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High-order time-accuracy schemes for parabolic
singular perturbation problems with convection

P.W. HEMKER?* G.I. SHISHKIN] and L.P. SHISHKINA T

Abstract — The first boundary value problem for a singularly perturbed parabolic PDE with convec-
tion is considered on an interval. For the case of sufficiently smooth data, it is easy to construct a stan-
dard finite difference operator and a piecewise uniform mesh condensing in the boundary layer, which
gives an g-uniformly convergent difference scheme. The order of convergence for such a scheme is ex-
actly one and close to one up to a small logarithmic factor with respect to the time and space variables,
respectively. In this paper we construct high-order time-accurate e-uniformly convergent schemes by
a defect-correction technique. The efficiency of the new defect-correction scheme is confirmed by
numerical experiments.

We consider the first boundary value problem for a singularly perturbed parabolic
PDE with convection on an interval. The highest derivative in the equation is mul-
tiplied by an arbitrarily small parameter €. When the parameter € tends to zero,
boundary layers may appear, which leads to difficulties when classical discretiza-
tion methods are applied, because the error in the approximate solution depends on
the value of €. The appropriate location of the nodes is needed to ensure that the er-
ror is independent of the parameter value and depends only on the number of nodes
in the mesh. Special schemes with this property are called e-uniformly convergent.
In [1-5] we introduced and analysed &-uniformly convergent difference schemes for
singularly perturbed boundary value problems for elliptic and parabolic equations.
If the problem data is sufficiently smooth, for the parabolic equations with convec-
tion terms, the order of g-uniform convergence for the scheme studied is exactly one
and up to a small logarithmic factor one with respect to the time and space variables,
respectively, i.e. O(N~!In> N + K~), where N and K are the number of intervals in
the space and time discretization. Because the amount of the computational work is
proportional to the number X, the higher-order accuracy in time can considerably
reduce the computational cost. Therefore it is of interest to develop methods for
which the order of convergence with respect to the time variable is increased.

For equations without convective terms the improvement of the accuracy in
time, preserving €-uniform convergence, by means of a defect-correction technique
was also studied in [4, 5]. In this paper we develop schemes for which the order of

*CWI, Amsterdam, The Netherlands
TInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Eka-
terinburg 620219, Russia
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convergence in time can be arbitrarily large if the solution is sufficiently smooth.
They are also based on the defect-correction principle, but for a new class of sin-
gular perturbation problems, i.e. for equations with convective terms. In contrast
to our previous papers [4, 5], here we use the new experimental technique for the
determination of convergence orders. As a result, we carry out a sufficiently accu-
rate analysis of the errors in the numerical solutions, which strongly supports the
nonirivial theoretical results.

1. THE STUDIED CLASS OF BOUNDARY VALUE PROBLEMS

On the domain G = (0,1) x (0,T] with the boundary § = G\ G we consider the
following singularly perturbed parabolic equation with the Dirichlet boundary con-
ditions:

aoulet) = e a5 +80s0) 5 =l = o) 5 bt
= f(x,t), (xat) €CG (1.1a)
uxt) = o(xt), (%) €S (1.1b)

Hereafter the notation is such that the operator L, 3 is first introduced in equation
(a.b):

For § = Sy U S* we distinguish the lateral boundary S* = {(x,#): x=0o0rx=1,
0 <t < T} and the initial boundary So = {(x,#) : x € [0,1], ¢ = 0}. In (1.1b) a(x,?),
b(x,t), c(x,1), p(x,1), £(x,1), (x,2) € G, and ©(x,1), (x,t) € S, are sufficiently smooth
and bounded functions which satisfy

0<ag € a(x,t), 0<by < b(x,1), 0< po £ p(x,2), c(x,1) 20, (x,t)€G.  (L.1c)
The real parameter € from (1.1a) may take any values from the half-open interval:
e €(0,1]. (1.1d)

When the parameter € tends to zero, the solution exhibits a layer in a neigh-
bourhood of the set S§ = {(x,) : x=0, 0 <t € T}, i.e. the left side of the lateral
boundary. This layer is described by an ordinary differential equation (an ordinary
boundary layer).

2. DIFFERENCE SCHEME ON AN ARBITRARY MESH

To solve problem (1.1) we first consider a classical finite difference method. On the
set G we introduce the rectangular mesh

G,=0x 2.1)

where @ is the (possibly) non-uniform mesh of nodal points x' on [0,1], @p is a
uniform mesh on the interval [0,T], N and K are the numbers of intervals in the

High-order time-accuracy schemes 3

meshes @ and @, respectively. We define © = T/K, b = xt! —x, h = max; ¥,
h< M/N, Gy = Gﬂ@h, Sy = Sﬂ—C—;h.

In the following we denote by M (or m) sufficiently large (or small) positive
constants which do not depend on the value of the parameter € or on the difference
operators.

For problem (1.1) we use the difference scheme [9]

Apayz(at) = f(x,t),  (xt) € Gy (2.2a)
Z(x,1) = 0(x,1),  (x,2) € Sp. (2.2b)
Here
Apaya(x,t) = {€a(x,t)8z+b(x,1)8; — c(x,2) — p(x, )87} 2(x,1)
Sz, 1) = 2(H~" + 1) (8x2(x,1) = Brz(x',1))
= (WY (2, 8) — 2(x"1,1))
Bez(¥,t) = (W)™ (2(x,1) ~ 2(x',1))
Srz(dyt) = 7! (2(¥, 1) — 2(x,1 — 1)),

where 8,z(x,2) and &zz(x,#), &rz(x,z) are the forward and backward differ-
ences, and the difference operator 8zz(x,t) is an approximation of the operator
(92/0x2)u(x,t) on the non-uniform mesh.

From [9] we know that the difference scheme (2.2), (2.1) is monotone. Using
the maximum principle and taking into account the estimates of the derivatives (see
Theorem 8.1 in the Appendix) we find that the solution of the difference scheme
(2.2), (2.1) converges for a fixed value of the parameter &:

| u(x,1) = 2(5,1) | <METZNT +7), (51) € Gy (2.3)

This error bound for the classical difference scheme is clearly not e-uniform.

The proof of (2.3) follows the lines of the classical convergence proof for mono-
tone difference schemes (see [9, 10]). Taking into account the above a priori esti-
mates for the solution, this results in the following theorem.

Theorem 2.1. Suppose that for the functions in equation (1.1) we have a, b, c,
p, f € H@2=2(G), @ € H(®+)(G), 0.> 4, n= 0, and let the condition (1.1) with
n = 0 be satisfied. Then for a fixed value of the parameter €, the solution of (2.2),
(2.1) converges to the solution of (1.1) with an error bound given by (2.3).

3. THE &-UNIFORMLY CONVERGENT SCHEME

Here we consider e-uniformly convergent method for (1.1) using a special mesh
condensed in the neighbourhood of the boundary layer. The location of the nodes is
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derived from the a priori estimates of the solution and its derivatives. The way to
construct the mesh for problem (1.1) is the same as in [4, 5, 11]. More specifically,
we take

G, ="(0) x WMo 3.1)

where ®p is the uniform mesh with step-size T = T'/K, i.e. @y = Wp(2.1), and
@ =®*(0) is a special piecewise uniform mesh depending on the parameter 6 € R,
which depends on € and N. We take 6 = o(3 1) (¢,N) = min(1/2, m'eInN), where
m = m3.y) is an arbitrary number from the interval mg = mingla~! (x,2)b(x,1)]. The

mesh @* (o) is constructed as follows. The interval [0, 1] is divided into two parts
[0,0] and [0,1], 0 < 1/2. In each part we use a uniform mesh with N/2 subinter-
vals both on [0,5] and [o,1].

Theorem 3.1. Let the conditions of Theorem 2.1 hold. Then the solution of (2.2),
(3.1) converges e-uniformly to the solution of (1.1) and the following estimate holds:

lu(x,t) — 2(x,8)| SM(N'In N +1),  (x,1) € G, (3.2)

The proof of this theorem can be found in [10, 12].

4. NUMERICAL RESULTS FOR SCHEME (2.2), (3.1)

To see the effect of the special mesh in practice, we take the model problem

Ly pyu(x,t) = E—Qi--i——a-—-?— u(x,t) = flx,t), (x1)eG (“l)
(4.1)U\M ) = %2 T ox o )= b)) ) .

uxt) =0(x,1), (xt)€S
where
flety=—48, (x1)€G,  o(x1)=0, (xt)€S, T=1.

For the approximation of problem (4.1) we use the scheme (2.2), (3.1), where m =
1/2, G,=G;,.

Since the exact solution of this problem is unknown, we replace it by the numer-
ical solution U2%*® computed on the finest available mesh G, with N = K = 2048
for each value of €. Then the maximum pointwise error computed is defined by

E(N,K,e) = max |z(x,t) —u*(x,2)]. 4.2)
(x,2)EGh

Here u*(x,?) is the linear interpolation obtained from the reference solution U208
corresponding to the numerical solution z(x,¢) of problem (2.2), (3.1). We compute
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Table 1.
Errors E(N = K, &) for model problem (4.1) with the special scheme (2.2), (3.1).
e\ N 16 32 64 128 256 512

1.0 2.178-03 1.179-03 6.046-04 2.989-04 1.410-04 6.073-03
2-1  6.460-03 3.555-03 1.840-03 9.126-04 4.312-04 1.859-04
2-2  1.533-02 8.465-03 4.402-03 2.188-03 1.035-03 4.467-04
273 2.950-02 1.639-02 8.544-03 4.257-03 2.017-03  8.708-04
2-4  4.819-02 3.275-02 2.238-02 1.148-02 5.510-03 2.399-03
2-5  6.342-02 3.601-02 2.334-02 1.454-02 8.192-03 4.061-03
2-6  7.341-02 426302 2409-02 1.498-02 8.460-03 4.192-03
27 7.763.02 4.651-02 2.495-02 1.521-02 8.601-03  4.269-03
2-8  7.939-02 4.819-02 2.618-02 1.534-02 8.669-03 4.307-03
2-9  8.015-02 4.893-02 2.673-02 1.540-02 8.707-03 4.326-03
2-10 2050-02 4.927-02 2.699-02 1.543-02 8.728-03 4.336-03
2-18  2082-02 4.984-02 2.730-02 1.547-02 8.749-03  4.345-03

E(N) 8.082-02 4.984-02 2730-02 1.547-02 8.749-03 4.345-03

E(N,K,¢) for various values of €, N, K. Note that no special interpolation is needed
along the r-axis.

The results are given in Table 1. From the analysis of the numerical results we
conclude that in accordance with (3.2) the order of convergence for large N = K
is OIN~!In N + K1), i.e. almost one with respect to the space and time variables
which corresponds to the theoretical results.

In Table 1 the function E(N,K,e) is defined by (4.2). Here K = N. In the
bottom row E (N) gives the computed maximum pointwise errors for each column.

5. IMPROVED ACCURACY IN TIME

5.1. A scheme based on defect correction

In this section we construct a new discrete method based on defect correction, which
also converges g-uniformly to the solution of the boundary value problem, but with
an order of accuracy (with respect to T) higher than that in (3.2).

To improve time-accuracy we use the technique based on the one proposed in
[4, 5]. For the difference scheme (2.2), (3.1) the error in the approximation of the
partial derivative (3/0¢) u(x,t) is due to the divided difference 87z(x,t) and is asso-
ciated with the truncation error given by the relation

d 1 02 1,0
é;u(x,t) —&ru(x,1) = §T§ﬁu(x’t) - gtz-a—t—Bu(x,t -8), %e€l0,1. (6.1)

Therefore we now use for the approximation of (9/0¢) u(x,t) the expression

Sru(x,t) +tor7u(x,1)/2
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where 87 u(x,t) = 8;7u(x,t — 7). Notice that 8,7 u(x,?) is the second central divided

difference. We can evaluate a better approximation than (2.2a) by defect correction
1 2

A(2.2)zc(x’ t) = f(x:t) + é'p(xit)T 'a_t'z'u(x7 t) (52)

with x € ® and ¢ € @), where © and @y are given in (2.1); T is the step-size of
the mesh @p; z°(x, #) is the ‘corrected’ solution. Instead of (9%/0¢%) u(x,t) we shall
use 877 z(x,t), where z(x,), (x,t) € Gy(3.1), is the solution of the difference scheme
(2.2), (3.1). We may expect that the new solution z°(x,#) has a consistency error
O(t?). This is true, as will be shown in Subsection 5.3.

Moreover, in a similar way we can construct an e-uniform difference approxima-
tion with a convergence order higher than two (with respect to the time variable) and
O(N~! In N) with respect to the space variable.

5.2. The defect-correction scheme of second-order accuracy in time

We denote by 8;7z(x,) the backward difference of order k:
8z 2(x,) = (Bp—r7 2(x,7) = Sprr 2(x,t = 7)) /1, t2 kT, k21
Sor z(x, l‘) = z(x,t), (x,t) € 5};.

To construct the difference schemes of second-order accuracy in T in (5.2), in-
stead of (92/0¢*)u(x,t) we use dy7z(x,t), i.e. the second divided difference of the
solution to the discrete problem (2.2), (3.1). On the mesh Gy, we write the finite
difference scheme (2.2) in the form

ApZV(xt) = f(xt), (%) €Gh (5.3)
D (x,0) = ox,r), (1,1) €S

where z{!)(x,z) is the uncorrected solution. For the corrected solution 7@ (x,1) we
solve the problem for (x,t) € Gy:

P
P I COR S A . () €G
p(xat)ETSZfz(l)(xat)a t221
2(2)(x1t) = (p(x7t)a (x,1) € Sp- (5.4)

Here the derivative (9%/0¢%)u(x,0) is obtained from the equation (1.1a). We say
that z(2)(x,7) is the solution of the difference scheme (5.4),(5.3), (3.1) [or briefly,

(5.4), (3.1
For simplicity, in the remainder of this subsection we suppose that the coeffi-

cients a(x,t), b(x,t) do not depend on ¢:

a(x1) = afx), b(x,}) =b(x), (u1)€C (5.5)

High-order time-accuracy schemes 7

and we take the homogeneous initial condition:
0(x,0) =0, x€][0,1]. (5.6

Under the conditions (5.5), (5.6), the following estimate holds for the solution of
problem (5.4), (3.1):

u(x,t) —z? (x,t)‘ <M (N'N+), (x0)€ Gy (5.7

Theorem 5.1. Suppose the conditions (5.5), (5.6) hold and for the functions in
equation (1.1) we have a, b, ¢, p, f € H22(G), o e HO)(G), 0> 4, n=1.
Let the condition (8.1) withn =1 be satisfied. Then the estimate (5.7) holds for the
solution of the difference scheme (5.4), (3.1).

Proof, The proof of Theorem 5.1 is given in the Appendix, see Subsection 8.2.

5.3. The defect-correction scheme of third-order accuracy in time

The above procedure can be used to obtain an arbitrarily high order of accuracy
in time. Here we only show how to construct the difference scheme of third-order
accuracy. On the grid Gy, we consider the difference scheme

A@a2) (%) (5.82)
0? 0’
p(xvt) (CllT"a}'z'u(x) O) +C12725t'3'u(x: 0)> y =T
= f(x’t) + 0?

3
p(x,t) (CZITFu(xa O) +C2272'§;3'u(x70)> y = 2T
p(x, t) (C31’552;Z(2) (x, l‘) +C32’C2835Z(1) (x, t)) , 1237
(x,2) € Gy
2(3)(x,t) = (p(x7t)7 (xat) € Sh.

Here z()(x,1) and z(?)(x,#) are the solutions of problems (5.3), (3.1) and (5.4),
(3.1), respectively, the derivatives (9%/02)u(x,0), (9°/0r*)u(x,0) are obtained from
equation (1.1a) as before. The coefficients Cj; are chosen such that they satisfy the
conditions:

0 02 0?
=—u(x,t) = Sru(x,t) +C11’c—a—t—2u(x,t - 1) +C121723E§u(x,t— 1)+ 0(73)
o2 2 9 3
(x,1) = S7u(x,?) +C21T—a—t§u(x,t —21)+Cnt é;-g-u(x,t —21) + O(7”)

ot
9
ar“
0
ot

=u(x,t) = Sru(x,t) + C3185u(x, t) + Capt85u(x, t) + O(1°).
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It follows that

5

1 1
Cn=Cn=Cn=5 Cn=C=z =g (5.8b)

57
By z(3)(x,#) we denote the solution of the difference scheme (5.8), (3.1) and, as
before, for simplicity we introduce the homogeneous initial conditions

0(x,0)=0, f(x,0)=0, x&[0,1]. (5.9)

Under the conditions (5.5), (5.9) the following estimate holds for the solution of
the difference scheme (5.8}, (3.1):

u(x,t) — 23 (x,1) \ <M (N'mN+T), (x1)€GCh (5.10)

Theorem 5.2. Suppose the conditions (5.9) hold and for the functions in equa-
tion (1.1) we have a, b, ¢, p, f € HT2=2(G), ¢ € H(®+2))(G), 0. > 4, n= 2. Let
the condition (8.1) with n = 2 be satisfied. Then the estimate (5.10) is valid for the
solution of the scheme (5.8), (3.1).

Proof. The proof of Theorem 5.2 is given in the Appendix, see Subsection 8.3.
In a similar way we could construct difference schemes with an arbitrarily high
order of accuracy

ON"'ImN+7t1), n>2.

6. NUMERICAL RESULTS FOR THE TIME-ACCURATE SCHEMES

We find the solution of the boundary value problem
Lyqyu(xt) =0, 0<x<l, 0<:gT, T=1 6.1)
u(0,0) =14, 0<t<T, ulxt)=0, (x1)€S, x>0

It should be noted that the solution of this problem is singular.

The idea of using the analytical solution of problem (6.1) to compute errors in
the approximate solution, as was done in [4, 5], is appealing. But here the suitable
(for computation) representation of the solution u(x,#) is unknown. It is possible to
use, as the exact solution, the solution of the grid problem on a very fine mesh with
a large number of nodes. But this method is not efficient because the analysis of the
order of accuracy for a defect-correction scheme requires a very dense mesh, which
leads to high computational costs and, besides, to large round-off errors.

Here we use the method from [6], which is different from the above techniques.
The solution of problem (6.1) is represented in the form of the sum:

u(x,t) = V(l)(x,t) +v(x,t), (x,t)€G (6.2)

High-order time-accuracy schemes 9

where V(1) (x,t) is the main singular part (two first terms) of the asymptotic expan-
sion of the solution of problem (6.1), and v(x,?) is the remainder term, which is a

sufficiently small smooth function. The function V1 (x,t) has a sufficiently simple
analytical representation:

VD (x,1) = Vo(x,t) +Vi(x,8), (1) €C
where
Volx,t) = £*®(x), ¥(x) = (exp(—&~'x) —exp(—e™")) /(1 - exp(~£7?))
Vi(x,t) = —4> xexp(—x/e) / (1 —exp(—1/¢))
Volx,0)| <M, [Vi(x,2)| < Me, (x,1) €G.
The function v(x,) is the solution of the problem
Ligyv(x,t) = folx,1), (x,2) €G (6.3)
v(0,6) =0, v(1,8)=-V1(l,7), 0<r<T, v(x,0) =0, O0<x<1.
Here
folx,£) = —41% (t exp(—1/€) +3x exp(—x/€)) / (1 —exp(-1/€)).
For the function v(x,?) the estimate holds:
ok+ko
o

Then the function v(x,¢) and the product £2(3*/0x*)v(x,) are e-uniformly bounded.
Thus, we can consider v(x,?) as the regular part of this solution.
(1) We solve the grid problem, which approximates the boundary value problem

(6.3), on the finest available mesh Gy = 5(*)h(3.1) for N = K = 2048 and for the

chosen value of &. It is not difficult to find the function v(x,t) = vi** (x,#) and the
reference solution

u(n,1)(62) = w28 (x,1) = VI 0,0) + 95 (x,8).

x,0)| S ME(1+e7*), (x1)€G, k+2k<4, k<3

(2) Further, for solving problem (6.1) we use successively the scheme (5.3),
(3.1) and the defect-correction schemes (5.4), (3.1) and (5.8), (3.1) to find the func-
tions 2 (x,?), z® (x,?) and 23 (x,), respectively. Note that z(0(x,1) is the uncor-
rected solution, z(¥ (x,z) and z(®)(x,) are the corrected solutions. In these cases
we compute the maximum pointwise errors E (N,K,g) by formula (4.2), where
u*(x,¢) is the linear interpolation obtained from the reference solution ug™8 (x,1)
corresponding to the numerical solution Z®(x,1), k = 1,2,3, for the values N = 2/,
i=2,3,.,10,K =2/, j=2,3,..,10.
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Table 2.
Errors E(N,K) for e = 2710,
K\N 4 8 16 32 64 128 256 512 1024
4 1.51-1 1.42-1 1.03-1 6.862 4392 2672 1582 9213 5363
8 1.39-1 1.381 1.02-1 6822 436-2 2652 1562 9.00-3 5.153
16 1321 136-1 1.02-1 6.80-2 4.35-2 2632 1552 8883 5.03-3
32 1.29-1 1351 1.01-1 6.79-2 4342 2632 1542 8813 4973
64 1.27-1 1351 1.01-1 6792 4342 2622 1.54-2 8783 4.93-3
128 1.26-1 1351 1.01-1 6782 434-2 2622 1532 8763 4923
256 126-1 1.35-1 1.01-1 6.78-2 4.34-2 2622 1532 8753 4913
512 126-1 134-1 1.01-1 6.78-2 4342 2622 1532 8753 4.91-3
1024  1.26-1 134-1 1.01-1 6782 4342 2622 1532 8753 4.90-3
22
4 1331 1371 1.02-1 6.81-2 4352 2642 1552 8893 5053
g8 1281 1351 1.01-1 6792 4342 2622 1.54-2 8793 4.94-3
16 126-1 1351 1.01-1 6.78-2 4342 2622 1532 8763 4913
32 126-1 1341 1.01-1 6782 4342 2622 1532 8753 4.903
64 1251 1341 101-1 6782 4342 2622 1532 8753 4903
128 1.25-1 1.34.1 1.01-1 6.78-2 4342 2622 1.53-2 8753 4.90-3
256  1.25-1 1.34-1 1.01-1 6.78-2 4342 2622 1532 8753 4903
512 1251 1341 1.01-1 6.78-2 4.34-2 2622 1.532 8753 4.903
1024 1251 1341 1.01-1 6.78-2 4342 2622 1532 8753 4.90-3
3
4 1281 1351 1.01-1 6792 4342 2622 1542 8783 4.94-3
8§ 1261 1341 1.01-1 6782 4342 2622 1532 8753 4913
16 1251 1341 1.01-1 6.78-2 4342 2622 1.53-2 8753 4.90-3
32 1251 1341 1.01-1 6.78-2 4342 2622 1.532 8753 4.90-3
64 1251 1341 1.01-1 6782 4342 2622 1532 8753 4.90-3
128 1251 1.34-1 1.01-1 6782 4342 2622 1532 8753 4.903
256 125-1 1.34-1 1.01-1 6.78-2 4342 2622 1532 8753 4.90-3
512 1251 1341 1.01-1 6782 4342 2622 1.53-2 8753 4903
1024  1.25-1 1341 1.01-1 6.78-2 4342 2622 1532 8753 4.90-3

The computational process (1) and (2) is repeated for all values of € = 27",
n=0,2,4,...,12. As aresult, we get E(N, K, €) for various values of &, N, X for each
of the functions z{1) (x,#), z(® (x,1), z{®) (x,1). Analysing these results, we observe the
convergence of the solutions for increasing N = K for any of the functions 2, ),
z(®) and for all used values of €. In order to illustrate this result we give Table 2 for
£ = 2710, The analogous tables for other values of € are similar.

In Table 2 the values of E(N,K) are given for the functions z, 2, and 20,
For each of them we see decreasing errors for N = K, i.e. we have g-uniform con-
vergence. But the order of convergence, which we observe, is approximately equal
to one for all functions. All the errors corresponding to the same values of N, K but
to different z) are similar.

We know that the error of approximation consists of two parts. One part is due
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Table 3.
Space errors EG)(N, K) for g = 2710,
K\N 8 16 32 64 128 256 512
2
4 3852 3472 2472 1722 1092 6593 3.85-3
§ 3.61-2 3402 2462 1722 1092 6593 3.85-3
16 3.482 3362 2452 1722 1092 659-3 3.85-3
32 3412 3342 2452 1722 1.092 6583 3.85-3
64 3382 3322 2452 1722 1092 6583 3.85-3
128 3362 3322 2452 1722 1092 6.58-3 3.84-3
256 3.352 3322 2452 1722 1.09-2 6583 3.84-3

512 3352 3312 2452 1722 1092 6.58-3 3:84—3
1024 3.352 3312 2452 1722 1092 6583 3.84-3

)
Z
4 3502 3362 2452 1722 1092 6393

3.8
8§ 3.39-2 3332 2452 1722 1092 6583 3.853
16 3.362 3322 2452 1722 1092 6.583 3.84-3

3.84-3
3.84-3
3.8

32 3352 3312 2452 1722 1.092 6583
64 3352 3312 2452 1722 1.092 6583
128 3.342 3312 2452 1722 1092 6583

1004 3342 3312 2452 1722 1092 6583 3.84-3

(3)
2
4 3412 3332 2452 1722 1092 6583 33853
8§ 3352 3322 2452 1722 1092 6583 3.843
16 3.352 3312 2452 1722 1092 6583 3.84-3
32 3342 3312 2452 1722 1092 6583 3.843

1034 3342 3312 2452 1722 1092 6583 3.84-3

to the discretization of the space derivatives and the second is due to the time dis-
cretisation. For brevity, these components will be referred to as the space error and
the time error. Since by the defect correction we improve only the accuracy with
respect to the time, we expect a decreasing time error. It can be much smaller than
the space error and therefore the observed error in Table 2 corresponds only to the
space error. In order to show this we split the combined error into the space error
(Table 3) and the time error (Table 5). The structure of Table 3 is similar to that of

Table 2.
Table 3 presents the values of the space ertrors computed from the formula

EW(N, K) = E(N,K) —E(Nis1,K), i=3,4,..,9, Ni=2'

We see that the errors are the same for all different K. The orders of the errors in

Table 2 and Table 3 are the same. _
From Table 3 we construct Table 4, where the ratios of the space errors are given

by
RO(N;, K) = EO (N, K)/EW (Niy1,K),  1=3,4,...,8,
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Table 4.
Ratios of space errors RE)(N,K) for e =271,
K\N 8 16 32 64 128 256
)
111 140 144 1358 165 171
1.06 138 143 158 165 171
104 137 143 158 165 171 .
102 136 143 158 165 171 «| 33883888 ILLLE558Y| 88538==x
102 136 143 158 165 171 8| £ILacddd| Si3eidid| SPERA2TS
101 136 143 158 165 171 = 2CQd239R| 2SS3AZa8| A534RESS
101 1% 148 158 165 171 23505888| 35835533 sg538zess
N [ g 1 1 R e A ) [ ! ] 1 LI
@ 5| SHINSnNI| 5392d83n| gEgghy4d
1.04 137 143 158 165 171 NeGmmodel | e an o] @aFNE -
102 136 143 158 165 171
0 13 16 1% Les L7 .| 33333882 zs38E53e| LSszessH
v e 8] 4828480328 2959898In| BLw3qASS
1.01 135 143 158 165 171 N8 ool N — i od el o oo F O o\ e
(3) o0
4 102 136 143 158 165 LI 3 §ﬁ23§§3§ FEIICEES igg&%?&&g
8 101 136 143 158 165 171 =l gazanand| DU2J3022%8] wadcraad
101 135 143 158 165 171 985885885 ﬁggsggsgaﬁagsgggig;
T %IqIFRIIs (SAAS9IfS e (vuInBed e
Nrmemeradd| moadGemo| mFui o= ——
In Table 4 we see the first order of convergence with respect to the space up to a small
logarithmic factor. .| 33338888 359855833| Z35B38s-
In a similar way we construct Table 5 for the time errror: S IL0EERE| 839eR8a%| I5eEUgR|R
(X Bl a N Nl ol — ) e N NV VA ™ A~ NN
EW(N,K;) = E(N,K;) —E(N,Kj+1), j=2,3,...,9
( ? J) ( ] .]) ( y B j+ )7 J I~y ey e 8,3\368,8888, 55535558 3%55%8,9.9,*
and Table 6 for their ratios: 2 [2] 838EIRe| 5T8R88RY| 88YER583
N D e e 00 o o Vo e D et N len g od —
9 )= E® 3 /EW . - =) I
T :|.| sssz2288| s3zzssss| spusszes
And now we see very interesting results in Table 5: 5 ©| LZNARREN| IRSSEILN RS@%S%R_S
(1) we see that the time error is essentially smaller than the space error. This ex- = MomnaSon | S Eaedn T manTasns
plains the fact that we do not see the influence of the time error in Table 2; = TP0IITI] IRITILLRT| 2¥Leurnd
(2) the errors for z{!) are larger than those for z(?) and the errors for z(?) are larger Nlw| J498mxreg| rILened LM83deg
than those for (3) = —\D N w00 N v ) o=t e N D et o VIO 00— e
z ’ . 6 » . 1 l’;E
(3) we see that approximately the same error (/2 107°) is obtained for 2D at K= 2 2 z iRl =g T+ oo a0y 000 oy 0o
512, for z(¥) at K = 32, and for z(®) at K = 16. Because the computational cost S E|< mew me me

is proportional to K, we see that the computational cost is reduced by the defect
correction;

(4) Table 6 actually confirms the order of convergence, 6 which is theoretically ob-
tained in Section 5. In theory the solution iy (x,2) of problem (5.3), (3.1) converges
with rate O(t) [estimate (3.2) and Theorem 3.1]. The solution z(*)(x,) of prob-
lem (5.4), (3.1), where z(l)(x,t) is the solution of problem (5.3), (3.1), converges
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Table 6.
Ratios of time errors RO(N,K) for g =272,
KN 4 8 16 32 6
0
1.77 1.75
1.88 187 1.87
1.94 194 194
197 197 197
1.98 198 198

1.99 199 199

200 200 200

P

347 350

369 370 375 377
3.84 385 3.838 3.89
392 393 394 394
396 396 397 397
398 398 399 399
399 399 399 3.99

)
796 7.85 800 8.01 8.00

752 772 797 800 8.00

771 7.87 7199 8.00 8.00

785 794 8.00 800 800

792 797 800 800 8.00

. 796 799 8.00 800 8.00
798 798 799 800 8.00 800

with rate O(t?) [estimate (5.7) and Theorem 5.1]. The solution z3)(x,1) of problem
(5.8), (3.1), where 2 (x,t) and z{!)(x,) are the solutions of problems (5.4), (3.1)
and (5.3), (3.1), respectively, converges with rate O(t3) [estimate (5.10) and Theo-
rem 5.2). The corresponding reduction factors can easily be obtained from Table 6.

7. CONCLUSION

In this paper we have shown the possibilities of the defect-correction procedure
used to improve the time-accuracy for a parabolic PDE, which, besides, ensures
e-uniform first-order accuracy in the space discretization.

The error of the approximation consists of two parts. One part is due to the dis-
cretization of the space derivatives and the second is due to the time discretisation.
We use the defect-correction process only for the improvement of the accuracy with
respect to the time and it does not change the error with respect to the space variable.
Applying the new experimental technique for the determination of the convergence
orders, we have investigated separately the numerical results for the time and space
error components. We emphasize that the time error was found as the value of order
10~4-10~1! whereas the space error is the value of order 10~2-1072. Thus, the time
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error is considerably smaller than the space error, and the total error is essentially

equal to the space error.

The numerical results confirm that the order of convergence with respect to the
space variable is close to one. By defect correction we are able to increase consid-
erably the time accuracy of the approximate solution, i.e. from the 1st to the 2nd
and the 3rd order. The numerical experiments confirm this fact. As a result, we can
essentially decrease the number of time intervals and therefore the computational

cost.

8. APPENDIX

8.1. Estimates of the solution and its derivatives

In this Appendix we use the a priori estimates for the solution of problem (1.1) on
the domain G = D x [0, T] and for its derivatives as derived for elliptic and parabolic
equations in [10, 11, 13].

We denote by H(®(G) = H%%/2(G) the Holder space, where . is an arbitrary
positive number [7]. We suppose that the functions f(x,?) and ¢(x,t) satisfy com-
patibility conditions at the corner points, so that the solution of the boundary value
problem is smooth for every fixed value of the parameter €. _

For simplicity we assume that at the corner points So M5y the following condi-
tions hold:

ko
—0(x,t) =0,  k+2k <[0}+2n

8.1
k+2ko < [0 +2n—-2

where [q] is the integer part of a number o, 0. > 0, n > 0 is an integer. We also
suppose that [ol] +2n 2> 2.

Using the interior a priori estimates and estimates up to the boundary for the
regular function #(€,t) (see [71), where u(€,1) = u(x(E),?), & = x/¢, we find for
(x,t) € G the estimate

oktko

Wu(x,t) <Me™®, k+2kg<2n+4, nx0. (8.2)

This estimate holds, for example, for
ue H@#H(G), v>0 (8.3)

where v is some small number.
For example, the fulfilment of the condition (8.3) is ensured for the solution

of (1.1) if the coefficients satisfy a € H(&2=1(G), ¢, p, f € HEI(G), 9 €
H(+20)(G), 0.> 4, n > 0, and the condition (8.1) is satisfied.
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In fact, we need a more accurate estimate than (8.2). Therefore we represent the
solution of the boundary value problem (1.1) in the form of the sum

u(xt) =Ux) +Wxt), (xt)eCG (8.4)

where U(x,) represents the regular part and W(x,r) the singular part, i.e. the
parabolic boundary layer. The function U (x,t) is the smooth solution of the equa-
tion (1.1a) satisfying the condition (1.1b) for ¢ = 0. For example, under suitable
assumptions for the data of the problem, we can consider the solution of the Dirich-
let boundary value problem for equation (1.1a) smoothly extended to the domain
G beyond S¢ (G is a sufficiently large neighbourhood of G beyond SEy. On the
domain G the coefficients and the initial value of the extended problem are the same
as for (1.1). Then the function U (x,t) is the restriction (on G) of the solution to
the extended problem, and U € H®**+)(G), v > 0. The function W (x,z) is the
solution of the boundary value problem for the parabolic equation:

LaigW(xt) =0, (x1)€G, W(x,1) = u{x,t) = U(x,t), (x,2)€S. (8.5)

If (8.3) is true, then W € H2*+4++Y)(G). Now we derive the estimates for the func-
tions U (x,¢) and W (x,7):

Qk+ko

‘axkazkoU("’t) M 8.6)
ak+ko . :

eV (6t)| S MeT exp(=m(g.7)e™ r(x,0)) 8.7

(x,t) € G, k+2kp<2n+2

where r(x,0) is the distance between the point x € [0,1] and the endpoint x = 0 at
which the boundary layer occurs, mg 7) is a sufficiently small positive number. The
estimates (8.6) and (8.7) hold, for example, when

U, WeH H@HNG), v>o. (8.8)

The inclusions (8.8) hold if a € H®2=1(G), ¢, p, f € HEN(G), ¢ €
H{+2)(G), o0 > 4, n > 0, and the condition (8.1) is satisfied. We summarise the
above results in the following theorem.

Theorem 8.1. Suppose that for the functions in equation (1.1) we have a, b,

¢ p, f € He2=2)(G), @ € H(%t2)(G), o> 4, n > 0. Let the condition (8.1) be
satisfied. Then from this it follows that u, U, W € H(®+2")(G) and that the estimates
(8.2), (8.6), (8.7) hold for the solution u(x,t) of problem (1.1) and for its compo-
nents in the representation (8.4).
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The proof of the theorem is similar to the proof in [10], where the equation

2
ea(i,t) g f) + b{xt) sl ) — el )l t) — Pl ) () = £5)

was considered.

8.2. The proof of Theorem 5.1

Let us show that the function &z(x,), where z(x,#) = z5.3)(x,?) is the solution of
the difference problem (5.3), approximates the function d;u(x,t) e-uniformly. For
simplicity we assume a(x,?), b(x,t) to be constant on G. The function &z(x,?) is
the solution of the difference problem

Agoydizlnt) = faoymt),  (x1) € G (8.92)

Srz(nt) = 0oy (m1),  (nr) €S, (8.9b)

Here

GH=Gnr>k}, M=an{>k}, P=8N\6, r>1
Ag9)S72(x,t) = {€ adg+ bdx — &(x,1) — pr(x, 1) — P(x,1) &} &z (x, 1)
fi8.9)(%,2) = fi(x,8) + crlx, 1)z(x,2)

0po)®h) = Grlnt), ¥=0,d, (vr)es))

0p9(10) = 0%e () =77 (267~ 0(50), 1=7, (o1) €S}

¥(x,1) = v(x,t — 1) where ¥(x,t) is one of the functions &(x,t), B(x,t).

The function 8;(x, ) = (u(x,?) —u(x,t —7)) /%, (x,£) € G, t > 7,1s the solution
of the differential problem

Lig.10)87u(x,7) = fza0)(x1), (x,7) € Gt (8.10a)

Sru(x,t) = 0(3.10) (x7t)a(x,t) € st (8.10b)
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KBk}, GH=cnf>k}, sH=G\GH, k>1

kY

2 J . . J
L(g’m)Byu(x,t) = 8“%5 -+ bg; - c(x,t) - p;(x,t) e p(xJ)'a? at_u(xa t)

f(8.10)(x’t) :f;—(xat) + Cl_(xst) u(x,t) + pf(xvt) (éa;u(x,t) - afl‘(xat))

(9(8.10)(xat) = (pf(xat)v x=0,d, (xat) € S[l]
(P(g.]o)(X, t) =(‘p?8.10) (x) = T—l (u(xaT) - (P(xi O)) y =T (xat) € S[l]
Let us estimate

‘9?8.10)(?‘)‘(9 : ~o(x,1)

o(x,1) = ulx,1) —z(x1), (%) € Gy
The function @(x,?) is the solution of the problem
A(5.3) (D(xvt) = (A(5.3) —L(l.l))u(x’t): (x,t) € G, (D(xat) =0, (x)t) € Sh-

The above assumptions and Theorem 8.1 lead to the estimates of the truncation error
(the derivation technique for these estimates is shown, for example, in [8, 10]):

| (As3) — Li1.1) Urt)| < M(N'aN+1), (x1) €Gy

|(A(5.3) - L(l_la)) W(x,t) I LM (e"lN"1 InNexp(—me~'x) +1)
(x,t) €Gy, x<O
where U (x,t) and W(x,t) are the regular and singular parts of the solution from

(8.4); 6 = 0(3.1), m = m(g.7). For the components W (x,t) and W"(x,t) the following
estimate holds:

W (0, [Whee )] SMNTY, (x1) €Gh, x20.
Here W (x,¢) is the solution of the problem
AsyWhx,t) =0, (x1)€Gh, Whix,t) =W (x,1), (x,2) € Sh.
Using the maximum principle, we estimate o(x, t):

lo(x,)| <M (N TaN+1)t,  (%1) €Gh
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Further, for the derivatives we proceed in a similar way. On the boundary we have
|(x,1) = Br2(x,0) | = | 08 10)(3) = 0y ()| < M (N N +7)

(x,1) € S,[,”, t=1
i.e. the function 8;z(x,T) approximates Szu(x,T) €-uniformly. Now it is easy to see
that the solution of the difference problem (8.9) approximates the solution of the dif-

ferential problem (8.10) for the divided difference. Thus, using the same argument
as above, we derive the estimate

|87u(x,1) — 8z(x,1) | < M (N"'InN+7), (x1)€ @,[,l].
Now for the second difference derivative we show that under the condition (5.6)

the function 8y;2z(x,t) approximates the function 8,7u(x,?) €-uniformly on the set

=2 . .
,[1]. Thus, the functions 85z(x,7) and 8u(x,t) are the solutions of the equations

Agandaz(nt) = fa D), (u1) € G (8.11a)

Lig1)du(x,t) = figig(x,1), (x,1) € GE?]- (8.12a)

These equations are found by applying the operator 8; to the equations (8.9a),
(8.10a). On the left and right boundaries the following conditions are satisfied:

SZTZ(x’t) = (9(8.11)(x1t)) (xat) € SEIZ] (Sllb)

Syu(x,t) = 01z (%), (nr) €SP (8.12b)

Oy = 0x(x1), x=0d, (xt)€ SE] (8.11c)
<P(3.11)(xat) = (P?g_n)(x) =dyz(s3)(%,1), t=21, (x,1) € SE]
(9(8.12) (x,t) = (sz(x, t)) X = 01 d, (x)t) € S[2]7 (812C)

Or12)(x1) = (P?g.u) (x) =8qu(x,t), t=21, ()€ sH.

First we estimate
0
?5.12) (x) = (9?3,11)(37) =Sy ulx,t) — dyz(x,1), =21
For this purpose we expand the function u(x,?) into a Taylor series in terms of #:

u(x,t) = aV(x)t +a@ ()2 +vy(x,1) =ull(x,1) +a(x,1), (x,1) €G  (8.13)
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where the coefficients a!!(x), a¥(x) should be determined. Taking u(x,r) in the
form (8.13) and introducing it into into equation (1.1a) we arrive at the system

-p(x,0)aV (x) = f(x,0)

) 0? 9
-2p(x,0)a® (x) + eaﬁa(”(x).{_b.é;a(l)(x)

- (04 5760 ) a0 = 57050

from which the functions a{V (x), a®(x) can be found successively. The function
va(x,1) is the solution of the boundary value problem

L(l.l)v2(xst) =f(8.14)(xvt) Ef(xlt) —L(l.l)u[z](xat)1 (x,t) €G (8.14)
va(x,t) = (9(8.14)(x:t) =0(x,1) — u[zl(xvt)’ (x,1) €.

Estimating fig.14)(¥,) and @g.14)(x,) and using the maximum principle, we derive
the estimate ‘

[va(x,t)| K ME, (x,t) €G. (8.15)

Further we have to construct the function z(x,#) in the form

2nt) = (b8 () + b )0y + b ()2 + vl (x,1) = 2B (1) + v (5, 1)
(xat) € Eh

i.e. as an expansion in terms of T and z. Inserting z(x,t) into the equation (5.3), we
arrive at the equations

“P(X,O)b(()l)(x) = f(x,0)
~2p(x, 006§ (x) + €a—§2—b(l)(x)+b-?—bél)(x)

ox2 0 ox

d

- (0 05,0 " 9) = 5:700)

Thus, we have

) =ul¥ @)+ @)1, (x,1) € G

High-order time-accuracy schemes

The function v§(x,t) is the solution of the discrete boundary value problem
‘/\(5.3)1)5l (xa t) = f(8.17) (xat) = f(xat) —A(5.3)Z[2] (xat)) (xst) €eGy, (8.17)
Vé'(_x,t) = (p(8.17)(xat) = (p(xat) —2[2] (xvt)a‘ (x:t) € Sp-

Taking into account the estimates of the functions fig 17)(x,¢) and Qg 17)(x,?), we
derive the estimate

|vEt) | <M (NT'InN+2)%,  (xt) €Gp (8.18)
By virtue of relations (8.15), (8.16), (8.18) the following inequality is valid:
| Ofs.12) () — 05 11) (*) * = | Squ(x,t) = 8yz(x,1) | < M (N"'InN+1) (8.19)
(x,t) € Gy, t=2rt.

We continue the proof by estimating 8yu(x,#) — 85z(x,t) for t > 2t. Note that
the functions 8,u(x,t) and yz(x,t) are the solutions of the differential and differ-
ence equations obtained from equations (1.1) and (5.3), respectively, by applying
the operator 8,;. Moreover, the difference equation for 8yz(x,t) approximates the
differential equation for &,u(x,t) e-uniformly. On the boundary Sy, for x = 0 or
x =1 we have &yu(x,t) = dyz(x,t). Taking into account the estimate (8.19), we
find

|Soru(x,t) = Syz(x,2)| <M (N 'mN+1], (x2)€GCGy, 221 (8.20)
Thus, we arrive at the estimates

‘B;u(x,t)—S;z(l)(x,t) SM(N’llnN+T), (x,t)€Gy, t27

‘SZ;u(x,t)—SQ;z(l)(x,t) <M(N'nN+1), (51)€Gh 22t (821)

lu(x,t) —A x| <M (N"'InN+7?), (x,t) € G

This completes the proof.
Now we make two remarks which are the direct corollary of Theorem 5.1.

Remark 8.1. We obtained the estimate (8.20) for () (x,#), k = 1. In exactly the
same way we derive the same bound for k¥ = 2 and thus we obtain

Syru(x,1) — Bgfz(k)(x,t) | <M (N‘llnN-i-Ik) . (%) €Gy, t221, k<2
(8.22)
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Remark 8.2. Making use of (8.22), in the same way as we derived the estimate
(8.21) we can obtain

53;u(x,z)—83;,3(”(x,t)|<M(N—21n1v+r), (x,t) €Gy, 231 (8.23)

Now we will dwell briefly on the difference between the proof of (8.21) and the
proof of (8.23). To estimate the difference between 83 u(x, ) and d37z(x,t) fort =3t
we represent the function (x,t) [with the condition (5.9)] in the form

u(x,t) = a? () + a® () +vs(x, 1) = uBlx,0) +va(x,1), (%) €G
and the function z(x,) in the form
() = ul () + (B8 )+ B0 (x)e)r 4+ B ()T + vE (x,0)

= 0 +vi(x1), (xt) € G

The coefficients of these series are found using equations (1.1) and (5.3), respec-
tively. For the coefficients we have the system

~20(.0)a®(4) = o 1(x,0)

2
~3p(x,0)a®®) (x) + 8a%a(2) (x)+ b%a(z) (x)— (c(x, 0)+ Z%p(x, 0)) a? (x)

192

= Eé‘ﬁf(x,o)

~bM(x) +a®(x) =0
—2p(x, 0)b§2) (x)+ %p(x, o)a(Z) (x) +3p(x, O)a(3) (x)
02 9

2
— (a p(x,0)+ c(x,O)) bl(l)(x) +ea Wbp)(x) +b§£b1(1)(x) =0

o) - () +5{7 () = 0.
The unknown functions a(, a®®, bgl), bgz)' bgl) can be found successively. For the
functions v3(x,7) and v (x,#) the following estimates are derived:
lva(x,t)| < MY, (%) €G
Vi) K M(N'TaN+1) 2, (x,1) € G

From these inequalities and the expression for ZB(x,7) it follows that (8.23) holds
g-uniformly for # = 31. The remainder part of the proof of the estimate (8.23) is
similar with small variations to the proof of the estimate (8.21).

High-order time-accuracy schemes

8.3. The proof of Theorem 5.2
Notice that if the following relations hold for the functions z(1)(x,1), 2@ (x,1)

layu(x,t)—syz“)(x,t)\<M(N-‘1nN+r), (x,) €Gy, 13231 (8.24)

‘SZ;u(x,t) =829 (x,0) i <M (N‘llnN—{-Tz) , (xt)eGy, tz2

then for the difference u(x,t) —z0®)(x,£) = ©3)(x,r) we obtain
IA(5_3)0)(3)(x, f) ’ <M(N'IMN+7), (1) €G, oP(ur)=0, (1) €S
Hence we have

‘ w(x,t) — 2% (x,1) I <M (N InN+7), (xt) €Gh

Thus, for the proof of the theorem it is sufficient to show the validity of inequal-
ities (8.24). These inequalities follow from (8.22), (8.23). This completes the proof
of Theorem 5.2.
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On high-order compact schemes
in the finite element method

V.P.I'IN* and Yu.M. LAEVSKY*

Abstract — In this paper we propose the new family of the spaces of grid functions, which is the basis
for the construction of high-order schemes in the finite element method. We show the completeness of
this family in the space H' () and study the error of approximate solutions in grid norms. The second
order of accuracy on a nonuniform grid and the fourth order on a uniform grid are obtained.

In the theory of difference methods one of the remarkable approximations is the
Mikeladze nine-point scheme for the Poisson equation. It has the error 0(h*) on
a uniform rectangular grid and even O(h®) on a square grid and under additional
smoothness conditions on the right-hand side and the solution of the equation as well
[6]. This scheme has initiated numerous studies on high-order difference methods
and has given rise to the so-called compact difference schemes, including those for
differential equations in more general form (see [2] and the bibliography therein). It
was also shown in [3] that compact fourth-order accurate schemes can be obtained
in the framework of the finite volume method which uses the approximation of
parametrized conservation laws.

The question arises of whether a compact fourth-order scheme can be obtained
in the framework of projection approaches. In other words, to what basis in the fi-
nite element method does the Mikeladze scheme correspond? As far as we know,
the work [4] is the first work on this subject. It describes the sufficiently versatile
method of constructing basis functions which are based on piecewise linear and bi-
linear fillings and are the basis for constructing the system of the Galerkin method
coinciding, in particular, with the Mikeladze scheme. The obtained space of grid
functions approximates the initial function space in a weak sense (the family com-
pleteness is not available). The necessary and sufficient conditions for the classes of
basis functions which ensure the third and fourth local orders of the approximation
of projection difference schemes were obtained in [9]. The use of these conditions
for the choice of concrete grid spaces is rather nontrivial. Moreover, the error of grid
solutions was not studied in [9].

In the present work for the Laplace equation with the Dirichlet boundary con-
ditions we propose an alternative to the approach used in [4]. Complementing the
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