential eqations. Technical Report
IMMD 3, 8/93, Universitdt Erlangen-Niirnberg, Martensstrasse 3, D-91058
Erlangen, Germany, July 1993.



108 Stefan Vandewalle and Graham Horton

[18] T. Kroll. Multigrid Solution of Parabolic Problems. Master’s thesis, Institut
fiir Angewandte Mathematik, Universitat Bonn, 1981.

[19] C. Lubich and A. Ostermann. Multigrid dynamic iteration for parabolic equa-
tions. BIT, 27:216-234, 1987.

[20] O. McBryan, P. Frederickson, J. Linden, A. Schiiller, K. Solchenbach,
K. Stiiben, C. Thole, and U. Trottenberg. Multigrid methods on parallel
computers — a survey of recent developments. IMPACT of Computing in
Science and Engineering, 3:1-75, 1991.

[21] C.W. Oosterlee and P. Wesseling. Multigrid schemes for time-dependent in-
compressible Navier-Stokes equations. Report no. 92-102, Delft University of
Technology, Faculty of Technical Mathematics and Informatics, 1992.

[22] M. Pickering. An Introduction to Fast Fourier Transform Methods for Partial
Differential Equations, with Applications. John Wiley and Sons Inc., New
York, 1986.

[23] J. Saltz and V. Naik. Towards developing robust algorithms for solving partial
differential equations on MIMD machines. Parallel Computing, 6:19-44, 1988.

[24] K. Solchenbach. Einsatz schneller elliptischer Loser zur Losung nichtlinearer
parabolischer Anfangsrandwertaufgaben. Diplomarbeit, GMD, Bonn, 1980.

[25] S. Vandewalle. Parallel Multigrid Waveform Relazation for Parabolic Prob-
lems. B.G. Teubner Verlag, Stuttgart, 1993.

[26] S. Vandewalle and G. Horton. Fourier mode analysis of the multigrid wave-
form relaxation and time-parallel multigrid methods. Technical Report IMMD
3, 7/93, Universitit Erlangen-Niirnberg, Martensstrasse 3, D-91058 Erlangen,
Germany, July 1993.

[27] S. Vandewalle and R. Piessens. Numerical experiments with nonlinear multi-
grid waveform relaxation on a parallel processor. Applied Numerical Mathe-
matics, 8(2):149-161, 1991.

[28] S. Vandewalle and R. Piessens. Efficient parallel algorithms for solving initial-
boundary value and time-periodic parabolic partial differential equations.
SIAM J. Sci. Stat. Comput., 13(6):1330-1346, November 1992.

[29] S. Vandewalle and R. Piessens. On dynamic iteration methods for solving
time-periodic differential equations. SIAM J. Num. Anal., 30(1):286-303,
February 1993.

[30] S. Vandewalle and D. Roose. The parallel waveform relaxation multigrid
method. In G. Rodrigue, editor, Parallel Processing for Scientific Computing,
pages 152-156, Philadelphia, 1989. Proceedings of the Third SIAM Conference



7. Multicomputer—Multigrid Solution of Parabolic Partial Differential Equations 109

on Parallel Processing for Scientific Computing, Los Angeles, December 1-4,
1987, SIAM.

[31] S. Vandewalle and E. Van de Velde. Space-time concurrent multigrid wave-
form relaxation. Technical Report CRPC-93-2; Center for Research on Par-
allel Computation, California Institute of Technology, April 1993.

[32] S. Vandewalle, R. Van Driessche, and R. Piessens. The parallel performance of
standard parabolic marching schemes. Int. J. High Speed Computing, 3(1):1-
29, 1991.

[33] D. Womble. A time-stepping algorithm for parallel computers. SIAM
J. Sci. Stat. Comput., 11(5):824-837, September 1990.

[34] P. Worley. Limits on parallelism in the numerical solution of linear PDEs.
SIAM J. Sci. Stat. Comput., 12(1):1-35, January 1991.



8

Multilevel Solution of Integral
and Integro-differential Equations
in Contact Mechanics and
Lubrication

C.H. Venner! and A.A. Lubrecht?

1 Introduction

Since their introduction multilevel techniques have influenced many fields in sci-
ence. Wherever large scale computations are needed, e.g. fundamental research,
applied research and design and development of technical equipment, they have
reduced computational cost and/or created the ability to solve increasingly com-
plex and extensive problems. In this paper we present an example from the field of
tribology, i.e. the science and technology of interacting surfaces in relative motion,
or, to use a more popular definition, the science of friction, lubrication and wear.
In particular we will describe the essential steps leading to an efficient multilevel
solver for the simulation of lubricated concentrated contacts. However, the tech-
niques described in this paper are neither restricted to this problem, nor are they
restricted to the field of contact mechanics and lubrication. In fact, they can be
of interest for any problem described by Fredholm integral and integro-differential
equations.

This paper is organized in the following way. First section 2 introduces lubri-
cated concentrated contacts and provides some background of the research. Sub-
sequently, section 3 presents the equations describing the two characteristic modes
of operation of such a contact generally considered in theoretical studies. In sec-
tion 4 the discrete equations are given for both cases. In section 5 the multilevel
solution of the equations is addressed. First it is explained how to obtain stable
relaxation schemes that efficiently smooth the error. Subsequently several aspects
related to the coarse grid correction cycle are discussed. With this coarse grid cor-
rection cycle, even for extreme operating conditions, a solution can be obtained
with an error smaller than the discretization error, employing a 2-FMG algorithm.

!University of Twente, Enschede, The Netherlands
2University of Twente, Enschede, The Netherlands & SKF Engineering Research Cen-
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However, when taking a close look at the algorithm it becomes obvious that the
efficiency, although greatly improved compared to single grid solvers, is still far
removed from the O(h~¢) (d being the dimension of the domain) efficiency usu-
ally obtained for elliptic problems. This is due to a multi-summation (Fredholm
integral) appearing in the equations, the evaluation of which requires O(h~2%)
operations. In section 6 a multilevel algorithm “Multilevel Multi-Integration,” is
explained that enables an evaluation in O(h~¢) operations while maintaining ac-
curacy, as is demonstrated. Merging this algorithm with the techniques explained
in section 5 yields a multilevel solver with overall complexity O(h~¢). The paper
is concluded with a characteristic calculational result for a concentrated contact
and an outline of directions for future research.

2 Concentrated Contacts

Lubricated concentrated contacts are common in technical equipment and every-
day life. An example is the contact between the rolling element (ball) and the
inner or outer raceway in a rolling element (ball) bearing. In general these con-
tacts are lubricated with oil in order to separate the opposing surfaces by a thin
oil film, transferring the load from one surface to the other. In that case, friction
will be small (minimum power-loss) and wear of the surfaces will be nearly absent.
The shape and the thickness of this lubricant film generally depend on the surface
velocities, the contact load, and the geometry of the surfaces. In the case of con-
centrated contacts, two additional effects have to be considered. The pressure in
these contacts can range up to 2.0 GPa, and consequently both the elastic defor-
mation of the surfaces (even for steel components) and the pressure-dependence
of lubricant properties, e.g. the viscosity, must be included in the analysis.

The purpose of a numerical simulation of these contacts is threefold. Firstly
to reveal the mechanisms determining the film formation and the pressure in the
contact, both globally, (on the scale of the entire contact) as well as locally, i.e. what
is the effect of particular local surface features, e.g. surface roughness. Secondly,
for design purposes, to predict the thickness and shape of the lubricant film given
the operating conditions. Finally, even an ideally lubricated contact eventually
breaks down due to (sub)surface fatigue, i.e. due to the stresses in the material
caused by the pressure at the surface. To obtain optimal service life, insight into
the mechanisms initiating this failure is essential.

Figure 1 shows the model of a concentrated contact generally used in theoret-
ical studies: two elastic bodies of paraboloidal shape in relative motion subjected
to a certain contact load, and the equivalent reduced configuration, i.e. the contact
between a single paraboloid and a flat surface. Displayed in figure 1 is a so-called
“point contact”. A special case often studied separately is the “line contact” which
is the simplification to infinitely wide bodies (R}, = R = oo, and F is replaced
by a load per unit width).
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FIGURE 1. The EHL point contact and the reduced geometry used in the theoretical
analysis; R, = reduced radius of curvature in z; direction: 1/R,, = 1/R;, +1/R2,. h=
film thickness

In theoretical studies two extreme modes of operation are distinguished: “dry
contact” and “fully lubricated contact”. In the first case the bodies are simply
pressed together by the given load which causes them to deform elastically yielding
a specific pressure distribution at the surface and stresses in the material. In the
second case they are fully separated by a thin lubricant film and the pressure on
the surfaces, (and the stresses in the material) is not only determined by elastic
effects but also by the flow of lubricant through the gap. Of these problems, the
lubricated contact is the more complex to solve numerically and, to understand
some of the problems involved, it is advantageous to study the dry contact problem
as a prelude. This approach is followed throughout this paper. However, the dry
contact is also of interest in its own right, because, due to the very thin film
in practical contacts, it already allows the prediction of contact stresses and the
associated subsurface stress field to a good approximation.

3 Equations

In order to reduce the number of parameters, it is common practice to introduce
dimensionless variables. This also applies to the equations presented here. The
dimensionless variables used are based on the Hertzian theory of elasticity [4, 7, 5]
and are denoted by uppercase characters, e.g. X1, H. Their exact definition is not
essential to the present paper and can be found in Lubrecht [8] and Venner [13].
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3.1 DRY CONTACT

Let X € Q C IR?, (d=1,2) then the (dimensionless) gap between the two surfaces,
can be given as:

H(X) = Hy + G(X) + W(X) (1)

where G(X) is a known function, containing the undeformed surface geometry e.g.
the paraboloids in the case of perfectly smooth surfaces, Hy is a constant discussed
below, and W (X) denotes the elastic deformation. Approximating both elements
by elastic half-spaces, e.g. see Johnson [5], and Love [7]:

W(X) = /Q K(X,Y)P(Y)dY, @)

The kernel K(X,Y) depends only on the dimension d of the problem and the
distance |X — Y. For example for d = 2; K = 1/|X — Y|. This multi-integral
plays an important role with respect to numerical solution of the problem as
it determines the type of relaxation, see section 5.1. Furthermore, if no special
measures are taken, the evaluation of its discrete counterpart will be very time
consuming. This aspect is treated in detail in section 6.

The (integration) constant Hy is determined by a socalled global constraint:

/ P(X)dX = ¢ (3)
Q

where ¢ is a constant depending only on the dimension d of the domain Q. In
physical terms (3) imposes the force balance between the integral over the pressure
and the externally applied contact load.

In the case of a dry contact the two elements are simply pressed together by
the external load and, in its simplest form, it can now be described as: solve P(X),
and the integration constant Hy from:

HX)=0 XeQ P=0 on 90 (4)

and the global constraint (3). However, this formulation is not suited for numerical
solution, as the domain 2 is not known a priori. Furthermore, several physical
constraints must be included, i.e. the surfaces cannot penetrate each other and
the pressure cannot drop below the ambient pressure (P = 0). To incorporate
these conditions and deal with the unkown domain, equation (4) is extended into
the domain €' (Q C ') and written as a complementarity equation. As a result,
the problem to be solved is: for a given geometry G(X), and the kernel as given
above, determine P(X), i.e. solve the Fredholm integral equation of the first kind
(5), subject to P(X) > 0 and the global constraint (3).

Hy+G(X)+ | K(X,Y)P(Y)dY =0 XeQ P=0 on 0% (5)
Ql
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3.2 LUBRICATED CONTACT

In the dry contact problem the pressure in the contact is determined by elasticity
only. This is no longer true if lubrication is taken into account in which case
the lubricant flow in the gap also plays an important role. The lubricated contact
problem is described by two equations. The first equation is the so-called Reynolds
equation [12]. This equation is the basic equation of lubrication and it relates the
pressure in the lubricant to the geometry of the domain and the surface velocities:

pH® S d(pH)

v-[—ﬁ—vP )\pH]—/\l 5T =0 Xe (6)
For details the reader is referred to [6, 8, 12, 13] X is a vector containing the
dimensionless surface velocities Aj, and Ay. Furthermore, 7 is the dimensionless
lubricant viscosity (relative to the viscosity at ambient pressure) and p denotes the
dimensionless lubricant density (also relative to the density at ambient pressure).
Both viscosity and density depend on the pressure and are obtained from empirical
equations. For details the reader is referred to [8, 13]. The dependance of the
density on the pressure is relatively weak, however, the dependance of the viscosity
on the pressure is very strong, i.e. it increases roughly exponentially with increasing
pressure.

For the description of the essential elements of the numerical solver we restrict
ourselves to the steady state situation with the velocities of both surfaces aligned
in the X direction. Furthermore, usually liquid lubricants are applied, i.e. the
pressure cannot drop below the vapour pressure. As a result the problem must be
solved as a complementarity problem and the domain {2 is not known. The problem
is extended into a domain ' adding the equation P > 0. On the boundary of the
domain (©') P = 0 is assumed (ambient pressure defined as P = 0). As a result
the equation for the pressure reads:

O(pH) _
V- (evP) X, =0 (7)
with P > 0 and e is defined by:
_ pH?
€= Y

The second equation is the equation for the film thickness, i.e. equation (1):

H(X) = Hy+ G(X) + / K(X,Y)P(Y)dY, Xe® (8)
Q

with K = In|X —-Y|ifd=1and K = 1/|X — Y| if d = 2. Finally, the global
condition should be satisfied:

/, P(X)dX = ¢ 9)
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Summarizing, given a specific contact case (defined by G(X), A, and two parame-
ters appearing in the viscosity pressure equation), the lubricated contact problem
consists of solving P(X) and H(X) from (7), (8) and (9).

With respect to the numerical solution of this system of equations it is im-
portant to note that, as a result of the roughly exponential viscosity pressure de-
pendance, € in (7) for realistic conditions varies many orders of magnitude over the
domain. In the outer region it is very large, due to large H and small 7 whereas in
the central region it almost vanishes due to the large 7 and small H. Consequently,
in the outer region the problem behaves as a partial differential problem whereas
in the central region the integral aspects dominate. Furthermore, if d = 2 there
is an additional complication. With decreasing €, equation (7) becomes strongly
“anisotropic”, as the coupling in X5 direction weakens and eventually nearly van-
ishes. In the limit only the weak indirect coupling via the multi-integral remains.
This behaviour has an important consequence for the relaxation to be used in a
multilevel solver.

4 Discretization

Let ' be given by {X € R'|X, < X < X} ifd = 1 and by {X = (X1,X2) €
R X, < X1 < Xs A=Y, < Xo <Y,} if d = 2. This domain is covered with a
uniform grid with mesh size h. Let 7 denote the gridpoint i = (i1, ...74), then the
elastic deformation integral can discretized as:

wh(xh) = wh < /Q K(X!Y)PM(Y)dy = ht Y KM PE, (10)
J

where PP is a piecewise polynomial function of degree 2s — 1 and Ph(YJh) = P]h,
the coeflicients Kf;‘ are calculated such that equation (10) holds. The factor h?
is introduced to ensure that both K and P are of comparable size on grids with
different mesh sizes. The discretization error made in this process will be of the
order h?%. For all results that will be presented in this paper s = 1.

4.1 DRY CONTACT
Using (10) equation (5) at any gridpoint 7 is discretized as:
Hy+GXMN+Wl=0 X,€Q P'=0 on 00 (11)

subject to Pz-h > 0 and the global condition reads:

hty Pt—c=0 (12)
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4.2 LUBRICATED CONTACT

Using a second order accurate central discretization for the first term of equa-
tion (7) and a first order upstream discretization of the second term leads to the
following equation to be satisfied at each non boundary site i, (X, +41h, =Y, +izh)
(d = 2), subject to the cavitation condition: P} > 0.

-2 h h h h
h (6(i1—1/2,i2)(P(i1—1,i2) - P(il,ig)) + €(i1+1/2,i2)(P(i1+1,i2) - P(il,ig))

h h h h
+€(i17i2—1/2)(P(i1,i2—1) - P(i1,i2)) + €(i1,i2+1/2)(P(i1,i2+1) - P(il,iz)))
- h_l(ﬁ(il,iZ)H(};:l,ig) - ﬁ(il_lyi’.?)H(};]—l,iz)) = O (]‘3)

where €(;, +1/2,i,) and €(;, ;,+1/2) denote the value of € at the intermediate locations
and are approximated using for example:

€(i1—1/2,i3) = (€(i1,i2) + 6(i1—1,i2))/2
with:
ﬁ(P(izl,iz))(H(hil,iz))g
(PG, i)t

The discretized film thickness equation reads:

€(i1,i2) =

H; = Ho+G(X[!) +h*> " K" ph (14)
J
and, as for the dry contact problem, the discretized global condition reads:

hty Ph—c=0 (15)

5 Multilevel Solution

In this section emphasis is on solving the discrete equations employing the usual
multigrid processes, i.e. relaxation to smooth the error, a coarse grid correction
cycle (using the F.A.S. because of the non-linearity), to accelerate convergence,
all embedded in the well known FMG structure. First the subject of relaxation is
addressed, where, again the dry contact problem is used as a prelude to the more
involved lubricated contact problem. Subsequently different aspects characteris-
tic for the present problems and essential for an efficient coarse grid correction
cycle are discussed. The techniques explained here (added to the usual multigrid
techniques) result in solution of the problems to discretization error in a 2-FMG
algorithm, also for extreme conditions, where generally W cycles are needed to
obtain optimal cycle convergence.
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5.1 RELAXATION FOR THE DRY CONTACT

The objective is to solve the Fredholm integral equation (11). Let P" denote an
approximation to the solution and W" the associated integrals. A straightforward
approach to improve this approximation is to scan the entire grid, at each location
applying changes to PP to satisfy (11) (with W"). After all points have been visited
the new approximation to P" is used to update the discrete integrals.

Such a one point relaxation, either as a collective displacement scheme (Ja-
cobi) or as a simultaneous displacement scheme (Gauss-Seidel) is generally an
effective error smoother for partial differential equations. However, it may be less
suitable for integral equations. For example, when applied to the present equa-
tions it is unstable because of too large an accumulation of changes of PP in the
integrals during one relaxation, (even when integrals are updated while relaxing)
resulting in amplification of smooth error components. For the type of kernels ap-
pearing here, a local behaviour of the relaxation (and stability) can be obtained
by means of distributive relaxation. At each point changes to the current solution
are applied also at a number of neighbouring points, with certain pre-set distri-
bution weights such that the changed values satisfy a weighted sum (i.e. some
pre-set linear combination) of several (sometimes just one) neighbouring discrete
equations. The relaxation is called first order distributive if it will not change the
sum Y PP. More generally a distribution order r leaves 3. Q(z?)P! unchanged
for any polynomial @ of degree less than r. For a 2 dimensional problem, on a
uniform grid, r = 2 distributive relaxation has the following stencil of changes:

1 0 -1 0
1%602) —é ‘11 -(1) (16)

For the present kernels, the influence of such distributed changes applied at point
i on the discrete integrals at points j decays fast with increasing |i — j|, i.e. pro-
portional to the second derivative (general r** derivative) of the kernel. Hence, the
effect of changes at a given point is limited only to discrete integrals at locations
in its immediate vicinity and the relaxation is effectively local. This can be shown
with a local mode analysis. Disregarding the influence of the complementarity con-
dition and the global condition, such an analysis for the present problem (s = 1)
yields an asymptotic smoothing rate (fi) of 0.40 for d = 1, and 0.45 for d = 2 relax-
ing (11) (for P) as a simultaneous displacement scheme (see Venner [13]), i.e. (re-)
evaluating the multi-summation only after all sites ¢ have been visited. Smaller
values can be obtained if the integrals are locally updated. In that case the result
depends on the order in which the points are visited, e.g. lexicographic, red-black,
etc. This option was discarded from an integral evaluation point of view, as local
updates are computationally expensive whereas evaluating them all at once can be
done fast as will be explained in section 6. Furthermore, fi = 0.45 already enables
solution to the discretization error in a 1-FMG or 2-FMG algorithm, with just a
few pre/post relaxations, which is satisfactory from a practical point of view.
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5.2 RELAXATION FOR THE LUBRICATED CONTACT

In designing a relaxation for the problem we focus on solving P from the discrete
approximation to (7), (i.e. equation (13) if d = 2), alternated with recomputing or
updating H" using (14). This particular choice is again induced by the possibility
to evaluate all integrals at once in a fast manner. As mentioned in section 3.2, the
main problem when numerically solving the lubricated contact problem is that e
in (7) varies many orders of magnitude over the domain. Obviously for a multilevel
solver it is essential that the relaxation scheme effectively smooths the error over
the entire domain, i.e. for both small and large €. As a first step in designing such
a relaxation process, a linearized model, characteristic for the local behaviour of
the full problem, was studied:

OH

eAP X, 0 (17)
with H given by (8) with a fixed Hy, € a given constant and P = 0 on the
boundary. With the usual 5 point discretization for AP if d = 2, or 3-point if d = 1,
a first order upstream discretization for 0H/0X, and using (14), a local mode
analysis can be performed. This analysis shows that the smoothing rate of a given
relaxation will depend on €/h?. Obviously for large values of €/h? this analysis
yields asymptotic smoothing rates as obtained for the discrete Poisson problem
(see ([1])), e.g. i = 0.5 (d = 2) and i = 1/v/5, (d = 1) for lexicographic Gauss-
Seidel relaxation. However, for small values of ¢/h? such a relaxation becomes
unstable. This instability is caused by the accumulation of changes in the integrals,
which, via the film thickness, affect equation (17). As in the case of the dry contact
problem, this accumulation can be limited by distributive relaxation. In fact, from
equation (17), one might expect smoothing rates for the limiting case € = 0, to
be as good as for the dry contact problem, already with a distribution that is one
order lower. This is indeed true for d = 1 where a first order distributive relaxation
has @ = 0.40.

However, such a distributive relaxation has rather poor smoothing behaviour
(when compared to the schemes mentioned above) for large €¢/h2. Therefore, the
key to an efficient multilevel solver for (17) is a combination, i.e. to apply a different
relaxation depending on the value of €/h? on the grid. Strictly speaking there is an
optimal value of the switch limit between the two relaxations. However, as we are
not after asymptotic convergence already a crude criterion serves well. The final
step to an efficient relaxation for the full problem is then to realize that relaxation
is a local process. Therefore, in the complete problem, the local ratio of ¢/h? can
be used as a criterion for the type of changes to be applied. For example, using
simple one point Gauss-Seidel changes in regions of large €/h%, and Jacobi first
order distributive changes in regions of small €/h?, yields a stable and efficient
relaxation for the one-dimensional problem. A detailed explanation can be found
in [13].

The above reasoning also applies to the case d = 2. A simple Gauss-Seidel
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relaxation either pointwise or line-wise is an effective smoother for large €/h2,
whereas for small €/h? distributed relaxation is needed. However, there is the ad-
ditional complication of the vanishing coupling in X5 direction. Therefore, for small
€/Rh?%, a distributive line relaxation should be used, i.e. for each line of constant
X, solve all changes (to be applied distributively) simultaneously from equation
(17) and (14). Subsequently, an effective smoother for the problem regardless of
€ is again best obtained by a combination of relaxations, e.g. by applying either
simple Gauss-Seidel line relaxation or distributive line relaxation depending on
the value of €/h2. This approach can then be extended to a hybrid line relaxation
scheme for the full problem, i.e. in regions of large ¢/h? changes as prescribed by
Gauss-Seidel line relaxation are solved and in regions of small €/h? changes as
prescribed by the distributive line relaxation are solved. For further details and
analysis the reader is referred to [13].

5.3 GLOBAL CONDITION

Equation (3) links the integral over P to the global constant Hy. This relation is
treated similarly to global equations in multilevel solvers of differential equations,
see [1]. The residual of the discrete global condition, i.e. (12), is calculated on
every level, transferred to coarser grids, and the equation is only treated (relaxed)
on the coarsest grid. As equation (3) does not directly link the Hy to the pressure
integral, (the constant does not appear in it) equation (12) is relaxed by changing
Hj in the direction driving the residual of this equation to zero.

5.4 COMPLEMENTARITY CONDITION

The complementarity condition (P > 0) introduces a free boundary. As a result
distributed changes may be computed which after application result in a viola-
tion of the complementarity condition. They are then forced to comply, thereby
introducing long range disturbances, since the distribution is altered. For ‘simple’
boundaries between the domains © and ' the convergence is not adversely af-
fected. When the boundary becomes complex, convergence can be degraded. In a
similar way the boundary of (' requires special attention. The simplest option is
to not apply the neighbouring changes for i near the boundary. Alternatively one
can modify the distribution. The complementarity condition also requires special
attention in the coarse grid correction cycle. The transfer of residuals to coarser
grids should be done carefully, i.e. it should be ensured that the residual of the
equation valid at the given location, i.e. (11) or P; = 0, is transferred. Further-
more, in the vicinity of the free boundary injection must be used to avoid mixing
information from cavitated and non cavitated points in one coarse grid right hand
side. For a detailed discussion on the multigrid treatment of a free boundary the
reader is referred to Brandt and Cryer [2]
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5.5 FILM THICKNESS EQUATION

A special point of attention in the coarse grid correction cycle for the lubricated
contact problem is the treatment of equation (14). Given an approximation to
Ph, this equation can be solved exactly at any time. Hence, if the integrals are
recalculated or updated after relaxing for P*, equation (14) will have zero residuals
at the time of transfer to the coarse grid. However, this by no means implies a zero
coarse grid right hand side. To deal with the non linearity the Full Approximation
Scheme is used which naturally must apply to all equations, i.e. also to equation
(14). Further details regarding the treatment of this equation can be found in
8, 13].

6 Multilevel Multi-integration

Implementing the techniques explained in the previous section in a FMG algorithm
yields stable solvers that are indeed fast compared to single grid solvers. However,
their efficiency is still far removed from the usual O(h~%) efficiency obtained for
simple elliptic problems as the O(h~2¢) operations needed for the evaluation of
the discretized multi-integral, equation (14) will determine the computing time. In
this section we briefly explain how the O(h~%) can be restored and describe “mul-
tilevel multi-integration”, a fast algorithm for evaluation of the multi-integrals. An
extensive treatment of the subject can be found in [3].

The time consuming nature of numerical evaluation (solution) of integral
equations as (2) has long been recognized, and traditionally far field assumptions
have been applied to speed up computation in parts of the domain €' where the
kernel K is relatively small (thus the name: far field). Here, however, we will make
use of the smoothness properties of these kernels, thereby replacing the values
of K in some points by interpolations in order to reduce the complexity. When
the kernel is sufficiently smooth the work can be reduced to O(h~%) operations,
using integration (summation) on coarser grids. For potential-type kernels, which
exhibit a non-smooth (singular) behaviour for X = Y, the complexity can be
reduced to O(h~%log(h~%)) operations, given the requirement that the additional
error made in this process should be smaller than the error made in discretizing
the equation (2).

6.1 DISCRETIZATION

Recalling the discretized integral:
wh(xh) =wh & / K(X!Y)PMY)dY = h? Y KMP, (18)
Q -
J

For convenience we will introduce only one coarser grid, with mesh size H = 2h
and N ~ n/2? points; the indices on this coarse grid will be denoted by uppercase
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characters. The two grids will be arranged such that X = X#. Furthermore,
it is necessary to define transfer operators between the two grids, such as the
coarse-to-fine interpolation operator I%. The index on which such an operator
works is denoted by a dot and the new index appears after the square bracket:
K! M= [} K] In later sections we will use more than two grids and it will be
convement to refer to them as levels, starting with the coarsest level which will be
called level 1.

6.2 SMOOTH KERNEL COARSE GRID INTEGRATION

In this section, the fine grid integrals are approximated by coarse grid integrals in
order to decrease the computational work involved in performing the integration.
We will require that the error made in this coarse grid integration process is
smaller than the fine grid discretization error. As a first step we will approximate
the values of W} where the point with index i also belongs to the coarse grid

(¢ = 2I). Whenever the kernel K (X,Y’) is smooth with respect to the variable Y,
we can approximate K by K:

Kl't = (IR KT (19)
with K Al given by Kl T=K lhg 7, hence equation (10) can be approximated by:

Wh ~ Wh def hdZKthh — pd th KhH] Ph
_ hdZK%I[(HZ)TPh ;= HdZKi’fngJ (20)
J J

On the coarse grid, some of the values of K are replaced by interpolations. This is
implemented by letting the adjoint interpolation operator work on P in defining
the coarse grid function P:

Pjl & 2= ()P, (21)
where (I';)T is the adjoint operator of Iy and P}, ~ P when P" is a smooth
function.

As a second step the values of the integrals in the fine grid points that do
not belong to the coarse grid (i = 2I 4 1) are calculated by interpolation from the
fine grid points (i = 2I) (equation (20)). Again, this can be performed whenever
K(X,Y) is also smooth with respect to X.

Wl = [IEW ), (22)

where

wH <y = g Z KHHpH (23)

and therefore K f] = Kglh,z J-
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The problem of calculating equation (10) has thus been reduced to a simi-
lar problem (23) on a coarser grid. Since the number of points on this grid will
be N ~ n/2¢, the total work of the multi-summation (23) relative to the fine
grid work will be much smaller. This process of coarsening is then repeated, using
even coarser grids, until a grid with N’ = O(y/n) points is reached. On this grid
the integration (summation) is actually performed, since further coarsening would
not reduce the overall complexity, because the work involved, for instance, in the
fine-to-coarse grid transfer, is already of the order of n operations. Note that the
number of levels required to reach a grid with N’ = O(y/n) is inversely propor-
tional to the dimension d.

6.3 NON-SMOOTH KERNEL COARSE GRID INTEGRATION

Until now, the kernel K was assumed to be sufficiently smooth over the entire
domain ; for a more quantitative description of the smoothness required, the
reader is referred to [3]. A number of kernels of practical interest, however, does
not fulfil this requirement; for instance, the potential-type kernels of interest in the
dry contact problem, K(X,Y) =1In|X — Y| and K(X,Y) = |X — Y|™! are non-
smooth (singular) in the neighbourhood of X =Y. Fortunately, their smoothness
increases rapidly with increasing distance |X — Y'|. Since the kernel is smooth in
a large portion of the domain we will approach this problem in the same way
as outlined above. In order to keep the additional error, made in the coarse grid
integration process, below the required level we will do some extra (correction)
work in the neighbourhood of the singularity. We will start by deriving an exact
expression that will replace equation (20) for the case that the fine grid point 7
belongs also to the coarse grid (i = 2I).

W = he z KM PP = pd Z RIMPE 1 hd S (KM — Rih ph
J

— hdz ﬂ'hKhH] Ph +hdz Khh _}T{lh’.;b)P)Jh
_ WH hdz Khh Khh (24)

In this derivation equations (19), (20) and (23) have been used.
Now it can be shown that the correction term (K — thjh) — 0as|i—j| — oo.
Remember that K is obtained by interpolation from K itself and that K becomes
smoother with increasing |i — j|. To be more precise:
- 0 fori=2I, j =2J;
hh _ frhhy _ ) J )
(K5 - K { O(hPK)(€)) fori=2I,j =2J + 1. (25)

where 2p is the order of interpolation used (only even orders are considered here)
to obtain K (equation (19)) and K(?P)(¢) is the 2p’th derivative of K at some



124 C.H. Venner and A.A. Lubrecht

intermediate point. Thus, whenever this derivative of K becomes small, the cor-
rection term will become small and can be neglected. Clearly this is no longer true
for ¢ ~ j in the case of the singular smooth kernels mentioned above and thus we
will have to carry out the corrections in a neighbourhood of i =j (|j —i| < mor
i—m < j <i+mif d=1). The precise shape of this neighbourhood in higher
dimensions is discussed in [3]. Equation (24) can therefore be simplified to:

WE~WHE+pt N (KM - KPP (26)

li—i|<m

If point i is not in the coarse grid (i = 2/ + 1), another coarse grid approximation
K to K is defined:

(1] k=0 Jk=1-1]k=1-2]k=1-3] k=1-4]k=1-5]
2 231077 231071 — — — —
1.1107! | 1.0 10%° - — - -
3 771072 761072 ] 7.610 — - —
1.4 1010 | 2.6 1010 | x2.2 1010 - - -
4 151072 151072 ] 151072 15102 — —
1.910t* | 9.910%° | 6.310%° | 6.0 1010 - —
5 ~4103 | 461073 | 4510 441073 | 4.710" —
~310%2 | 5710t | 2110 | x1.8 10t | 1.7 10*! -
6 ~110"3 131073 ] 1.0107%| 95107%] 161073
~ 51013 1.010t2 | 6710t | 6410t | 6.3 101!
7 ~3107% 401074 ] 34107%] 3810°¢
~ 81014 2.8 1072 | %2.5 1072 | 2.5 10+2

Table 1: Error and computing time (sec) in multi-integral on level |, while per-
forming the multi-summation on level k.

Two-dimensional problem, s=1, K = 1/|X — Y|, employing sixth order transfers
(see [3, 13]). k = 1 is direct summation, * denotes summation level with \/n points.

KM = (I KHM; (27)

where K fjh = Kgf . In terms of this new kernel we can derive an expression
similar to equation (J24) for the integrals in points with index ¢ = 27 + 1.

% 2% h
Wi = b KIEPE = WY RGP+ by (KL - KIP,
J J J
= hTY KR + b (KL~ KI)PY

J J
~ (I WH]; + B Z(K{fg — K ph

J

(28)

Far from the singularity the correction terms become small and are neglected.
Equation (28) then reduces to:
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FIGURE 2. Contour plots of pressure and film thickness in an EHL point contact.

W~ (W + 1t S (KM - KPP (29)

[7—il<m

If K(X,Y) has similar smoothness properties in X and Y, and identical inter-
polation operators are used in equations (19) and (27), the correction term in
equation (28) is similar to (25), but since the interpolation is carried out with
respect to the 7 index, it will be non-zero for all j.

(KM — KMy =0(r*K®P(€))  (Vj,i=20+1) (30)

This will result in larger errors (approximately three times as large) in the points
¢t = 2I 4+ 1, as compared to the points ¢ = 2/ (a factor of two comes from equa-
tions (29) and (30), a factor of one comes from the approximation in equation (28)).
In [3] the optimal values of m and 2p are derived in order to minimize the total
work. It is shown that for the potential-type kernels mentioned above, a total work
proportional to h~%log h™¢ can be obtained, as can be seem from table 1, taken
from [3].

7 Results

The multilevel evaluation algorithm explained in section 6, can be straightfor-
wardly merged with the techniques explained in section 5, yielding multilevel
solvers for the problems considered here with complexity O(h~%logh~¢). Note
that this is effectively the optimal O(h~%) complexity, as log(h~¢) increases only
slowly with decreasing mesh size. These solvers have subsequently been applied
to a wide variety of contact situations. For detailed engineering applications the
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reader is referred to [8, 9, 10, 11, 13, 14, 15]. In this paper, due to space limitations
only one set of results is presented in Figure 2: a contour plot of the pressure and
the film thickness for a lubricated stationary contact with a ridge (local surface
feature), solved on a grid of 513 * 513 points.

8 Further Developments

The incentive behind the application and development of these numerical tech-
niques is the requirement to obtain a tribological model that can predict suc-
cessful operation or failure of highly loaded concentrated contacts. Such a model,
which must be transient by nature, should be capable of describing rheological and
thermal effects, and it has to accomplish locally a very detailed analysis. Current
research is directed along two avenues: Improvement of the physical mathematical
model, and further algorithmic development. The latter involves extension to tran-
sient situations, and to higher order approximations using double discretization.
Furthermore, research has started to incorporate local grid refinement techniques,
which, due to the multi-integral raises interesting fundamental algorithmic ques-
tions to be answered.
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A Multi-Grid Method for
Calculation of Turbulence and
Combustion

X.S. Bai and L. Fuchs!

ABSTRACT The application of the Multi-Grid (MG) method to the calculation
of turbulent reacting flows is considered. Turbulence is handled by using the k — ¢
model. The eddy-dissipation concept based on a reduced global chemical reaction
scheme is used for modeling the chemical reactions. For low Reynolds number lami-
nar flows the MG efficiency is best, with the convergence rate in the order of 0.8. For
uniformly spaced grids the convergence rate can be better, and for highly skewed
grid, slower. The introduction of turbulence and combustion generally slows down
the converging process. However, the MG method still demonstrates considerable
acceleration over the single grid solver.

1 Introduction

Turbulent reacting flows involve many different processes, such as, advection, diffu-
sion, turbulence, chemical reactions and heat transfer. The different processes are
described by a system of partial differential equations (PDE), an ordinary differ-
ential equation and some algebraic relations. These equations are highly coupled,
corresponding to the interaction between the different physical processes. A key
issue in calculating turbulent reacting flows is therefore the numerical efficiency,
so that numerical prediction will be appropriate for engineering design.

Efficient solvers for elliptic partial differential equations could be tailored
using Multi-Grid (MG) methods [1]. Previously, variants of MG methods have
been applied to incompressible laminar flows [2] and isothermal turbulent flows
[3,4]. In this paper, the application of MG method to turbulent reacting flows in
cylindrical coordinates is discussed.

Turbulent reacting flows are unsteady. They can be calculated by Direct Nu-
merical Simulation (DNS) [5]. However, DNS is applicable only for low or moderate
Reynolds number (Re) situations and rather simple geometries. For non-trivial ge-
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ometries and flows of practical interest, DNS are not applicable. If one is interested
in the (time-) averaged properties rather than the turbulent fluctuations, one can
use some simple modeling technique, such as k — e model to handle turbulence [6].
If one is not interested in intermediary and low concentration species, one may ne-
glect some elementary chemical reactions [7-8]. Turbulence-chemistry interaction
can be handled by using simplified models such as the Eddy- Dissipation Concept
(EDC) [9]. Previous research [10-13] had shown that such simplified models yield
reasonably good results in many cases.

The MG calculation is performed on a modeled annular gas turbine combus-
tion chamber. The basic solver shown in this paper is very efficient for low Reynolds
number flow calculations. Extension to the calculation of turbulent reacting flows
has shown that variable density field (gas expansion process) and eddy viscosity
calculation make the convergence slower compared to the optimal laminar case.
The calculation shows, however, that MG method reduces computational time by
up to two orders of magnitude when compared with the single grid relaxations, in
the calculation of high Reynolds number turbulent reacting flows.

2 Mathematical models

2.1 GOVERNING EQUATIONS FOR TURBULENT REACTING
FrLows

When the mean properties of the flow field are of interest, as in many engineer-
ing applications, the Reynolds averaged equations have to be used. For "closing”
these equations one has to use a turbulence model, (e.g. the k — € equations).
Let the averaged pressure and density be denoted by p, p. Let u, v, w denote the
velocity components in axial, radial and azimuthal directions, respectively. The
conservation of mass and momentum are as follows.

dp 10prv  10pw  Opu _

o or Tree Tar T

0 (1)

Opu 10pruv  10puw  Opuu _ Op 10r1; 1079,  OTss
ot ' r Or +; 06 + Oz __5;+r or r 00 oz 2)

Opv  10prvv  10pvw  Opuw M _ Op N 10rr, 101

ot ' r Or r 00 Oz T “or ' r or r 00

OTrg To6
* oz 3)

dpw 1 9pr*vw  1dpww  dpuw 19p 1 Or?re 10799 | 970z

ot +r2 or r 06 dr  rod r2 or r 06 oz (4)
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Trry Trz, --- are the components of the stress tensor.

ou Ov ou 2
Tro = Heffla + 5] Tow = peg25- = 3V -]
ow 10u ov 2
Toz = Neff[% + ;6_0] Trr = Neff[25 - gv vl
ow/r 10v 10w v, 2
Tro = Hefsr o +;%] Tee—ﬂeff[Q(;%"‘;)—gV'V]

where pesr = pr + pe and py = pCuk?/e. pr, py are the laminar viscosity and
turbulent eddy viscosity, respectively. k is the turbulent kinetic energy and ¢ its
dissipation rate. The two-equation k — e model is given by

Opk  10prvk  10pwk Opuk 10, pespOk. 10 pepsOk
St Tror Tr a8 "oz ror B o)t rag'rp, 90

0 ess Oky 4 g, (5)

or' P, Oz

Ope | 10prve  10pwe  Opue 10  pejsOey 10 pess Oc,
ot r Or r 00 dr  ror - P. Or rdf rP. 06

0 Hef f Oe
ﬁ(?e_£)+5€ (6)

where Sk, Se are the source terms in the k and e equations, respectively.
We define the specific enthalpy h as h = f;; CpdT, (Ty = 25C), then:

Oph  10prvh  10pwh dpuh 10 ,ueff@)_@
ot r Or r 00 oz _rarr P, oOr ot

10 pespOhy 0 piegsOh,  rop
790 rp, 98 T oz h, ) THIR S (7)

R; is the reaction rate of species i, H is the enthalpy formation of i. S, is the
source term due to thermal radiation (which is neglected in this calculation, so
that S, = 0).

For species ¢ the mass fraction m; - equation is:

Opm;  10prvm; 10pwm;  Opum; _ 19—(7‘“6” ami)

ot r Or r 00 or  ror P, Or
10 peggOmiy 8 pregyOmy
raﬂ(er 00 )+ 8:6( P, Oz )~ R (8)

The reaction rate, R;, is a function of mass fractions, temperature, and influenced
by turbulence:
R; = f(m;, T, k,e,...) (9)
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This relation will be discussed later in the next section.

The system of equations above (1-9) is completed by the equation of state.

At inlet the boundary conditions for u, v, w are given by a certain profile and
the inlet mass flux. At outlet they are given by setting the second derivatives of the
velocity vector to zero. At walls u, v, w vanish. The boundary conditions for k and
€ are as follows: at inlet, the turbulent kinetic energy is taken to be proportional
(a few percents) to the inlet kinetic energy. At solid walls, we use the so called
"wall functions” [6]. At outlet, we force the second streamwise derivatives of k and
€ to vanish.

The boundary conditions for h can be specified as follows: at inlet they are
given by certain values, at outlet the zero second derivative is used. At wall they
are given by specifying certain heat flux or the temperature itself. The boundary
conditions on m; at inlet and outlet are treated in a similar way as h. At wall we
set the normal derivative of m; to zero.

In the equations above, the following parameters values are used: C,, =
0.09, P, =1.0,P. =1.22,P, = 0.7, P, = 0.7; [13].

2.2 CHEMICAL REACTION SCHEME
For a hydrocarbon fuel (such as C3Hg), one may use the following two-step global

reaction scheme [7].

C3Hs + 3.5(02 + 3.76N3) — 3CO + 4H0 + 13.16N,

For each of these steps, the reaction rate is computed by:
Mair | €

) 2)
Mair | €

%)

where R{', R4' are reaction rates computed by Arrhenius Law [7]. r; = 10.92,79 =
2.451 are stoichiometric constants of the reaction steps and B; = By = 2.0 are
model constants. The reaction rate for species C5Hg, CO, O3 can be computed by:

/ : A :
R} = min(R{', B1p min(mc, gy,

R, = min(R%, Bap min(mco,

Reyn, = Ry (10)
Rco = Ry — 3R} ‘ (1
Ro, = m Ry +raR), (12)
where r3 = 1.909.
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3 Solution Method

3.1 Mass FLux CONSERVING TRANSFORMATION

The continuity equation is written in a strong conservation form. This formula-
tion simplifies the handling of the axial singularity and also ensures global mass
conservation in the MG process in a straightforward manner. Let

pru=U pro=V pw=W (13)
then the continuity equation in conservative form becomes:
Opr OV oW oU
L T T A T | 14
8t+8r+09+83} (14)

The momentum equations and the transport equations for a scalar f (f = k,
€, h, m;, ...), in terms of the new dependent variables, can be written as:

oUu N oUuvV/(pr) N OWU/(pr) N ouuU/(pr) _Ta_p N OrTry N 079 N OrTyg

ot ar a0 rE vy i T L)
opfr oVf OWf ouf _ o Ma_f
o "ot T e b o
0 egg OFy 0 Hess OF
89( rPy 00 (%(r Py 0:5) TSy (16)

3.2 DISCRETISATION

The discretisation is done on a staggered grid. The components of the velocity
vector are defined at the center of the corresponding cell side. Scalars are defined
at the cell center. All terms with the possible exception of the convective terms
are approximated by central differences. The convective terms in all the equations
are approximated by the first order scheme. When only steady state is sought,
as in the cases considered here, one may use a quasi-time marching technique for
the relaxation of the equation. By analogy to a time dependent term we define a
”correction” term:

n+1 n
AN A ALY (17)
ot At Az
The superscript n represents a pseudo, n-th time step, while A¢ represents
the correction during each iteration. U, is the characteristic velocity, usually taken
as the maximum of the inlets velocities. Ax is the characteristic spatial mesh size.
B > 0 acts as a relaxation parameter (Usually, the smaller the value of 3 is, the
faster the convergence. However, occasionally when ( is too small, the relaxation
process may diverge).
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3.3 MuLTI-GRID SOLVER

The discretized equations result in a system in which all the dependent variables
are coupled together. The SIMPLE scheme [14] is used for ”decoupling” velocity
and pressure. Since we use the mass flux conserving transformation, the coupling
between density and velocity is only through source terms. The energy equation
and the other transport equations are updated after updating the velocity and
pressure (”sequential” relaxation [13]). The relaxation is linewise, in the radial
direction, for all the equations.

To accelerate the convergence of the basic line by line solver, a MG method
is used. The solution procedure starts on a coarse grid doing several V-cycle MG
relaxations in the fully approximate storage (FAS) mode [2,3]. After converging
to a certain level, the variables are transferred to a finer grid. This procedure is
repeated until the finest grid is reached and the converged solution is obtained.
The transfer of scalars to coarser grids is done by volume averaging, whereas the
components of the velocity vectors are transferred by area (flux conserving) aver-
aging. Mass flux conserving restriction is a necessary condition for the convergence
in the coarse grid. The corrections are interpolated to fine grids by trilinear inter-
polations.

TR

— Air inlet
— Outlet

— Fuel inlet

Fr

FIGURE 1. A sketch of the model annular gas turbine combustion chamber

4 Numerical Examples

The above solver is tested on a cylinder combustion chamber (a simplified model
of annular gas turbine combustor). As shown in Fig.1, the inner radius r can
be changed. The outer radius is R = 1 + r. The chamber length is L = 2. We
compute only a sector of the chamber, assuming periodicity (with the sector angle
a = 34.4°). Two inlets supply air and fuel (C3Hs), respectively. The fuel/air
equivalence ratio is 0.88. The coarsest grid is 5x3x3, which is refined by 3 levels
(Grid 1) and 4 levels (Grid 2).
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4.1 ANALYSIS OF THE BASIC SOLVER

In order to achieve high MG convergence efficiency for turbulent reacting flow
calculation, it is necessary to obtain high efficiency for a single convection-diffusion
equation calculation. In the following, instead of illustrating a single equation
calculation, we show the behaviour for calculation of Navier-Stokes equations for
laminar flow.

As depicted in Fig.2, the grid has important influence on the convergence
process. When the grid is refined, e.g., with 4 levels (Grid 2), the single grid
relaxation becomes less efficient. The convergence rate of the MG scheme, on
the other hand, is almost ”grid-independent”. Another feature is that the MG
convergence process is monotone, while single grid relaxations converge in a non-
uniform manner.

FIGURE 2. Convergence history for Grid 1 and Grid 2

In this calculation Re = 1.8. The inner radius is » = 1.0 which keeps the
mesh spacing ratio close to unity. The mesh spacing ratio (aspect ratio) varies from
hg :hy:hg=1:0.83:1to2:1.66: 1. Such near-uniform grid distribution yields
a rather fast convergence rate (0.8). The MG efficiency deteriorates when the inner
radius r decreases. As seen from Fig.3, when the inner radius is r = 0.06, the grid
aspect ratio varies in the range from 2 : 1.66 : 1 to as much as 33.3 : 27.6 : 1. On
this grid both MG and single-grid relaxation become less efficient. The ”smoother”
has to be modified in order to retain the previously attained MG efficiency.

Next consider larger values of Reynolds numbers (Re = 1.8 to Re = 18800).
In the former case the flow is laminar, but is not in the latter. As long as the
convective and diffusive terms are of comparable order of magnitude, and the
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FIGURE 3. Convergence history for r = 1.0 and r = 0.06 on Grid 1

mesh spacing allows the resolution of all possible scales, one is able to compute
the flow with rather good efficiency (Fig. 4). Naturally, for larger values of Re one
has to use a time-dependent solver, to account for the unsteadiness of the flow.
Attempting to solve a steady-state flow, results in a "non-converging solution”
(see Fig. 4). Once the local mesh Reynolds number (Rey) (based on the local
speed and local mesh spacing) is large (in fact for Re, > 2), the grid cannot
support the smallest scales and hence, one has to add ”viscosity” artificially, so
that the resulting scales can be supported on the grid. The increase in the effective
diffusivity in turbulent flows is an expression of this type of ”viscosity”. Thus, at
higher values of Re, one has to introduce a turbulence model. These models has
the effect of restoring the (high-frequency) ellipticity of the system, allowing the
computation of converged solution by a MG solver.

4.2 CALCULATION OF TURBULENCE AND COMBUSTION

To compute turbulent flows, one may use the k—e turbulence model. The turbulent
transport is modeled by an eddy viscosity, which is considerably larger than the
molecular viscosity. Therefore it is possible to obtain a stationary, time-averaged,
solution.

For turbulent flow calculations, one has to handle the coupling between k, €
and the velocity- and the pressure-fields. The coupling is essentially through the
eddy viscosity. The sequential ("segregated”) relaxation method described earlier
[13] is more stable, though it may be less efficient (in comparison with a local,
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FIGURE 4. Convergence history for different Re

"block”, Newton’s solution of the system). A calculation based on Grid 1 and
r = 0.06 is shown in Fig.5. As seen, the MG solver is more efficient and stable.

In the calculation of turbulent combustion, the effect of hot gas expansion
(i.e. density variations) introduces further coupling among the dependent variables
(velocity, pressure, k¢, ui;, enthalpy and mass fractions). Fig.6 and Fig.7 depict
the convergence behaviour for combustion chambers with » = 1.0 and r = 0.06,
respectively. The calculations are carried out on Grid 1 (with 3 MG levels). In the
former case the single grid relaxation is more efficient than in the latter case, due
to the relatively uniform grid distribution and better smoothing properties on less
skewed grids. The situation is similar also when MG is used. However, in both
cases the MG solver improves the convergence rate considerably. When compared
with Fig.5, the gas expansion process make the convergence of the k — e part less
efficient. The non-monotonicity of the convergence can be seen from these figures.
A possible way of improving the total convergence rate would call for a coupled
relaxation of the k — € equations, as these two dependent variables are linked in a
highly non-linear manner.

5 Concluding Remarks

The Multi-Grid method has been applied to the calculation of turbulent react-
ing flows. The mathematical equations are the Reynolds averaged Navier-Stokes
equations together with two-equation k — ¢ model and a two-step hydrocarbon
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FIGURE 5. Convergence history of turbulent flow calculations

oxidation mechanisms. The calculation is done on a modeled annular gas turbine
combustion chamber. The basic MG scheme and single grid relaxation scheme
are studied for simple cases (low Reynolds number flow) and further extended to
complex turbulent reacting flows. The results have shown that:

(1). The basic MG solver is nearly independent of grid resolution, while single
grid relaxation is very slow for fine grids. The mesh aspect ratio has considerable
influence on the MG efficiency.

(2). The MG method is efficient compared with single grid relaxation for
calculation of turbulent reacting flows. However, the present segregated coupling
strategy is non-optimal. The introduction of eddy viscosity and gas expansion
slows down the convergence process. Also, the non-monotone convergence of k
and e indicates that the system has to be handled in a different way. One such
possibility would be the coupled relaxation of these two variables.
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On a Multi-Grid Algorithm for
the TBA Equations

Alfio Borzi! and Anni Koubek?

ABSTRACT We analyze a multi-grid algorithm [1] in order to solve numerically
the thermodynamic Bethe ansatz equations. This solution method for the system of
these non-linear integral equations is particularly important for the investigation
of the ultraviolet limit, described by a conformal field theory.

1 Introduction

Massive relativistic field theories can be described on-shell by their scattering ma-
trix. This approach is specially fruitful in two dimensions, where there exists a
large class of models which are integrable, and their S-matrix can in principle be
computed exactly, being factorizable [2]. Unfortunately there is no general direct
method in order to compute the S-matrix of a theory, but usually it is conjectured
from general axioms and the underlying symmetries of the corresponding Hamil-
tonian.

The thermodynamic Bethe ansatz (TBA) was developed in order to provide a
means to link a conjectured scattering theory with the underlying field theory [3].
It describes the finite temperature effects of the factorized relativistic field theory,
using the S-matrix as an input. If one studies the high temperature limit of the
TBA equations, one can identify the conformal field theory (CFT) which governs
the ultraviolet (UV) behaviour of the underlying field theory. One should though
note, that it is not guaranteed that every consistent S-matrix describes the scat-
tering in some field theoretical model. Therefore the axiomatic bootstrap approach
is only of limited value if not linked to field theory by some means, wherefrom the
TBA is one of the most powerful ones.

Given the scattering data one can in most cases extract analytically the central
charge of the CFT reached in the conformal limit, and in some cases the dimension
of the perturbing operator, if the symmetry of the problem is known. Numerical

1SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34013
Trieste, Italy. Address after Nov.1993: OUCL, Wolfson Building, OX1 3QD Oxford, UK.

2 Address after Nov. 1993: DAMTP, University of Cambridge, Silver Street, CB3 9EW
Cambridge, UK.
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calculations on the other hand can solve the TBA equations and therefore extract
any measurable quantity.

In [3, 4] the TBA equations were resolved by an iterative method. We propose
here a multi-grid algorithm, which is considerable faster particulary if the UV
limit is investigated, an important fact if many particles are involved. The heart
of the program is the resolution of the coupled integral equations. We specialize
our application to the case of diagonal S-matrices, see e.g. [3, 4, 5]. As physical
quantities we extract the central charge, the dimension of the perturbing field and
the conformal perturbation expansion.

2 The TBA Equations

We briefly review the framework of the TBA, referring to the literature for details
([3] - [6]). Let us investigate an integrable massive scattering theory on a cylinder.
Integrability implies factorized scattering, and so one can assume that the wave
function of the particles is well described by a free wave function in the intermediate
region of two scattering. Consider n particles, and move the k** particle of mass
my, and rapidity Ok, such to scatter all particles and come back to the initial
configuration. This implies the following periodic boundary condition,

eiLmkSinh’Bk Hskj(ﬂk_ﬁj): -1 for k= 1,2,...,n . (1)
J#k

We introduce the phase 6i;(6r — ;) = —ilog Sk;(Br — 5;). In terms of these the
equation become

Lmysinh B + Y 8k (B — ) = 27 for k=1,2,...,n , (2)
J#k
ng being some integers. These coupled transcendental equations for the rapidities

are called the Bethe ansatz equations. One tries to solve these equations in the
thermodynamic limit introducing densities of rapidities for each particle species

and transferring the equations into integral equations. That is, let p(la)(ﬂ) = Aiﬂ,
where we assume that there are n particles in the small interval AS, be the particle
density and p(®(8) = XJE be the level density corresponding to the particle a, then

(2) becomes

mgL cosh 8 + Z/ (pab(ﬂ - ﬂ/)pga) (ﬂ/)dﬂ/ = 27rp(a) . (3)
b=1"7"°

In order to compute the ground state energy one needs to minimize the free energy

RLf(p,p1) = RHp(p1) + S(p,p1) (4)
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where Hg = Y., m, [ cosh ﬂp(la)dﬂ and S denotes the entropy. The extremum
condition for a fermionic system® takes the form

— M, cosh B+ €a(8) = Y / ) %b(,@—ﬂ’)logu+e—66<ﬁ'>>‘§—3 . ()
=17~

™

(a)
where we introduced the so-called pseudo-density e~ = —(%, the scaling
pe —Pi

length r = Rm; and the rescaled masses M, = %; my is the lightest particle mass.

These coupled integral equations are called the TBA equations. The extremal free
(@)
energy depends only on the ratios Z}a) and is given by

n

= —QLZMQ / cosh Blog(1 +e <) . (6)
T a=1 o0

One can extract several physical quantities from the solution of the TBA-
equations ([3, 6, 4]). Since few exact results are known about non-critical systems,
it is interesting to examine the equations in the ultraviolet limit, which corresponds
to r — 0, where the underlying field theory should become a CFT. The central
charge is related to the vacuum bulk energy, and is given by

n 00
— 3—ZZMa / cosh Blog(1 + e «®dg . (7)
T
a=1 —o©

Having calculated the central charge one would like to extract the conformal di-
mension of the perturbing operator. For small r, one expects that f(r) reproduces
the behaviour predicted by conformal perturbation theory, which in terms of ¢(r)
reads as

e(r)=c— fo 2-I-X:f rvko (8)

The exponent y is related to the conformal dimension of the perturbing field A by
y = 2(1 — A) if the theory is unitary and by y = 4(1 — A) if it is non-unitary. The
coefficients are related to correlation functions of the CFT [3, 4], and even if one
cannot read them off directly, this is an ultimate important check of the theory.
Note that also non-diagonal S-matrices (see [7]) can be treated, since once one has
diagonalized the transfer-matrix also in that case the numerical problem reduces
to solving (5). Further quantities to measure can simply be added, and also one
can study any range of r.

3We use the fermionic TBA equations since in diagonal scattering up to now they
turned out to be the relevant ones, see e.g.[3] for the general theory
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3 The Multi-Grid Method

Although multi-grid (MG) schemes were originally introduced to solve elliptic
problems, the same strategy can be applied successfully to many other types of
equations, like integral equations [8, 9]. The system of non linear Fredholm in-
tegral equations (5) has been solved using iterative methods (3, 4]. However, the
number of iterations and corresponding computer process (CPU) time required by
these methods to reach a specified precision can become excessively large as the
number of grid points N increases. Typically a simple one level relaxation would
require O(N? log N) operations. With a multi-grid solution technique the comput-
ing time for integral equations is reduced to O(N?) [9], and in particular cases to
O(Nlog N) [8], thus justifying the extra effort in programming.

Now we define our numerical problem and we explain how the multi-grid
scheme works for solving it. In discretising the TBA equations (5), we use the
trapezoidal rule on a grid with mesh size h so that our system yields

ealB) =M, coshﬂ+—z > w(B)ea(B— B log(L+e7 @) ()

b=1p8'€Qy

a=12...,n B € Qp where  is the set of grid points with grid spacing h.
The weights are w(3) = 1 unless on the boundary where w(8) = 1/2. Now let
us introduce a sequence of grids with mesh sizes hy > hy > ... > hyy, so that
he—1 = 2hg. The system (9) with discretisation parameter hy will be denoted as

6£=Kﬁb(€£)+fg ) a:1727"'vn 3 (10)
where a summation over b is intended and where
h (8
Kay(@(®) = 5= Y w(d)ea(f~F)log1+e ) . (1)
B'EQn,

Following [9] we have applied one Gauss-Seidel iteration to (10), and obtained the
approximated solutions €, a =1,2,...,n. We then transfer them onto the next
coarser grid, &1 = =1, [¢le &, where I, et is a restriction operator. The coarse grid
equations become

o KENEY 4 Y a=1,20m (12)
where
fot=r i E KN E T - I E - K@) (13)

and with If_l another fine-to-coarse grid transfer operator not necessarily equal to

ff—l Having obtained the solution of the coarse grid equation ¢! the difference

é=1 — &1 is the coarse-grid (CG) correction to the fine-grid solution

R R A Ao I (14)
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ha = 0.02 hy =0.01
Iter. (v) Residual Obs. red. (p,) | Iter. (v)  Residual Obs. red. (py)
1 0.92-107° - 1 0.27-107° -
0.11-107°  0.66-107" 2 0.95-107"*  0.58-107°
3 049-107  0.14-107° 3 0.24-107"  0.95-107°
p=031-10"° p=0.74-10""
TABLE 1. The FAS method.
a=1,2,...,n, and ff_l is a coarse-to-fine grid interpolation operator. Finally

we perform one relaxation at level £, in order to smoothen errors coming from
the interpolation procedure. To solve the system of equations (10) we employ a
coarse-grid correction recursively, i.e. equation (12) is itself solved by iteration
sweeps combined with a further CG correction.

4 Numerical Investigation

The algorithm described* ([1]) above is a non-linear multi-grid (NMGM) method
([9]) with full adaptive scheme (FAS) ([10]). The convergence properties of this
scheme can be analyzed using local mode analysis [10]. For, let us consider a

simple case where n = 1 (and we omit the particle index) and denote with

e(”)(,B) = e(”)(ﬂ) —€(p), B e Gh = {jh,j € Z}, the solution error after v GS
(

iterations. On G* we have the decomposition e = EYeifi 1f we consider
7 66

the iterative scheme in terms of the error we find the following reduction factor of
the 6§ component

v h . e i 16(j—
u(g) Eé +1) |ﬁ Z]Zk Wi Pkj lie_ﬂej eZQ(J k)l (15)
k= = — — ,
Eé") 1+ % Zj<k WPk lj_efe] e0(i—k)|

denoting, let us say ¢(3) at § = jh simply by ¢;. In particular ypi; = ¢(0Bk — 5;).
We find that for each k, max{u(6)r, 0 <10 <7} = u(0)k, the largest value being
approximately ~ 0.2 (r = 0.1, M; = 1, and h = 0.01). In the same way, using (15)
we obtain a good approximation of the smoothing factor g ~ 1073, Hence after
one GS iteration for both pre- and post-smoothing we expect that the convergence
factor of the MG cycle is given by p* = p***¥2 ~ 1076, This result is confirmed by
numerical experiments as we observe from Table 1, where we report the observed
reduction and the mean reduction factor g (w.r.t. the maximum norm). Notice the
agreement with the predicted [9] behaviour p = O(h®), § = 2 in this case.

“The fortran code is available from: CPC Program Library, Queen’s University of
Belfast, N. Ireland.
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FIGURE 1. Evolution of residual error norm with CPU time for a 1-particle system at
r = 0.1 for different hps: solid line for MG, dashed line for iteration only.

In the NMGM scheme with nested iteration, we use an initial approximation
which behaves like M, cosh (3, wherefrom the program determines the numerical
boundary at which the kernels vanish and verifies that the conditions for the
existence of (at least) one solution given by the Schauder’s fixed point theorem
are satisfied [11].

We compare the performance of the MG and of the Gauss-Seidel iterative
schemes in terms of CPU time in Figure 1, there the different initial residual error
for MG and iterative scheme is due to the set up of the initial approximated
solution in the MG cycle, that is a non-linear nested iteration which uses a MG
cycle itself (see [9]). We denote the residuals as 7,(8) = (e — Kap(es) — f2)(B),
B € Q4,,, and define the norm

I = max | S r(8? . (16)

1<a<n
BEQ,

In order to outline how the multi-grid algorithm becomes important as the number
of particles increases we give in Table 2 the CPU time required by the two methods
to solve the discretized problem to a value of the residual norm || 7 [|;y< 1074
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no. equations | CPU time (secs)
Relax | Multi-Grid
1 4 3
2 34 22
3 508 331
4 1230 712
5 2530 1320

TABLE 2. A comparison of CPU time required to reach a particular value of the norm,
forr=0.1, hy =0.1.

5 Numerical Results: An Example

We specifically designed the program for diagonal scattering theories, that is we
are concerned with scalar S matrices which in general have the form

sinh 2 Ty

Sab = H sinh iig i i7raz~;

a;€Xap 2 v
X 18 the set of factors f, appearing in the S-matrix Sg (for a recent review
on this subject see [12]). The set of the numbers «, and the masses of the theory
are sufficient to resolve the TBA-equations. For example, let us consider the two-
particle system M; = 1 and My = 2cos(m/5), with the S—matrix Sy; = fgf%,
S1g = So1 = f%f%f%f%x, Sog = f%f% (f%f%)Q, which has been conjectured to
correspond to the (non-unitary) minimal model My 7, i.e. ¢ = %, perturbed by the
field with dimension A = —%.

Using the algorithm [1] we solve the corresponding TBA equations for a set
of r close to zero. The above information (masses and indices ) are the only input
required by the program. For each r we compute c¢(r) and using (8) we extract the
exponent y = 2.85714287 which confirms the conjectured scaling dimension of the
perturbing field.

6 Conclusions

We presented a multi-grid scheme for the resolution of the thermodynamic Bethe
ansatz equations. The TBA is a means to describe the finite temperature effects
of relativistic factorized scattering theories. Our program is specifically designed
for theories having a scalar S-matrix. These theories exhibit a unique form, and
the only input needed in order to carry out the TBA are the locations of the poles
and zeros of the single S-matrix elements.

We calculate the central charge and in the ultraviolet limit the dimension of
the perturbing field and the coefficients of the perturbation expansion. These are
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the most crucial tests in verifying a conjectured S-matrix.

In order to get sensible results for the physical quantities one needs to resolve
the integral equations with the highest possible accuracy. Therefore the use of an
efficient Multi-Grid algorithm gives the possibility to reach high accuracy in the
computation together with a sensible reduction of the CPU time, in confrontation
with standard iterative techniques.
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A Multidimensional Upwind
Solution Adaptive Multigrid
Solver for Inviscid Cascades

L. A. Catalano, P. De Palma, M. Napolitano and
G. Pascazio!

ABSTRACT A recently developed multidimensional upwind multigrid method is
combined with an adaptive grid refinement strategy in order to provide a numerical
technique for computing two-dimensional compressible inviscid steady flows accu-
rately and efficiently. A locally nested sequence of mesh refinements is constructed
by a quad-tree data-structure, which easily incorporates the multigrid method using
compact-stencil space discretization and explicit multi-stage smoother. Computa-
tions of flows through channels and cascades are presented which demonstrate the
capabilities of the proposed approach.

1 Introduction

Two issues play an ever increasing role in current CFD research: the development
of methods suitable for vector and parallel computers, and the application of local
refinement strategies as a means for obtaining high quality results for complex
flow problems at reasonable costs. Both trends have increased the interest towards
employing explicit schemes as smoothers in multigrid methods, as well as towards
developing space discretizations based on compact stencils.

Recently, a procedure has been developed for optimizing the coefficients and
time step of explicit multi-stage schemes, in order to design an efficient smoother
to combine with a multigrid method for multidimensional advection equations [1].
Thanks to its generality, this approach, based on a two-dimensional linear Fourier
analysis, has been applied to the optimization of some recently developed gen-
uinely multidimensional upwind schemes [2] characterized by low cross-wind dif-
fusion and thus capable of capturing discontinuities oblique to the mesh very ac-
curately. The efficiency of the resulting smoother combined with the standard
FAS multigrid strategy [3], has been proved first for a nonlinear scalar advection
equation, using both the finite volume [4] and the recently developed fluctuation

1Politecnico di Bari, via Re David 200, 70125 Bari, Ttaly
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splitting [5] schemes. The latter space discretization has been crucial to the de-
velopment of genuinely multidimensional methods for compressible inviscid flows,
based on decomposing the Euler system into an equivalent set of scalar equations
with solution-dependent propagation directions, as originally proposed by Roe [6].
Successful applications and improvements of such a methodology [7, 8] have been
obtained, thanks to a conservative linearization which can be performed analyt-
ically [9]. A major step towards making such a numerical technique robust and
efficient has been performed in [5, 10]: the explicit multigrid strategy of [4] has
been extended to the Euler equations, using a new wave decomposition model and
the fluctuation splitting N-scheme; multigrid acceleration showed to be effective
for subsonic, transonic and supersonic flows through channels; and convergence to
machine accuracy has been achieved for the first time.

In this paper, the method developed so far is combined with a local grid-
refinement strategy in order to solve complex flow configurations at very reasonable
computational costs.

2 The multidimensional Euler solver

The governing equations for two-dimensional inviscid non-conducting flows are
written in terms of the conservative variables, ¢ = (p, pu, pv, pE)T, as:

gt = =V - F = Res(q), F=(FQG), (1)

where F = (pu, pu? + p, puv, puH)T and G = (pv, puv, pv? + p, pvH)T are the
flux-vectors in the x and y directions, respectively, and Res(q) is the steady-state
residual of equation (1).

Classical upwind methods for the solution of the multidimensional Euler
equations (1), based on the application of one-dimensional Riemann solvers along
grid dependent directions, experience a loss of resolution in presence of discon-
tinuities not aligned with the mesh. For such a reason, a large effort has been
recently devoted to the development of numerical methods which contain truly
multidimensional features in modelling the propagation phenomena which domi-
nate the behaviour of compressible flows [11, 12, 6]. The approach of [6], of interest
here, is based on the application of simple-wave theory and consists in selecting a
number N of waves (acoustic, entropy, shear), each having strength o* and prop-
agation direction n*. The gradient of the primitive variables ¢ = (p,u,v,p)T can
be decomposed as:

N N
Vi=> Vi =3 oFtuk, (2)
k=1 k=1

7* being the right eigenvector of the Jacobian (0F/8§)-n* with eigenvalue \¥; and
the steady-state residual, namely, the time derivative of the conservative variable
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vector, can be obtained by summing up all wave contributions, as follows [6]:

N
q = —Zakrk)\k = Res(q). (3)
k=1

An analytical decomposition can be obtained when employing four orthogonal
acoustic, one entropy and one shear waves [6]. Depending on the flow data, namely,
V4§, the intensities of all waves and the propagation directions of the acoustic
and entropy ones are provided by equation (2), whereas the direction of the shear
remains arbitrary and is the distinctive feature of the various wave models proposed
so far in the literature [6, 7, 10, 13]. All results presented in this paper have been
obtained by assuming the shear wave front to be parallel to the velocity vector, a
choice which has proved robust for a wide range of applications [10, 14].
Concerning the spatial discretization, the use of a cell-vertex grid with linear
triangular elements appears to be the most suitable choice for a wave decomposi-
tion model based on the flow gradients. Here, in order to combine the basic solver
with the quad-tree data-structure used to create locally refined grids [15], the tri-
angular mesh is obtained from a structured quadrilateral one, by subdividing each
quadrilateral cell into two triangles. For each triangle T, the global fluctuation,
defined as &7 = | 5 gt dS, is split into its simple-wave contributions, as follows:

N

N N
dr = —/ Y afrkabds = —5 Yy aFrtak = ) oh. (4)
k=1 k=1

S k=1

In equation (4), the cell-averaged values &%, 7%, M can be evaluated analytically,

provided that the parameter vector z = \/p(1,u,v, H )T is assumed to vary linearly
over each triangle, a feature which is crucial to ensure conservation [9]. A multi-
dimensional upwind residual distribution scheme is then employed to split each
wave contribution to the flux balance in each cell, ®%, among its three vertices,
according to the propagation velocity vector AF In this way, the discrete residual
of equation (1) at each cell-vertex v of the grid h is reconstructed as:

N
(ah)o = Resy(d") = & S0 06,9 6)

VT k=1

In equation (5), ﬁ:’ﬁyv are the coefficients which define the distribution of the k-th
wave component to the vertex v of the triangle T', the area S, is only a suitable scale
factor in the case of steady-state calculations (see, e.g., [2]), and the summation
is extended over all triangles having the vertex v in common. Obviously, in order
to ensure conservation, for every triangle 7" and for each wave k, the following

condition must be satisfied: s

Zﬁ%‘] =1 (6)
j=1
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The upwind residual distribution scheme used in this paper is the compact-stencil
fluctuation splitting first-order-accurate N-scheme [2].

Boundary conditions, being critical to the accuracy of the solution, have
been imposed with particular care. Characteristic boundary conditions are used
at subsonic-inlet gridpoints, where the total enthalpy, entropy and flow angle are
specified and at subsonic-outlet gridpoints, where the pressure is prescribed. Im-
permeability at solid boundaries is enforced by extending the symmetry technique
with curvature correction, proposed in [16], to the present cell-vertex space dis-
cretization: one row of auxiliary cells is used for evaluating the residual at the
wall gridpoints, the state at each mirror-image node being computed by imposing
no-injection and isentropic simple radial equilibrium [10].

An explicit three-stage Runge-Kutta scheme is used for discretizing the time
derivative in equation (5), the predictor coefficients and the time step being cho-
sen so as to optimize the smoothing properties of the scheme. A standard FAS
multigrid strategy [3] is used to accelerate convergence to steady-state. See [14]
for a more detailed description of the method.

3 Adaptive multigrid strategy

A local refinement technique for the cell-vertex residual distribution method devel-
oped so far is proposed in the present section. Starting from a regular structured
quadrilateral grid, nested levels of local refinement are created and managed by a
quad-tree data-stucture [15], so that the standard multigrid FAS scheme can be
applied, with minor changes in the grid transfer operators.

At each level [, the grid Q! is composed of an unrefined part QL (cells with
no kids) and a refined part Qlf (cells with kids on level [4+1), so that Qlf and Q'F!
cover the same region. In such a way, the physical domain is discretized by a grid
composed of all unrefined parts Qf:, 1=0,...,N (composite grid with N levels of
local refinement).

In order to describe how the conservation property of the basic solver is
mantained on the composite grid, a grid with only two nested levels, | and I+1,
shown in figure 1, is considered, for simplicity: the boundary points of Q'+ which
do not lie on the physical boundary are called green nodes and are denoted by
crosses, whereas the internal nodes of Q'*! are referred to as interior nodes and
are denoted by dots. The solution at grid level {41 is firstly obtained by bilinear
interpolation of the solution at level I, as done in the standard nested iteration;
the fluctuation splitting scheme, namely equations (4) and (5), is then applied
on the grid [4+1 to reconstruct the residual at all interior nodes; only incomplete
contributions are sent to the green nodes, which therefore are not updated in the
time integration. In order to apply the coarse grid correction, the solution is then
injected from level I+1 to level [, namely:

l I+1
4, = ‘124{,2j- (7)
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3t X e
(2-1,27) | (i,9)
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Figure 1: o interior and x green Figure 2: residual collection on the

nodes on a composite grid composite grid

A first condition to be satisfied for ensuring conservation on the composite grid
is that the flux through each side of BQlf coincides with the flux through the two
corresponding sides on 90!, exactly, or to its local order of accuracy. For the
present linear-element cell-vertex discretization, the latter requirement is clearly
satisfied when using injection for the restriction of the solution and bilinear in-
terpolation of either the primitive or the conservative variables for the solution at
green nodes. Futhermore, thanks to the analytical linearization, the flux conser-
vation can be satisfied exactly by interpolating the parameter vector, which has
already been supposed to vary linearly over each cell. Clearly, after integration
along 8Qlf and 0Q'*1, this first condition results in:

7{ F -nds — F -nds =0 or O(h?), (8)
aqQi+1 o,
n being the outward normal; after application of Gauss’ theorem, one has:
V-FdS— [ V-FdS=0or Oh?). (9)
Ql+1 Qlf

In the discrete domain, equation (9) corresponds to the following conservation
property:

N N
YOy N seh - S S Y sk B —0or Ok, (10)

TeQ+ veT k=1 Teﬂlf veET k=1

Equation (10) can be rewritten in terms of the contributions received by each
node, as:

Y Ry— Y R,=00rO(h?), (11)

veEQI+L veQl
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R, being defined as:

N
=Y ) 6RO (12)

Teq k=1

In equation (12), the first summation is extended over all triangles of the discrete
domain having the vertex v in common.

When using multigrid, the residual computed on the coarser level [ has to be
corrected by means of the relative local truncation error, 7/, ;, so that a second
condition has to be satisfied for ensuring conservation on the composite grid:

> Ry— Y (Ry+(rf41)0S0) =0 or O(h?). (13)

veQit+t v€Ql

Equation (11), combined with equation (13), provides the condition that the rel-
ative local truncation errors, Tll 11, have to balance each other over the refined

domain, Qgc, so that no spurious source terms are introduced at level [:

> (7f41)uSs =0 or O(h?). (14)
vtef

Equation (14) can be satisfied by choosing the residual collection operator prop-
erly: figure 2 provides a sketch of the contributions of each node at level I+1
to the residual collection at coarser-level nodes, denoted by dots. For example,
the contribution of the node (2i — 1,2j) to the residual collection in (4,j) is
Cli1[Raim1,2i(¢"™)] = 1/2 Ry 2]( ’“) Just like in the standard FAS cycle,
the coarse grid correction consists in solving the following equation on level I:

¢ = Res(q') +1'. (15)

In equation (15), the source term r! corresponds to the local relative truncation

error on the refined part of grid [, whereas it is always null on the composite grid:

0 on Q4

I 1 . 16
" Tll_H =g {CllH [R(ql+1) + rl“Sf,H] - Rv(ql)} on Qlf (16)

R,(q!) is defined again by equation (12), with Q = Qlf
The correction of the solution in Qlf is then prolongated bilinearly and added

to the solution in the nodes of Q!*!; since the same operator is used for the
interpolation of both the solution and the correction, the flow variables at the
green points need to be interpolated only once, namely in the nested iteration, so
that no special treatment is required in the FAS cycle.

Concerning the local refinement strategy, the pressure gradient has been used
as the sensor which detects whether a cell must be refined or not. The percentage
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of cells to be refined on the composite grid is assigned by the user, the threshold
value being automatically computed using a subdivision of cells into classes [10].
Thanks to the good capturing properties of the wave decomposition method even
on rather coarse grids, the positions of the shocks on the refined grid were always
close enough to those on the initial one and, thus, coarsening the grid during the
computation has not been found necessary.

4 Results

Subsonic flow through a cosine bump channel (inlet Mach number M;=0.5 and
20% restriction) [17] has been computed at first, in order to verify if the accuracy
of the solution computed on a composite (locally refined) grid (CG) is close enough
to that obtained on the standard grid with equal spacing on the finest level (SG).
Computations have been performed on four composite grids obtained by adding
one to four locally refined grid levels to a 16 x 4 base grid, 50%, 30%, 25% and
22% of the cells being refined at each level, respectively. Figure 3 provides the
value of the Mach number at the top of the bump, M,,4;, and the L..-norm
of the entropy — computed on the locally refined grids (symbols) and on the
corresponding standard ones (lines) — versus the finest mesh size, h. The numerical
entropy generation is shown to be almost proportional to the grid spacing for both
sets of grids and M,,,, tends to its exact value, as h — 0, more regularly for
the composite grids than for the standard ones. Figure 4 shows the convergence
histories for the four-level composite grid (CG4) — shown in figure 5 — and the
corresponding 256 x 64 standard one (SG4): the logarithm of the L;-norm of the
residual of the mass conservation equation is plotted versus the computational
work, one work unit being defined as one residual calculation on the finest level of
the standard grid. The computer time is almost proportional to the total number
of cells employed.

-1.e 1.8 )
I J R
log(S) | M -2
el -4
1.5k J.s i o
L 5[
L -8
-2.8L .8 I
L -lel | ce4
I —12,[
-2.50 I I M P 3
) a5 1.8 -5 -14 | . X
log(h) @ 1060 2000 3008
work
Figure $: step-size study for the sub- Figure 4: convergence histories for
sontc flow through the cosine bump the subsonic flow through the costne

channel bump channel
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Figure 5: composite grid for the subsonic flow through the co-
sine bump channel (4 levels — 2080 quadrilateral cells)

Transonic flow through a cascade of NACA-0012 airfoils with pitch to chord
ratio equal to 3.6 has been then considered, with M;=0.8 and incidence angle i=1°.
A composite grid with 1689 cells, shown in figure 6 has been obtained at first,
starting from a 48 x 8 base grid after two local refinements. The corresponding
Mach contours are provided in figure 7, where the shocks are well captured in two-
to-three cells. However, a more accurate description of the stagnation point region
and a sharper capturing of the shocks are needed. Therefore, a finer composite grid,
with 8853 cells, has been obtained by means of two additional local refinements.
Such a grid and the corresponding Mach contours are shown in figures 8 and 9,
respectively. The marked improvement in the description of the shocks is clearly
seen.

Figure 6: composite grid for the Figure 7: Mach contours for the
transonic flow through the NACA- NACA-0012 cascade (grid of fig-
0012 cascade (2 levels — 1689 cells) ure 6 — AM = .05)
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Figure 8: composite grid for the tran- Figure 9: Mach contours for the
sonic flow through the NACA-0012 cas- NACA-0012 cascade (grid of fig-
cade (4 levels — 8858 cells) ure 8 — AM = .05)

The solution on the 192 x 32 standard grid was also obtained for comparison.
Figure 10 provides the surface Mach number distributions computed on such a
grid (SG2) as well as those obtained on the composite grids with two (CG2) and
four (CG4) refinement levels. The accuracy of the first two solutions, SG2 and CG2,
having the same finest-grid size, are almost identical, demonstrating the validity of
the proposed adaptive grid approach once more. In this respect, it is noteworthy
that the solution on the SG4 grid with 768 x 128 cells, supposedly as accurate as
the present CG4 solution, was beyond the available computer resources.

Frgure 10: surface Mach distribution Figure 11: convergence histories
for the NACA-0012 cascade for the transonic flow through the
NACA-0012 cascade
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Furthermore, the convergence histories for the SG2 and CG2 calculations, given
in figure 11, demonstrate the reduction in computer time obtained by employing
the local refinement strategy.

Finally, the subsonic flow through a high turning cascade (VKI-LS59) has
been computed as a rather severe test for the proposed methodology. The outlet
isentropic Mach number is equal to 0.81 and the inlet flow angle is 30 degrees.
A composite grid with 8383 cells, shown in figure 12, has been obtained from a
128 x 8 standard grid after three local refinements; the computed Mach contours
are presented in figure 13. A comparison between the numerical results (Mach
number along the blade profile) and the experimental data provided in [18], is also
given in figure 14, and demonstrates the accuracy of the method as well as its
capability of handling complex geometries.

Figure 12: composite grid for the Figure 18: Mach contours for the
subsonic flow through the VKI-LS59 VKI-LS59 cascade (grid of figure 12
cascade (3 levels — 8883 cells) — AM = .025)

present

Kiock et al.

Frgure 14: surface Mach distribution for the VKI-LS59 cascade
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5 Conclusions

A multidimensional upwind multigrid method recently proposed by the authors has
been combined with an adaptive local refinement strategy to provide an efficient
tool for computing rather complex two-dimensional compressible inviscid steady
flows. The approach has been validated for well-documented channel and cascade
flows. The accuracy on the locally refined grids is comparable to that obtained on
uniformly refined ones and the gain in efficiency is equal to, or better than, the
total reduction of nodes.
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Parallel Steady Euler
Calculations using Multigrid

Methods and Adaptive Irregular
Meshes

J. De Keyser and D. Roose!

ABSTRACT 2 Solving the Euler equations requires a high spatial accuracy, thus
imposing strong demands on the quality of the discretization technique, the numer-
ical solver and the implementation. In this paper we describe the parallel aspects
of a steady Euler solver based on solution-adaptive irregular meshes and multigrid.
The emphasis is on the run-time load balancing problem that arises in this context,
and its solution with a parallel Partitioning by Pairwise Mincut heuristic.

1 Introduction

A nonlinear hyperbolic problem with applications in acrodynamics is defined by the
Euler equations. The computation time required to solve such a problem accurately
can be reduced by

- 4rregular mesh discretization and adaptive mesh refinement, to achieve a pre-

scribed accuracy with a discrete problem that is as small as possible

- multigrid methods, giving fast convergence irrespective of problem size

- distributed memory parallelism, allowing a high computation rate
Below a steady 2-D Euler solver is described that combines these three acceleration
techniques. In order to do so a particular load balancing problem has to be tackled.
To this end we construct a cost function describing the multigrid cycle execution
time. A parallel Partitioning by Pairwise Mincut heuristic allows to solve the load
balancing problem at run-time.

!Computer Science Department, K. U. Leuven,
Celestijnenlaan 200A, B-3001 Leuven, Belgium
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ment of Parallel Algorithms for Aerothermodynamic Applications, ESA-ESTEC Contract
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Interuniversitary Poles of Attraction, initiated by the Belgian State — Prime Minister’s
Service — Science Policy Office. The scientific responsibility is assumed by its authors.
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2 Discretization

The state of a compressible fluid in 2-D flow is defined by the conservative variables
q = [p pu pv pe]’ : density p, momentum in both coordinate directions pu and
pv, with v and v the velocity components, and energy E = pe = 7"’— + p*t3= Ao
with p the pressure and 7 the ratio of specific heats. Other state variables are the
enthalpy h = e -I-%’ and the entropy difference with respect to a reference state (po,
To, 80) : s — 8o = CpInT/Ty — Rlnp/po. The fluid is assumed to be an ideal gas
with constant thermal capacities C, and C, : p= pRT, R=Cp — Cy, v = C},/C,
(R is the gas constant and T the absolute temperature). The equations of motion
for an inviscid flow field q(x,t), x € ,t € [ty,00) are :

U ou
dq dq Of Og pu? +p puv
Nq=3, 2% _g = -
ot + SOt + Ox + Ay ’ puv 8 pv? +p
puh pvh

An initial flow field q(x, o) is given and boundary conditions are defined on 0€2.

In our finite volume discretization, G = {€2;} is a collection of polygonal cells
covering the domain 2. Cells §2; and €; are said to be adjacent if they share a
common border. A(f2;) is the set of neighbors of cell ;. The area of cell §2; is
denoted by A;. The interface 0€2;; has length s;;. Two grids G® and W, k < 1
are nested if ‘V’le) : HQEk) : Q;l) C Q(Ic Cell Q(k) is the parent cell of Q(l) S(ng))
denotes the set of its subcells. We w111 only c0n81der nested grid hlerarchles.

N is a first-order operator that maps flow field q(x) from the state space
E to the residual space E. The [-th discrete problem in subspaces E() ¢ E and
E® c Fis — in a first-order approximation with piecewise constant (per cell)
grid functions — obtained with the projections :

1 1
Oq):(t) = — ) —
(R q)z(t) - Agl)/ﬂglg(xa t) an (R ) A(l Q(lf(xa t) dsl.

In this finite volume discretization, the flux f;; through an edge is approximated by

the van Leer flux vector splitting [1]. The discrete conservation property f;; = —f};
allows to compute this flux once per edge. The conservation laws for €2; are :
d({ . l
A; dtz + Z Sijfij = A;r;, e (N() l) Z SZ] ij-
QjGA(Qi) 1 Q;l)EA(QEl))

With constant prolongation and with the restriction operators

(RO-0) 1), — S APqY  (RU-P0), = (1k) S A
Al Q<’>e3(n<’“>) i aPes@)
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a Galerkin sequence is obtained : N~ = RU=I-UNOPpU-1=1),

A border cell g along each edge of 02 allows imposing information about
state qp and flux £* at the border.

A parallel polygonal mesh refinement strategy [8] is used. As in the exact
Euler solution entropy is constant along streamlines in smooth flow regions and
increases over a discontinuity, the streamwise entropy gradient u - Vs is a robust
refinement criterion, reflecting the error made in the operator discretization.

3 Multigrid based on explicit time-marching

The spatial semi-discretization described above yields a system of ODEs in time,
which can be solved with either explicit or implicit time-integration schemes. We
restrict our attention to explicit methods, as they pose the same load balancing
challenge as implicit methods, but require less memory.

A first-order explicit time-marching scheme is Forward Euler (FE) :

a®(tir) = ¥ (t) + A4(ED (8) - NOgO (1)),

Multi-stage Runge-Kutta methods have been developed by choosing the coeffi-
cients a;, j =1,...,n in an n-stage method

49 = qO(t), q = g + a; AHEO - NOGIY, qO(te,1) = g™

so as to improve smoothing properties, e.g. RK4 (a; = 1/4, as = 1/2, ag = 0.55,
a4 = 1) [6]. Local timestepping variants (LT, as opposed to global timestepping,
GT) use a different timestep in each cell, giving up time-accuracy in favor of
convergence speed. Although explicit time-marching works best in combination
with a local preconditioner [9], we do not consider such techniques here as they do
not affect the load balancing problem.

Timesteps are expressed by the Courant-Friedrichs-Lewy-number CFL =
At/AtCFL with AtCFL = mingi Ai(ZQjEA(Q@') Si]‘)\i]‘)_l and )‘ij = max{(),ui .
n;; + ¢;}. The stability limit of FE lies at CFL ~ 0.7, that of RK4 at 1.25.

Several methods employ a grid hierarchy to accelerate explicit time-marching.
The method proposed by Jameson has been used for both regular and the irregular
grid applications [6, 3]. It consists of the FAS-scheme in which the smoother is
replaced by a multi-stage RK method. Jespersen showed that it can be regarded as
a timestepping method allowing a larger aggregate timestep with less computation.
In our approach the refined meshes cover the entire problem domain [3, 5], as
opposed to the FAC and MLAT techniques which employ fine grid patches in the
refinement regions.
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4 Distributed memory parallel implementation

For non-adaptive grid hierarchies a data distribution exists that guarantees load
balance and efficient communication, both for the regular and irregular grid case [2,
3]. Adaptive refinement however can result in unpredictable load changes requiring
load redistribution at run-time [5]. We have used the two-step approach to load
balancing : first the data set is partitioned, subsequently the parts are mapped onto
the parallel machine.

4.1 DISTRIBUTED DATA STRUCTURES AND PARTITIONING

The data parallel or Single Program Multiple Data programming model was adopted.
In this approach the term phase is used for each data parallel calculation step. A
phase is characterized by a process interaction graph describing the communication
pattern. In the multigrid method there are phases acting on one grid (e.g. smooth-
ing) and phases acting on subsequent grid levels (e.g. prolongation, restriction).

The partitioning depends on the nature of the data dependencies and on the
particular data structures used in the multigrid application. We will use a nested
partitioning of the grid hierarchy. Each grid is partitioned in parts PY = {pgl)}.
Partitionings P~ and P® on subsequent levels are nested if all subcells of
Q% € GUD belong to the same fine grid part, and if two fine grid cells with
parents in different coarse grid parts do not belong to the same fine grid part.
This nestedness property ensures that there is at most one message per fine grid
part required during inter-grid operations.

Hierarchical recursive bisection (HRB) is a heuristic that generates nested
partitions [5]: the partitioning P of G is derived from P~1) by bisecting each
part of the latter, and collecting the corresponding subcells. If G&) = G- =
... =G HRB coincides with recursive bisection for single grid partitioning [10].
Hierarchical inertial recursive bisection (HIRB) implicitly tries to minimize the
intra-grid communication.

In general, the partitions of a mesh at a given level are not of equal size, as
the number of cells depends on the adaptive refinement. There should be suffi-
ciently more parts than processors to allow the mapping step to find a good load
distribution. On the other hand, parts should not be too small to avoid a large
intra-grid communication volume.

4.2 FORMULATION OF THE MAPPING PROBLEM

A balanced workload distribution is obtained by mapping : distribute the parts
among the processors such as to minimize the execution time for the phase [4].
This problem is known to be NP-hard. Several heuristics have been developed for
solving this problem. As the number of processors in the parallel computer and
the number of tasks in the task interaction graph increase, such heuristics take
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progressively more time. Especially in the case of run-time load balancing, one has
to resort to parallel heuristics.
This mapping problem is often formulated in terms of graph-theoretic model

problems. There are two graphs involved :

- the process interaction graph representing the dependencies between parts,

- the machine graph, representing the processor interconnection topology.
The graph partitioning problem (GPP) [7, 10] for a digraph (G, —) with weight
matrix A (A =1, Aj; = 1if g; — g; and Aj; = 0 if g; — g;) consists of finding
a P-way partitioning {Si} of G such that |#G/P| < #Sk < [#G/P] and :

C= Y Ayéy;

9i,9;€G

is small, with 6;; = 0 or 1 depending on whether g; and g; belong to the same
partition or not. Such a partition containing all graph nodes that are mapped onto
the same processor is a cluster. C' is a cost or penalty function, forcing the creation
of P equal-sized clusters with minimal inter-cluster connectivity.

The GPP has two limitations. First, all parallel tasks have equal calculation
weights A;;, and all data dependencies are of equal strength A;;. Additionally, the
machine architecture is not taken into account, i.e. it is assumed to be fully con-
nected (in that case partitioning and mapping are identical). These limitations may
be overcome as follows. Let the speed of the processors be defined by parameter
teale (e.g. floating point multiplication time). Further, assume that the commu-
nication time is proportional to message length and communication distance A,
with a constant of proportionality ¢comm (e.g. the time to communicate a floating
point number). Let 7 = tcomm/tcate- Additionally, we associate arbitrary calcu-
lation and communication weights with the graph nodes. Reasonable estimates
of these weights are available in many applications. The resulting generalization
of the GPP is equivalent to the mapping problem : for a symmetric A, a P-way
partitioning must be found such that

P P
T O T S S
k=1 g;€Sk k=1 g, €Sk
k<l g;€8

is minimal. Ay; denotes the distance between the processors with clusters Sy and
S

The load balancing problem encountered in applications which require remap-
ping at run-time is not always of the nature modeled by Css. One then looks for
a new mapping which is related to the current mapping. A typical example occurs
in the parallel implementation of multigrid [5]. Assume that in a full multigrid cy-
cle a solution has been obtained at a given level. After performing adaptive mesh
refinement and after partitioning the newly defined fine grid, a mapping of the fine
grid must be computed. There is an inter-grid communication penalty associated
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with not mapping a part of a fine grid onto the same processor as its parent part.
Let G denote the set of graph nodes which have to be remapped (parts on the fine
grid), with weights A. Let G’ denote the set of graph nodes whose mapping is given
(parts of the coarser grid). With each graph node g; € G one associates a graph
node g'; = t(g;) € G’ with a penalty T; for not allocating g; to the same processor
as t(g;). With Ay .y the distance of processor k on which g; resides to the one
holding t(g;), this is expressed by :

P P P
Chra=> (Y M) +2r%) (Y MijAu)+7°_ (D Tibea)’

k=1 g,€Su k.l=1g €Sk k=1g; €Sy
k<l g; € S

0.30
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Number of processors P

FIGURE 1. Parallel PPM remapping time for the ring problem

4.3 THE PARTITIONING BY PAIRWISE MINCUT HEURISTIC

The Partitioning by Pairwise Mincut heuristic (PPM), originally developed for
the GPP [7], is extended here for the generalized problem. PPM yields good so-
lutions as it examines many configurations; nevertheless its parallel complexity is
favorable. It is also attractive because it takes advantage of a given initial mapping.

The mincut procedure

The PPM heuristic is based on a mincut-procedure, which is applied to every pair
of clusters. It examines the effect on the cost function of moving a graph node
from one cluster to the other one, and of exchanging graph nodes between both.
Move and exchange operations are performed until no further improvement can be
obtained. Cgg and Cprg are such that the effect of moves and exchanges is easy
to compute.
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The PPM algorithm

The PPM heuristic starts from an initial partitioning and tries to improve it in
a number of passes. In each pass the mincut procedure is applied once for every
possible pair of partitions. This process continues until no further improvement
is achieved. The computational complexity of PPM for P-way partitioning of a
graph of degree G with N nodes is determined by :

- the number of passes appys, depending on the initial solution and on G

- the number of mincut operations executed in each PPM pass : P(P —1)/2
the average number of passes in the mincut procedure .,

- the average number of graph nodes involved in each mincut operation : 2N/P

- the complexity ¢ of evaluating a move or exchange, depending on G
The sequential complexity is given by :

seq P(P-1) 2N

TPPM = aPPM——g——am?(S = OéPPMN(P - 1)am5 .

It has been shown that it is possible to rearrange the pairwise mincut invoca-
tions on a P-processor hypercube, such that always P/2 mincut operations are
performed simultaneously (cf. the algorithm given in [7]). Assuming that commu-
nication is negligible, the parallel complexity is :

P-1
P

In the context of run-time remapping the size of the graph is proportional to the
number of processors N = GP. The constant 3 is the average number of tasks per
processor. In typical applications G is independent of the number of processors.
The time consumed by run-time parallel PPM remapping is :

TRemap(P) = aPPMﬂ(P - 1) 2000 = O‘PPM/B(P - 1)”

in which p depends on the graph degree. The remapping time increases linearly
with the number of processors, in spite of the use of parallel remapping techniques.

In order to validate the assumptions on appys and a4y, three tests have been
performed (with Cgg). Let the process interaction graph be a ring of N units, so
G = 2. We put 8 = 10. The initial distribution has precisely N/P units in each
processor. As the calculation costs were chosen to increase linearly along the ring
from 1.0 to 2.0, the optimal load balance A =3 3 oo Aii/P-maxp3 oo Mii
is 100 %. The communication costs were (a) zero (b) small (c) of the same order as
the calculation costs. We measured the times 7' and T” to perform Parallel PPM
including resp. excluding communication on an Intel iPSC/860 hypercube.

Table 1 demonstrates that PPM finds a perfect load balance in cases (a)
and (b) or a good trade-off between calculation and communication in case (c),
indicating that the penalty function is well-chosen. Both appys and «, are small.
As predicted by the complexity analysis, p is almost constant. Figure 1 shows
for case (c) that the communication overhead takes about 25 % of the parallel
remapping time.

par
TPPM—OzppMN 2am6
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P| N| X T(ms) appm om p(ms)
a : Aij =0
1 10 | 100 0.0 0 0.0 -
21 20| 100 3.1 2 20 0.15
4| 40 | 100 8.2 2 1.5 014
81 80 | 100 46.2 4 14  0.17
16 | 160 | 100 132.1 4 1.5 0.22
b: A@'j < An’
1 10 | 100 0.0 0 0.0 -
2| 20| 100 3.0 2 20 0.15
41 40 | 100 8.5 2 1.5 014
8| 80 | 100 56.4 ) 1.4 0.16
16 | 160 | 100 150.9 ) 14 0.19
C: Aij ~ Aii
1] 10| 100 0.0 0 0.0 -
21 20| 964 2.3 2 1.5 012
4| 40 | 98.5 16.3 4 1.4 014
8| 80 | 94.5 41.5 4 1.3 015
16 | 160 | 95.5 156.1 6 1.1 017

TABLE 1. Analysis of the Parallel PPM algorithm for the ring problem

5 Experimental results

We have implemented the Jameson multigrid algorithm using the data parallel
programming library LOCO [4] on the Intel iPSC/860 hypercube. We computed
the flow through a channel (horizontal inflow at Mach 2, p = 1.271kg/m3, p =
101300 Pa); figure 2 shows the iso-mach lines. The initial grid was taken sufficiently
fine to prevent the adaptation process from being misguided. A mesh ratio p =
#GO /#G0-1 ~ 2 to 3 was used, typical of 2-D irregular mesh hierarchies [3].
The initial mesh contained 444 cells; the fourth multigrid level consisted of 4536

FIGURE 2. Supersonic flow through a channel : iso-mach lines
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FIGURE 3. Mesh and partitioning at the 4th multigrid level

Method | seconds/iteration digits/iteration relative speed
FE 0.189 0.00052 1.0
MG-FE 1.760 0.036 7.5
MG-RK4 3.387 0.038 4.2

TABLE 2. Relative convergence speed at the fourth multigrid level

cells. HIRB partitioning was used (cf. figure 3 for P = 4). The same flow problem
solved with a logically rectangular mesh with the same number of cells gave a
spatial accuracy which was a factor of 2.5 worse.

Figure 4 compares the convergence of FE (LT, CFL = 0.7), a multigrid
V-cycle with FE (LT, CFL = 0.7, 5 relaxations per cycle), and a multigrid V-
cycle based on RK4 (LT, CFL = 1.25, 3 relaxations per cycle). Note that the
computational cost of an iteration is different for each method. The multigrid
methods have a convergence speed which slightly depends on the number of levels
as the mesh ratio is not exactly constant, while single-grid convergence slows down
as the discrete problem gets larger. A similar behavior was observed for subsonic
flow problems, be it that convergence is a lot slower. Table 2 lists the (sequential)
asymptotic execution speed relative to FE time-stepping. At the fourth level the
V-cycle with FE is ~ 70 times faster than FE in terms of number of iterations, and
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FIGURE 4. Convergence history of explicit multigrid methods

P N G A appmM (675
1] 1 11100 - -
219 6| 97 2 1.6
4 {17 8| 95 3 1.2
8126 11| 94 b) 1.4
16 | 33 11| 91 4 1.3

TABLE 3. PPM parameters at the 4th multigrid level

7.5 times faster in terms of sequential computation time. The relative performance
of multigrid will even be better for larger problem sizes.

The remapping procedure took substantially less time than the grid refine-
ment process. Table 3 lists the PPM parameters for solving the load balancing
problem at the fourth multigrid level. The remapping procedure is based on the
weight matrix A, giving information about the time involved in calculation and
communication operations :

Aii = aitealc, sz € -A(p]) : Aij = bijtcomma sz € S(p]) : Tz = cjtcomm

a; is the number of floating point operations required for part p; during one multi-
grid cycle (proportional to the number of cells in p; and to the number of smoothing
steps). Intra-grid communication requires exchanging b;; numbers between p; and
p; (proportional to the number of edges along the interface between both parts,
and to the number of smoothing steps). The intergrid transfer message length to
or from parent part p; is ¢; (proportional to the number of cells in parent p;,
and to the number of coarse grid corrections). Based on these cost estimates, a
load balance between 90-100 % is always obtained when N/P > 4. A difficulty is
the inaccuracy of the estimates : e.g. imposing boundary conditions may take an
unpredictable amount of time. Note that Cjg does not try to optimize A, but is
prepared to accept a worse load balance if this can save intergrid communication
overhead. This is the case on the coarsest multigrid levels, where there may be only
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enough work to keep a few processors busy (an effect known as agglomeration).

The parallel efficiency of an algorithm is defined as : ¢, = T'(1,S)/P - T(P, S),
in which T(P, S) denotes the time to apply the algorithm to a problem of size S on
a machine with P processors. For the V-cycle with FE, our current implementation
achieved €, = 75 % for P = 16. Parallel efficiency losses are due to load imbalance
(0-10 %), data exchange communication (5-10 %), and the double calculation of
fluxes for edges along part interfaces (5-15 %) : these are calculated twice, once for
each cell on either side of part interfaces. Communication and double calculation
losses decrease as the problem size per processor is larger.

6 Conclusion

Three acceleration techniques have been combined in one Euler solver. Incorpo-
rating adaptivity and multigrid in a distributed memory parallel code poses a
particular load balancing problem. We have extended the original Partitioning
by Parallel Pairwise Mincut algorithm to allow the solution of this problem. For
this application, mappings of good quality are obtained in a reasonable time. The
time taken by parallel PPM increases approximately linearly with the number of
processors. In spite of this asymptotic behavior, the remapping overhead in our
application remains small compared to the time invested in grid refinement.

The proposed code proves to be effective on medium-sized parallel computers.
For a model problem on a 16 processor machine, a global acceleration factor of
the order of (2.5)2 x (7.5) x (16 x 0.75) = 600 has been observed for Jameson
multigrid with Forward Euler time-stepping. When larger problems are solved,
each of the three acceleration techniques will be more effective, leading to a larger
global acceleration factor.
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5

Multigrid Methods for Steady
Euler Equations Based on
Multi-stage Jacobi Relaxation

Erik Dick and Kris Riemslagh!

1 Introduction

First order accurate upwind methods of flux-difference type applied to steady
Euler equations generate a set of discrete equations of positive type. This set can
be solved by any classic relaxation method in multigrid form. The set of discrete
equations generated by a higher order accurate form does not have this property
and cannot be solved in the same way. The common approach is then to use defect
correction [1, 2, 3]. In this procedure the multigrid method is applied to the first
order accurate form and constitutes an inner iteration for a higher order correction
only made on the finest grid. The defect correction proves to work well in many
applications. The speed of convergence is however largely determined by the outer
iteration and sometimes is found to be rather dissapointing, especially when the
first order and the higher order solutions differ significantly. It can be expected
that if the higher order approximation also could be used in the multigrid itself a
better performance could be obtained. A second difficulty is that often convergence
cannot be obtained unless a suitable initial flow field is specified, i.e. there is a risk
of choosing an initial approximation which is out of the attraction region of the
iterative method.

In principle, both difficulties can be avoided by using time stepping methods
on the unsteady equations instead of relaxation methods on the steady equations.
The higher order accurate discretization can then be used on any grid so that
the defect correction becomes unnecessary and convergence is guaranteed starting
from any initial field due to the hyperbolicity of the equations with respect to
time. Many multi-stage time stepping methods with optimization strategies for
the smoothing have been proposed for this purpose in recent years. We cite the
methods of Van Leer et al. [5], Catalano and Deconinck [6], among others.

The drawback of time stepping is that, even if local time stepping is used,

"Universiteit Gent
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
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FIGURE 1. Control volumes in the interior and on a solid boundary.

the smoothing only can be tuned well for the fastest wave components in the flow-
field. This results in a rather poor multigrid performance. As a remedy to this, we
propose to use Jacobi relaxation as a basic algorithm, equivalent to single stage
time stepping, and to bring in multi-staging in the same way as single stage time
stepping is transformed into multi-stage time stepping. This procedure has the ad-
vantage that all wave components are first scaled so that, so to speak, they move
all with the same C'F L-number. This guarantees optimal tuning for all wave com-
ponents. Nevertheless, the hyperbolicity with respect to the relaxation direction,
i.e. the ficticious time, is not lost. The principle of combining Jacobi relaxation and
time stepping was first suggested by Morano et al. [7], but not worked out. The
present authors made a preliminary analysis of the possible multigrid performance
in [8] and an analysis of the performance for the linear x = 1/3 scheme in [9].
Here, we analyse the performance for the non-linear TVD-scheme.

2 The flux-difference splitting method

The discretization is based on the vertex-centred finite volume method. Figure

1a shows a control volume centred around a vertex (i, ) in the grid. The control

volumes are formed by connecting the centres of gravity of the surrounding cells.
The flux-difference over the surface S;; /2 is written as

Fiy1 = Fy = s,41724i4172(Uit1 — Ui), (1)

where U stands for the vector of conserved variables, s;.1/7 is the length of the

surface and A;11/7 is the discrete flux-Jacobian. The first order upwind flux is
defined by

1 1 _
Fit12 = §(Fz‘ + Fiy1) — §Si+1/2(A;__|_1/2 — Al 2)Uit1 = Uy, (2)
where A;_l /2 and A; /2 are the positive and the negative parts of A; /2. The
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upwind flux can also be written as
Fipiy2 = Fi+sip1245 (Ui = Us). (3)

This flux expression shows the incoming wave components. To determine the flux-
Jacobians, we use here the polynomial flux-difference splitting. Details on this
method are given in [3, 4]. The technical form of the splitting is however not
relevant for the method we describe here. The second order accurate flux is de-
fined using the flux-extrapolation technique. Details on this technique, using the
minmod-limiter, are again given in (3, 4].

The resulting flux expression is

Fivijp = Fi+ sip1724,, p(Uis1 —Ui) + F.C, (4)

where F.C. denotes the flux-correction for higher order accuracy.

3 Boundary conditions

The examples to follow are channel flows. These internal type flows have solid
boundaries, inlet and outlet boundaries. For inflow and outflow boundaries, the
classic extrapolation procedures are used. At solid boundaries, impermeability is
imposed by setting the convective part of the flux equal to zero. This requires a
modification of the flux expression (4). For (7, j) a point on the boundary, the point
(i+1,7) does not exist (see figure 1b). This can be introduced in (4) by setting the
term F.C. to zero and by taking the values of the variables in the ficticious node
(i+1,7) equal to the values of the variables in the node (7, j). The matrix A /2 in
(4) is then calculated with the values of the variables in the node (i, j). Of course,
since the difference of the variables is zero, the first order difference part in (4) is
also zero. The impermeability is introduced trough replacing F; by F; — F;/, where
F;r is the convective part of the flux. The term —F;/ can be seen as a new flux
correction term F.C. As will be discussed in the next section, the matrix Ai_+1 /2
at a solid boundary plays an important role in the relaxation method, although it
is multiplied with a zero term.

4 The multi-stage Jacobi relaxation

In earlier multigrid formulations for steady Euler equations the Gauss-Seidel re-
laxation method was always used [3, 4]. Gauss-Seidel relaxation was preferred to
Jacobi relaxation because of its much better smoothing properties (effectiveness
associated to the coarse grid correction) and much better speed of convergence (ef-
fectiveness associated to the relaxation method itself). A simultaneous relaxation
method, like the Jacobi relaxation has the advantage of being easily vectorizable
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and parallelizable. The only drawback is that a simultaneous relaxation method,
at least in its basic form, is much less effective than a sequential method.

To repair this, we bring multi-staging into the Jacobi method in the same way
as multi-staging is used for time stepping methods and we use the optimization
results known for time stepping schemes.

For the time-dependent Euler equations, the discrete set of equations associ-
ated to the node (7, j) reads

Lij dtﬂ +ZA Usj sk+ZFC’ =0, (5)

where the index k loops over the faces of the control volume and the surrounding
nodes. A single stage time stepping method on (5) gives

VOliyj n n

The Jacobi-relaxation applied to the steady part of (5) reads

Y ALUR-UM s+ Y FCM=0. (7)
k k

Using increments 6U; ; = U"+1 U}, this gives

(— > A,;sk> 8Usj+ > A (UR = UM)sp + Y F.C™=0. (8)
k k k

The 4x4 matrix coefficient of 6U; ; in (8) is non-singular. In the expressions (6) to
(8), the matrices A, are on the time or relaxation level n. The difference between
(single stage) Jacobi relaxation (8) and single stage time stepping (6) is seen in
the matrix coefficient of the vector of increments 68U, ;.

In the time stepping method, the coefficient is a diagonal matrix. In the
Jacobi method, the matrix is composed of parts of the flux-Jacobians associated
to the different faces of the control volume. The collected parts correspond to
waves incoming to the control volume. In the time stepping, the incoming waves
contribute to the increment of the flow variables all with the same weight factor. In
the Jacobi relaxation the corresponding weight factors are proportional to the wave
speeds. As a consequence, Jacobi relaxation can be seen as a time stepping in which
all incoming wave components are scaled to have the same effective speed, i.e. all
have a CF L-number equal to unity. Using terminology already in use nowadays,
time stepping can be referred to as scalar time stepping while Jacobi relaxation
can be referred to as matrix time stepping,.

For a node on a solid boundary, an expression similar to (8) is obtained
provided that for a face on the boundary the flux expression (4) is used and that
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the difference in the first order flux-difference part is introduced as Ul - Ui’ffl,

similar to the term U} — Ui";'1 which is used for a flux on an interior face. So, in
order to avoid a singular matrix coefficient of the vector of increments in (8), this
treatment at boundaries is necessary. A boundary node can then be updated in
the same way as a node in the interior. The solid boundary treatment is different
from the treatment used earlier [3, 4].
To bring in multi-staging is now very simple. For instance, a three-stage
modified Runge-Kutta stepping is given by
0
Ut o= U
U1 = UO + o (SUO
U? = U+ap 68U
U? = U’+a38U°
+1 _ 773
vyt o= U

where 6U is the increment obtained from single stage time stepping or single stage
Jacobi relaxation. The last coefficient in the stepping series (here ag) has the
significance of a C'F'L-number for time stepping. We refer to this coefficient as the
step size or simply as the C'F'L-number.

5 Optimization of the multi-stage parameters

We follow here the Fourier-representation method for operators and solution meth-
ods used e.g. by Van Leer et al. [5].

Figure 2a shows the Fourier-symbols of the first order upwind scheme (U1),
the second order upwind scheme (U2), the second order central scheme (C2) and
the k = 1/3 scheme (K3). Figure 2b shows the contours of the amplification
factor for three-stage stepping with optimum smoothing for the first order upwind
scheme, according to Van Leer et al. [5]. Figure 2¢ shows the contours for the K3-
scheme, optimized in the same way. Figure 2d shows the contours corresponding
to three consecutive single stage steppings with relaxation factor 0.5. Interpreted
as a three stage stepping, the corresponding coefficients are 1/6, 1/2, 3/2. The
three stage steppings illustrated in figure 2b, ¢ and d are designed to optimize
the smoothing of a particular linear discretization scheme. We consider now also
steppings suitable for use with the non-linear TVD-scheme. For these steppings,
stability for both the central discretization C2 and the upwind discretization U2 is
necessary. Figure 2e shows contour levels of a three stage stepping stable for both
the C2- and U2-schemes and with maximum step size. Figure 2f shows the contour
levels of a similar five stage stepping. Figure 2g shows the contour levels for a five
stage stepping stable for the U2- and C2-schemes and with optimum smoothing
for the U2-scheme. Figure 2h shows a three stage stepping scheme stable for the
K3-scheme, but not for the U2- and C2-schemes, with maximum step size.
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FIGURE 2. a: Fourier symbols of the basic schemes. Symbols from § = 0 to § = —.
The dot corresponds to |f] = m/2; b: Amplification factor for three stage stepping with
optimized smoothing for U1 (coefficients 0.223, 0.60, 1.50) [5]; ¢: Idem for the K3-scheme
(coefficients 0.382, 0.664, 1.325) [5]; d: Idem for a three stage scheme lineary equivalent
to three consecutive Jacobi relaxations (coefficients 0.167, 0.50, 1.50); e: Amplification
factor for three stage stepping stable for U2 and C2 and with maximum step size (co-
efficients 0.185, 0.443, 0.712); f: Idem for five stage stepping (coefficients 0.102, 0.248,
0.476, 0.893, 1.55); g: Amplification factor for five stage stepping stable for U2 and C2
and with maximum smoothing for U2 (coefficients 0.0867, 0.202, 0.366, 0.633, 1.14); h:
Amplification factor for three stage stepping with maximum step size for the K3-scheme
(coefficients 0.521, 0.857, 1.82); Amplification levels shown : 1, 0.5, 0.2, 0.1, 0.05, 0.02, ...
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The results shown in figure 2 apply to the one-dimensional convection equa-
tion. As is known, the set of Fourier symbols for a two-dimensional convection
equation lies inside the Fourier symbol of a one-dimensional equation. So, two-
dimensional stability is guaranteed for the equation when one-dimensional stabil-
ity for the equation is obtained. It is difficult to make precise statements about
smoothing.

6 Performance analysis

6.1 TEST PROBLEMS

A channel with a circular perturbation in the lower wall is used. The grid has 32 by
96 cells. Four consecutive grids are used. The coarser grids have 16 x 48, 8 x 24 and
4 x 12 cells. The height of the channel is equal to the length of the perturbation.
The height of the circular perturbation is 4.2% of its length. The grids used have
an almost uniform distribution of the mesh-size. The test geometry is the same as
in (8,9

The same multigrid structure as in [3, 4, 8, 9] is used. The W-cycle is em-
ployed. On each level there is one pre- and postrelaxation consisting of either
three Gauss-Seidel relaxations or a multi-stage Jacobi relaxation. The defect re-
striction operator is full weighting. The computation starts on the coarsest grid.
To evaluate the work, the number of relaxation steps or stages are counted and
the number of defect corrections and defect calculations. One basic operation on
the finest grid is considered as 1 work unit. So the work unit corresponds to 3201
point-relaxation operations. A defect correction or a defect calculation is some-
what less expensive than a relaxation operation. Nevertheless these operations are
given the same weight to compensate for the neglect of the work involved in the
grid transfer. Since precisely the defect operations are connected with grid transfer
this is believed to be fair. A relaxation operation for the first order (U1), for the
third order (K3) and for the TVD operator are counted to be equivalent. This is
not completely correct. The third order and the TVD operator are slightly more
expensive.

Two flow fields are considered : a transonic flow field corresponding to an
outlet Mach number of 0.79 and a supersonic flow field corresponding to an inlet
Mach number of 1.39. The quality of the solutions is not particularly good due to
the rather low resolution in the shock-regions (results not shown).

6.2 DEFECT CORRECTION

Figure 3 shows the convergence results for the transonic and the supersonic test
cases using defect correction. Gauss-Seidel relaxation is compared to multi-stage
Jacobi relaxation. Convergence results are expressed by the logig of the Lo,-norm
of the defect as function of the number of work units. For the Gauss-Seidel, three
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FIGURE 3. Convergence behaviour for defect correction. Transonic (left) and supersonic
(right) test cases. Gauss-Seidel relaxation (GS). Three stage Jacobi relaxation with Van
Leer coeflicients (VL1.5) and consecutive coefficients (CS2 and CS2.5).

relaxations are done per level. The relaxation factor is 0.95 for the transonic case
and 1.0 for the supersonic case. The ordering is lexicographic. In the first sweep
the relaxation starts in the left bottom corner, goes up in the first column, then in
the second column and so forth up to the right top corner. In the second sweep the
ordering is reversed. The third sweep has again the ordering of the first sweep. The
convergence history is also shown for the three stage stepping with the Van Leer
coeflicients (set of figure 2b) and with the consecutive coefficients with different
step sizes. With a consecutive scheme we mean a three stage Jacobi relaxation
lineary equivalent to three consecutive single stage Jacobi relaxations. We denote
such a scheme by CS followed by the step size. The amplification factors for the
CS1.5 scheme are shown in figure 2d. The coefficients are (1/9, 1/3, 1) multiplied
with step size.

The three stage Jacobi schemes with optimum smoothing (the convergence
behaviour of CS1.5 is not shown but is almost identical to the behaviour of VL1.5)
do not perform as good as a three stage scheme with a somewhat larger step size.
A step size around 2 seems to be the best. This proofs that smgothing is to be
sacrificed a bit in favour of convection speed. Sufficient smoothing is necessary but
not optimum smoothing. A step size of 3 is the stability limit. Even a step size of
2.5 performs better than the step size of 1.5 for optimum smoothing.

6.3 MIXED DISCRETIZATION

By mixed discretization we mean that the second order TVD-operator is used in
all relaxations on the finest level but that an other (linear) operator is used on the
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FIGURE 4. Convergence behaviour for mixed discretization. Transonic (left) and super-
sonic (right) test cases. TVD on finest level, Ul or K3 on coarser levels.

coarser levels. Figure 4 shows the convergence behaviour for the TVD-operator
on the finest level with three stage stepping with maximum CFL (coefficient set
of figure 2e) and with five stage stepping with maximum CFL (coefficient set of
figure 2f) combined with several three stage steppings for the first order operator.

The performance is not very sensitive to the choice of the coefficient set on
the coarser levels. So, again optimum smoothing is not necessary. The five stage
stepping performs best.

In the transonic case the best obtained performance, i.e. TVD5+CS2.5, does
not compete with the performance of the Gauss-Seidel defect correction (figure 3),
but in the supersonic case the mixed discretization TVD5+4CS2.5 performs better
than the Gauss-Seidel defect correction. This easily can be understood. In the
transonic test case the shock is largely aligned with the grid. As a consequence, the
second order TVD-solution does not differ very much from the first order solution.
For the supersonic test case the difference between the second order and the first
order solutions is rather large. This makes defect correction a much more effective
procedure in the transonic test case than in the supersonic test case. The better
performance of the mixed discretization in the supersonic test case also shows
that it pays off to bring the second order operator in the multigrid formulation in
those cases where second and first order solutions differ significantly. We further
illustrate this on figure 4 where also the convergence behaviour is shown for mixed
discretization but with the K3 operator on the coarser levels. The convergence
improves somewhat, since the K3 operator is closer to the TVD operator than the
first order upwind operator Ul is.
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FIGURE 5. Convergence behaviour for full second order formulation (FULL) with the
TVD operator on all levels. Transonic (left) and supersonic (right) test cases. Convergence
behaviour for mixed discretization with the K3 operator on coarser levels, explicit and
implicit residual weighting. Comparison with Gauss-Seidel (GS).

6.4 FULL SECOND ORDER WITH IMPLICIT RESIDUAL WEIGHTING

We illustrate now the performance for the TVD-operator used on all levels. Since
the TVD-operator changes from the central to the upwind scheme and vice versa,
depending on the solution, no smoothing can be obtained for this operator. In
order to make the multigrid method possible, the restriction of a smooth residual
must be obtained by supplementary means. The technique of explicit and implicit
residual smoothing is well known for use with time stepping schemes. In analogy
with the residual smoothing we bring here implicitness in the weighting. The usual
full weighting as restriction is already a residual smoother of explicit type. An
implicit version of it can be much more efficient. In one dimension an explicit
residual weighting (ERW) on the same grid gives

1+ 2e)Ri =Ri+€e(Ri—1+ Rit1), (9)

where € = 0 corresponds to injection and € = 1/2 corresponds to full weighting.
Figure 6 compares the amplification factor for both types of residual weight-
ing.
A corresponding implicit residual weighting (IRW) is given by

(1+2€)R; — e(Ri_1 + Riy1) = R;. (10)

The obtained weighted residuals R; still have to be injected to the coarser grid.
By enlarging the value of the weight e, the smoothing of the implicit residual
weighting (IRW) increases. Maximum smoothing does not correspond to optimum
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-1

FIGURE 6. Amplification factor for explicit (left) and implicit (right) versions of residual
weighting.

multigrid performance. The optimum is a compromise between the reduction of
high frequency components, i.e. diminishing of the alaising in the fine to coarse
grid transfer, and leaving as much as possible intact the low frequency components,
i.e. the components that have to be treated by the coarse grid. In two dimensions
it was found that € = 2 was optimum for a nine point stencil of form

(1 + 6€)Ri7]' — G(Ri_ljj + Ri-l-l,j -+ Ri,j—l -+ Ri’j+1)
€ ~ ~ ~ ~
- §(Ri—1,j—1 + Riy1j-1+ Ri—1j+1 + Rit1,j+1) = Ri 5.

Figure 5 shows the convergence behaviour for a full second order formula-
tion, i.e. using the TVD operator on all levels, with implicit residual weighting,
compared to mixed discretization using the K3 operator on the coarser levels. Five
stage stepping with maximum CFL is used for the TVD operator (coefficients of
figure 2f). Three stage steppings with optimum smoothing coefficients with ERW
(coefficients of figure 2¢) and with maximum step size with IRW (coefficients of
figure 2h) are used for the K3 operator.

In the full second order formulation, it does not pay off to change the coef-
ficient set from a set not corresponding to maximum step size. One could try to
introduce smoothing for the U2-operator (coefficient set of figure 2g). This does
not help since smoothing never can be obtained for the C2 operator. As can be
seen in figure 5, the mixed discretization works better than the full second order
formulation. The best mixed discretization is the one with the K3 operator on the
coarser levels. It does not pay off to enlarge the step size for the K3 operator, since
smoothing with the operator itself is then lost and has to be introduced by implicit
residual weighting. The resulting performance is not better than the performance
with a coefficient set corresponding to smoothing and explicit residual weighting.
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7 Conclusion

By the combination of Jacobi relaxation and multi-stage stepping, multigrid meth-
ods for Euler equations can be constructed that are more general than defect cor-
rection procedures. With implicit residual smoothing it is even possible to use the
TVD operator on all grid levels. The best performance is however obtained with
a mixed discretization formulation with the K3 operator on the coarser levels. In
the case where the second order solution and the first order solution differ con-
siderably, this formulation is more efficient than a defect correction formulation
based on Gauss-Seidel relaxation.
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Multigrid and Renormalization
for Reservoir Simulation

Michael G Edwards ! and Clive F Rogers?

ABSTRACT We present a new approach to multigrid for the case of strongly
varying equation coefficients which arise in the reservoir simulation pressure equa-
tion. Renormalization (hierarchical rescaling) is incorporated into the cell centred
multigrid method of Wesseling et.al. and the new method is applied to the pressure
equation. Significant improvement in multigrid performance is obtained with the
new scheme for typical cases of randomly varying permeability distributions of fi-
nite correlation length. A new 9-point scheme is described which is flux continuous
both for diagonal and full permeability tensors. Results from the new scheme are
presented.

1 Introduction

The flow equations of reservoir simulation are a coupled system of hyperbolic
conservation laws for fluid transport and parabolic/elliptic equation for pressure
(elliptic for incompressible flow). The coupling between the equations is provided
by Darcy’s law which defines the fluid velocity to be proportional to the medium
permeability and pressure gradient. The pressure equation is generally of the form

2],
V(Kve)=f

where K is a full matrix of tensor permeabilities and f is the source/sink
distribution dependent on the wells. The solution of the pressure equation typically
consumes between 50% and 90% of the net cpu time used in reservoir simulations.
Thus the development of fast elliptic solvers remains an active area of simulation
research. To date most commercial simulator pressure solvers employ some variant
of a pre-conditioned conjugate gradient technique, where the pre-conditioning is
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based on an approximate LU factorisation.

Multigrid for the reservoir simulation pressure equation with a diagonal per-
meability tensor has been investigated by several authors [3,4,5,6,7,8]. The main
attraction of multigrid is the theoretical and observed convergence rate which is
proportional to O(N), where N is the number of grid blocks. In contrast, conju-
gate gradient methods have a convergence rate O(N®), where « is greater than 1
and depends on problem dimension, pre-conditioning and ordering of the unknown
pressures. Superior performance of multigrid over conjugate gradient methods for
two dimensional problems greater than 33*33 have been reported [3].

One of the difficulties of applying multigrid to reservoir simulation is in de-
terming how to treat the strongly varying coefficients which arise due to the perme-
ability distribution. The strategies described in the literature fall into two camps:

(a) Cell vertex discretisations where multigrid interpolation must be operator
dependent to ensure MG convergence, following Alcouffe et.al. [1]

(b) Cell centred discretisations where polynomial interpolation is found to be
sufficient, following Wesseling et.al. [9,10]

In this paper we investigate the Wesseling method.

The purpose of this paper is two fold; first to report a modification to Wessel-
ing’s multigrid method which exploits spatial renormalization and demonstrates
enhanced multigrid performance for some realistic permeability distributions. Sec-
ondly to introduce the notion of flux continuity for diagonal and full permeability
tensors within a nine point scheme framework. While our focus here is in two
dimensions, we do not anticipate any fundamental difficulty in extending our op-
erators to three dimensions.

2 Multigrid methods for reservoir simulation

A key issue in the construction of reservoir simulation multigrid schemes is the
development of operators which can cope with rapidly varying coefficients with
large jumps of orders of magnitude and large numbers of interfaces which can
occur in a randomly varying reservoir rock permeability maps.

Reservoir simulation multigrid literature has in the main addressed the diag-
onal tensor pressure equation using either cell vertex or cell centred formulations
[3-8].

Cell vertex multigrid schemes have been based on the work of Alcouffe et. al.
The permeability is defined at cell centres and flow variables including pressure are
defined at the cell vertices or corner nodes. A control volume is constructed around
anode and a face value permeability (transmissibility) is defined by an appropriate
average of the cell centred permeabilities. Definition of coarse grid transmissibilities
involves weighted averages of fine grid face values using homogenisation theory
(1]. Authors of other multigrid schemes based on this approach do not explicitly
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discuss the definition of coarse grid transmissibilities, but leave it defined implicitly
through the use of the Galerkin operator.

A common key ingredient in these schemes involves the definition of the pro-
longation operator which is constructed such that flux continuity is maintained.
This construction is crucial to obtaining multigrid convergence for cell vertex
schemes according to Alcouffe et al. and is employed by [3-8]. While all authors
use a Galerkin formulation, and construct restriction operators from the adjoint
of the resulting flux continuous prolongation operator, significantly the adjoint of
the standard polynomial interpolation is found to be sufficient for difficult cases
by Alcouffe et al. [1].

Cell centred multigrid schemes for elliptic equations with diagonal tensors
and large variations in coefficients have been proposed by Kahil & Wesseling.
Permeability and pressure are both defined at the cell centre (control volumes are
the actual grid cells), and the face coefficients are defined by harmonic means of
adjacent permeabilities for the pressure equation ensuring flux continuity on the
finest (top level) grid, which is precisely the standard reservoir simulator scheme.
In this multigrid scheme, coarse grid pressure locations are not embedded within
fine grid locations, which is an important distinction between this approach and
the cell vertex formulation. Coarse grid transmissibilities are obtained by a simple
mean of the fine grid face values figure 1(a) as part of the Galerkin formulation.
Namely,

z 1
Ki,j = 5

(K3i2; + K3i25-1)

The prolongation operator is defined by polynomial approximation (a fun-
damental difference to the cell vertex approach), and restriction is defined by the
adjoint of bilinear interpolation. However, since a coarse grid value lies at the cen-
tre of the corresponding four fine grid cells, it is possible to use piecewise constant
prolongation and not violate flux contiuity constraints, as no neighbour informa-
tion is required. We therefore conclude that this scheme is consistent with that of
Alcouffe et al. since the prolongation operator does not violate flux continuity.

3 Renormalization

Fluid and rock properties such as permeability and porosity are measured on a
very fine scale, generally ten orders of magnitude smaller than a typical reser-
voir grid block in two dimensions. The aim of renormalization is to replace fine
scale properties by effective properties on a coarse grid cell. This is achieved by
a hierarchical rescaling of the rock properties. The initial fine grid domain Q is
considered to comprise a set of local sub-domains §2,,, with boundary 952,,,, where
Qp, is of dimension m x m. Each subdomain 2, is replaced by a single cell, by
solving for the pressure field over {),,, subject to local boundary conditions on



192 Michael G Edwards and Clive F Rogers

0Qy,,. The effective permeability for €2, is defined such that the flux through the
outlet boundary of 99, is equal to the product of the effective permeability and
the global pressure gradient across 2,,. The process is repeated in a hierarchical
fashion after identifying the next level of subdomains of dimension m x m.

For a diagonal tensor the choice m = 2 corresponds to the closed form analytic
solution derived by a resistor network analogy [11]. This method has been well
tried and proves to be extremely economic in deriving effective permeabilities at
the reservior grid block scale. This 2*2 cell renormalization technique provides a
natural permeability restriction operator both for grid adaptivity [12] and for use
in multigrid.

4 Renormalisation coupled with multigrid

The multigrid scheme of Wesseling is the natural choice for Reservoir simulation
with a cell centred discretisation. Use of a harmonic mean of neighbouring perme-
abilities ensures flux continuity on the finest grid. Piecewise constant prolongation
does not violate flux continuity and use of the adjoint of bilinear interpolation as
restriction for the Galerkin operator ensures that the necessary regularity condi-
tion (mp + m, > 2m) for convergence is obeyed. A certain parallel can be drawn
with the scheme of Alcouffe et al., where it is observed that only prolongation
need be flux continuous. However, the performance of this scheme can sometimes
deteriorate with complexity in the media permeability, although convergence is
still obtained.

Renormalization, with a €, (2 x 2 subdomain), provides a natural mobil-
ity restriction operator, which fits neatly within the Wesseling scheme. By using
renormalization prior to the multigrid solution algorithm effective permeability
fields are determined on all grid levels. This facilitates the use of a flux contin-
uous discrete operator on all grid levels via a harmonic mean of the respective
neighbouring cell permeabilities for each level figurel(b). Namely

. _ 2K K

1,5 T 1T T
Kij+ Ki

5 Diagonal tensor results

Geostatistics and reservoir description are playing an increasingly important role
in reservoir simulation. Well measurements, seismic and outcrop studies often pro-
vide the only hard facts, which are used as a basis for generating the most likely
realization for a reservoir description via geostatistics technique. The resulting
permeability fields are generated on a fine scale, far smaller than can be modelled
by a reservoir simulator. Consequently, coarse scale effective permeabilities need
to be derived by renormalization techniques and the test cases chosen are taken
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from realizations on a range of length scales.

The standard cell centred multi-grid scheme of Wesseling et al. is compared
with renormalized multigrid employing local cell renormalization for a range of
diagonal tensor test cases. Problems ranging from model reservoir simulation cases
described in the literature to general cases generated by means of geostatitical
techniques are presented.

To aid comparison and avoid complications from different applied boundary
conditions all the test cases are solved with two isolated sources or wells in a
quarter five spot configuration. In some case the appropriate physical problem
may more realistically correspond to a vertical cross-section with a different source
distribution. A fixed rate production well at the top right hand corner grid block
and a pressure constrained injection well at the bottom left hand grid block are
used in each of the examples. Consequently, f takes the form:

[= 5i/\(¢ - ¢bh) - 6p‘]p

where ¢; and 6, are 1 in well blocks and zero elsewhere. A and ¢, are param-
eters describing the well connection factor and pressure respectively. This converts
the pressure equation into a helmholtz equation with A added onto the diagonal of
the well block equation. The singular nature of the Neumann problem is lifted, but
importantly for the success of the multi-grid method the implied global constraint
must be implimented in discrete form. Since the discrete form of the diffusion op-
erator sums to zero over the whole grid, the constant to be added to the fine grid
solution after each interation [1] is given by,

—(fir+ N+ A1)/ A

In this way the solution level is fixed without frustrating the smoothing pro-
cess. The multgrid method used performs ten V-cycles with 1 pre-restriction and
2 post-prolongation smoothing sweeps. In all cases alternating line Gauss-Seidel is
used as smoothing process.

The first two test cases are similar to standard test problems used for pressure
solution comparisons [13,1]. Namely a modification of stones problem and the so-
called staircase problem. The permeability fields are represented by a number of
discontinuous regions. Both cases are given below and are represented in figure2.
Problem 1 : Stone’s problem

2 0 1 0 100 0 0 0
KA_(O 2)KB_(0 100>KC—< 0 1>KD_<0 0)

Problem 2 : Staircase problem

100 0 10
KA_(O 100) KB_(O 5)
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A summary of the convergence behaviour for the standard cell-centred multi-
grid scheme compared with renormalised multigrid are given in figure 4. The per-
formance of both schemes is similar for Stone’s problem. The simple variation in
permeability offers little opportunity for renormalization to have any effect. For
the staircase problem the renormalized multigrid offers an advantage.

The next three problems are taken from geostatistical applications with a
randomly varying permeability field. A summary of the statistical properties is
given below,

Problem 3 : Monet problem

1752 0 3.002 0
K‘”‘( 0 1.626) "ar(K)‘( 0 2.596)

Problem 4 : Cross-bed problem
Koy =161.3  var(K) = 0.6107 x 10°

Problem 5 : Channel sand problem

10 10 0
Kbvackground = K channet = net to gross = 0.6
01 0 10

The permeability distributions are also represented in figure 3. Problems
3 and 4 provide a useful comparison pair in that the permeability distributions
correspond to a modest variance example and a more extreme choice. Problem 4
is taken from a cross-bed application.

The final example has been developed as a channel sand description and
exhibits the features of meandering high permeability channels through a relatively
low permeability background.

Figure 4 reports the corresponding convergence histories for each of the fi-
nal problem examples. A significant improvement in convergence performance is
achieved by the renormalization multigri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>