
Optimisation in electromagnetics
with the space-mapping

technique
D. Echeverrı́a and D. Lahaye

Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

L. Encica
Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands, and

P.W. Hemker
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

Abstract

Purpose – Optimisation in electromagnetics, based on finite element models, is often very
time-consuming. In this paper, we present the space-mapping (SM) technique which aims at speeding
up such procedures by exploiting auxiliary models that are less accurate but much cheaper to
compute.

Design/methodology/approach – The key element in this technique is the SM function. Its
purpose is to relate the two models. The SM function, combined with the low accuracy model, makes a
surrogate model that can be optimised more efficiently.

Findings – By two examples we show that the SM technique is effective. Further we show how the
choice of the low accuracy model can influence the acceleration process. On one hand, taking into
account more essential features of the problem helps speeding up the whole procedure. On the other
hand, extremely simple auxiliary models can already yield a significant acceleration.

Research limitations/implications – Obtaining the low accuracy model is not always
straightforward. Some research could be done in this direction. The SM technique can also be
applied iteratively, i.e. the auxiliary model is optimised aided by a coarser one. Thus, the generation of
hierarchies of models seems to be a promising venue for the SM technique.

Originality/value – Optimisation in electromagnetics, based on finite element models, is often very
time-consuming. The results given show that the SM technique is effective for speeding up such
procedures.

Keywords Magnetic devices, Optimization techniques, Finite element analysis

Paper type Research paper

1. Introduction
In this paper, we give a brief exposition of the space-mapping (SM) technique and we
illustrate this by two electromagnetic design problems.

SM (Bandler et al., 1994, 2004) is a computational technique of defect-correction type
(Böhmer et al., 1984): having available an efficient but imperfect method that solves a
problem only by approximation, one can improve its performance by measuring the
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defect in performance and modifying the data for the problem accordingly, such that a
repeated use of the same imperfect method gives a better, and, finally, perfect result.

In fact the method works like shooting with a crooked gun. The first shot, properly
aimed at the target will miss. Then we measure – or guess – the distance between
the target and the spot hit by the bullet. Taking into account a compensation for the
deviation, the target can be hit by the same gun if the point aimed at is adapted.
If the second shot is not yet perfect, the procedure can be iterated.

This is a well known and often used principle in numerical computations. Examples
are Newton’s iteration for the solution of non-linear equations or relaxation methods or
preconditioning schemes for the solution of linear systems.

Section 2 explains the SM principle and introduces the most popular algorithm. In
Section 3 several minimisation techniques are compared by means of two
electromagnetic test problems from literature (Choi et al., 2001; Saldanha et al.,
1992). In both cases the best results are obtained with the SM technique.

2. Space-mapping basics
Let the specifications for the optimisation problem be denoted by y [ Rm: We
assume that the behaviour of the system can be mathematically described in two
different ways. First, by an accurate but expensive to compute model. This is the fine
model and is denoted by fðxÞ [ Rm; where x [ X , Rn is the control variable. A
finite element solution of the field equations is usually taken as a fine model. The
optimisation problem that finally should be solved, consists of minimising over X
the cost function FðxÞ ¼ kfðxÞ2 yk; which measures the discrepancy between the
specifications and the response of that precise mathematical model. For simplicity,
we first assume that a unique optimum exists. It will be denoted by x*. But the
method works also in cases when there is a manifold of optima or if the minimum
should be reached within some tolerance, so that solutions are found in a small
subregion of X. The cost function is assumed to be continuous but derivative
information is considered unavailable.

SM needs a second model, less accurate than the fine one but much cheaper to
compute. It is called the coarse model and is denoted by cðzÞ [ Rm; with z [ Z , Rn

the associated control variable. This model can be optimised over Z by introducing the
cost function CðzÞ ¼ kcðzÞ2 yk: As with the fine model, we assume that a unique
optimum exists, which is denoted by z*. The coarse model should be such that it can be
optimised efficiently by some computational method, but – of course – the solution of
this coarse problem only yields a (very) rough approximation for the original problem.

In principle the spaces X and Z can be different because of the different formulations
of the same problem. However, in most cases, as in our experiments, the control
variables x and z refer to the same physical entities. Nevertheless the notation with
different X and Z is still useful because it emphasises the fact that the respective
models and their solutions are different, and that optimisation over Z is a much simpler
problem than over X.

The main idea underlying SM consists of two parts: first, optimising the coarse
model and then mapping the coarse optimum z* into the fine control parameter space
X. This mapping between the control parameter spaces X and Z is called the SM
function. The SM function p : X ! Z is defined by
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pðxÞ ¼
z[Z

argminkcðzÞ2 fðxÞk: ð1Þ

Again existence and uniqueness is assumed. In practice multiple optima can be
present. Several modifications of the SM function are suggested in Bandler et al.
(2004) so as to alleviate this problem. The quantity kcðzÞ2 fðxÞk is just a measure
of the similarity between the response of the two models. This is shown in Figure 1
for a fine and coarse model with only a single control variable. The example is a
one-parameter version (only x2) of the problem in Section 3.2, with coarse models
denoted by ðNm;NcÞ ¼ ð16; 8Þ; (8,4) or (6,2). They are ordered with respect to their
proximity to the fine model, (16,8) being the closest of the three. The straight line
(the identity function) would represent equal responses for the fine and the coarse
models.

A SM function p is called a perfect mapping iff

z* ¼ pðx* Þ; ð2Þ

i.e. if it maps the true solution to the optimal solution of the coarse problem.
Although this property is by no means guaranteed, it will be clear that it is often true
by approximation since in most practical cases we either have fðx* Þ . cðz* Þ or
fðx* Þ . y: If we rewrite equation (2)

z[Z
argminkcðzÞ2 yk ¼

z[Z
argminkcðzÞ2 fðx* Þk; ð3Þ

it can be easily seen how the two commented facts imply the approximate perfect
mapping pðx* Þ . z* :

We can choose between two related but different approaches to realise SM. The first
one expects xp

* ; the solution of

xp
* ¼

x[X
argminkpðxÞ2 z*k; ð4Þ

to be a (very) good approximation to x*, the solution wanted. Hence, we expect
our solution x* to approximately satisfy equation (2), where z* is easy to compute.
This leads to the so-called original SM (Bandler et al., 2004).

The other approach is dual and based on the replacement of the expensive fine
model optimisation by a cheap surrogate model one. For this purpose we can take
the coarse model and, to improve its accuracy, combine it with the SM function.
Because of equation (1) we expect that cðpðxÞÞ . fðxÞ: So it is reasonable that
the minimisation of kcðpðxÞÞ2 yk will give us a value close to the desired
optimum x*:

xd
* ¼

x[X
argminkcðpðxÞÞ2 yk: ð5Þ

This leads to the new SM approach (Søndergaard, 1999).
These two forms show close similarity with two forms of the defect correction

processes known from numerical analysis (Böhmer et al., 1984). It should be noted that

if z* [ pðXÞ; we have p
�
xp

*
�
¼ p xd

*
� �

and with an injective p that xp
* ¼ xd

* : With a
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Figure 1.
Illustration of the SM

function. The figure at the
top shows a density-plot

(the darker, the smaller
value) of the function
kcðzÞ2 fðxÞk for a

simplified version of the
example in Section 3.2.
The minimum in z for

each x corresponds with
the associated SM function
(white line). The figure at

the bottom shows three
SM functions, for several

coarse models in the same
problem.
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perfect mapping, we even have p
�
xp

*
�
¼ p xd

*
� �

¼ p
�
x*

�
: In general we cannot

assure injectivity for p but usually in practice this property is held in an approximate
way[1]. Thus, we can expect that x*p . x*d . x* ; i.e. both the original and new
approaches will lead us to the proximity of the desired optimum.

The SM function is expensive to evaluate since it implies the use of the fine model.
Both SM approaches, when implemented in an iterative scheme (see Figures 2 and 3),
look for efficient approximations pk to the SM function. An often used linear pk
proposed is (Søndergaard, 1999),

pkðxÞ ¼ pðxkÞ þ Bkðx2 xkÞ;

where Bk is a Broyden-type approximation (Broyden, 1965) to the Jacobian of the
mapping function updated with

Bkþ1 ¼ Bk þ
pðxkþ1Þ2 pðxkÞ2 Bkhk

hT
k hk

hT
k ;

being hk ¼ xkþ1 2 xk:
Combining this linearisation with the original SM algorithm, the popular aggressive

space mapping (ASM) (Bandler et al., 1995) is obtained (Figure 4). ASM assumes
z* [ pðXÞ and just solves equation (4) by a quasi-Newton iteration with an
approximate Jacobian. This is a convenient choice because only one evaluation of the
fine model is needed per iteration. For a constrained minimisation ASM should be
adapted because in its present form it cannot be assured that xk is really the minimum
of kpkðxÞ2 z*k over X. In the experiments reported in this paper, all approximate
values satisfy xk [ X ; so the ASM was applied as it appears in Figure 4.

Figure 2.
The SM algorithm
associated with the
original approach

Figure 3.
The SM algorithm
associated with the new
approach
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3. Two shape optimisation experiments
3.1 Problem EPE1, a magnetic circuit
3.1.1 Introduction and analysis. EPE1 is a two-dimensional magnetostatic problem for
a C-shaped circuit. It was introduced in Choi et al. (2001) to check the performance of
the SM technique. Here we will study it in more detail and also use it to compare SM
with other minimisation schemes. The success of the SM technique depends on the
similarity between the models considered and their relative computational cost. In this
problem it is possible to improve the accuracy of the coarse model without significantly
increasing its execution time. This will result in a more efficient SM based algorithm.

A permanent magnet with residual flux density Br ¼ 1:0 T is placed between two
ferromagnetic cores as shown in Figure 5. The lengths d and g are taken as 10 and
1 mm, respectively. In the first experiment with EPE1 the core is assumed to be a linear
material with relative magnetic permeability equal to 5,000. The magnet is always
considered linear with unit relative magnetic permeability. The design specifications
are the flux densities at the air gap centre and in the core, Bg and Bc, respectively,
and the magnet permeance coefficient Pm (equivalently the magnet working point).
The particular design objective is y ¼ ½Bg;Bc;Pm� ¼ ½0:5; 1:0; 14�: The design
parameters x ¼ ½x1;x2;x3� are the dimensions of the magnet, x1 and x2, and the main
width of the core x3. The control parameter spaces X and Z coincide and they are equal
to the positive octant of R3.

The fine model is a finite element resolution of a vector magnetic potential
formulation of the magnetostatic equations (Sylvester and Ferrari, 1996). The basis

Figure 4.
The aggressive SM

algorithm i.e. original SM
with a Broyden-type

approximation for pk. It is
assumed that z* [ pðXÞ:

The B21
k should be

understood as the general
pseudo-inverse. Some

additional simple stopping
criteria should be added

for a more robust
performance

Figure 5.
EPE1: a two-dimensional

magnetostatics problem
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functions are Lagrangian interpolants of second-order and adaptive mesh refinement is
applied, leading to discretisations of around 40,000 degrees of freedom. The software
package FEMLAB (FemLab, 2004) is used for this purpose. This fine model takes into
account phenomena like the fringing effect at the air gap and the flux leakage through
the air central window.
The first coarse model is the same as used in Choi et al. (2001). The flux density is
assumed to be confined to the magnet, the core and the air gap and also to be constant
in each of these three regions. The magnetic permeability in the core is taken as
infinity. No fringing effect around the air gap or flux leakage through the window is
considered. Just by applying the divergence and Stokes’ theorems to the integral form
of the magnetostatic equations, we obtain the coarse model

cðzÞ ¼
Brz1z2

gz1 þ dz2
;

dBrz1z2

gz1z3 þ dz2z3
;

dz2

gz1

� �
; ð6Þ

where the first component approximates the flux density at the air gap, the second one
the flux density in the core and the third one the magnet permeance coefficient.
Computing the coarse optimum z* is straightforward. It should be noted that the
coarse model minimisation time can be neglected with respect to that for the fine
model. The resulting value for z* is shown in Table I.

3.1.2 Results. Two versions of the SM algorithm are compared with three standard
optimisation schemes. Because the number of design parameters equals the number of
specifications, we may expect that one point in X satisfies fðx* Þ ¼ y and, therefore,
that the condition for a perfect mapping holds. Thus, the stopping criterion adopted,

kpðxkÞ2 z*k2

kz*k2
# t; ð7Þ

(Choi et al., 2001), with t ¼ 0:001; makes sense in this problem for finding x*, even for
algorithms that are not based on SM. The advantage of equation (7) over, for example,
kfðxkÞ2 yk2=kyk2 is that in the former choice, the three vector components are well
scaled (the optimal dimensions are comparable in size).

# Evaluations Final design (mm)

z* [5.3571, 7.5000, 5.0000]
SM I 4 [7.9897, 7.5821, 6.5396]
SM II 6 [7.9797, 7.5808, 6.5381]
qN 6 [7.9891, 7.5821, 6.5394]
NMS 62 [8.0000, 7.5872, 6.5372]
DIRECT 186 [7.9806, 7.5823, 6.5432]

Notes: SM I: the ASM algorithm; SM II: the simplified ASM algorithm with Bk¼ I; qN: a quasi-Newton
scheme; NMS: Nelder-Mead simplex and DIRECT: a direct search method. The first column is the
number of fine model evaluations (approximately proportional to the total computing time) needed to
solve the EPE1 problem for a tolerance t ¼ 0.001 . The second column represents the resulting vector of
design parameters. The coarse optimum z* is also included (first row)

Table I.
Efficiency comparison
between different
optimisation methods
applied to EPE1
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The optimisation is solved by means of five different algorithms. ASM is implemented
together with a variant in which Bk is taken as the identity in every iteration. A
quasi-Newton method was also tried for solving fðx* Þ ¼ y: The Jacobian was
approximated by Broyden’s method and the initial estimates for the solution and for
the Jacobian were z* and dc=dzðz* Þ; respectively. As this method uses coarse model
information as well, it cannot be considered based on principles really different from
SM. Since derivative information for the fine model is not easily obtained, two direct
optimisation methods are used: the Nelder-Mead simplex method (NMS) (Lagarias et al.,
1998)[2] and the global search algorithm DIRECT (Jones et al., 1993)[3]. The first of
these takes the coarse optimum as the initial guess. The second one needs no starting
value, but Z or a subset should be specified[4]. Table I shows the number of fine model
evaluations for each method until the stopping criterion is satisfied as well as the final
value of the three design parameters. It should be emphasised that the number of
evaluations is approximately proportional to the total computing time. ASM turns out
to perform best, and the quasi-Newton scheme seems to be still efficient. Nelder-Mead
shows a slow convergence. DIRECT’s global optimisation nature justifies its poor
results.

In the second experiment with EPE1, the core is assumed to be made of steel and,
hence, shows a nonlinear B-H characteristic. The fine model is refined taking into
account this fact. We want to show how important the selection of the coarse model is
for the SM algorithm. Therefore, we improve the previous coarse model in two different
ways. First, in the part of the core where its width is x3, the magnetic permeability is
now finite and extracted from the B-H curve (the treatment of the rest of the core seems
to be of no relevance for the results). Second, the fringing effect is taken into account in
the coarse model by increasing the width of the air gap d to s d, with s . 1 a correction
factor. The experiments show that taking into account the fringing effect is more

Figure 6.
Problem EPE1 solved for a
nonlinear fine model. The

convergence history of the
cost function is shown
when different coarse

models are used

Optimisation in
electromagnetics

959



important than adding nonlinearities. In Figure 6, the convergence history is shown for
ASM applied to the nonlinear fine model with four different coarse models. The first
one is the same linear model as in equation (6), the second takes the core nonlinearities
into account and the other two incorporate the fringing effect at the air gap by
increasing its cross section.

We stress that all these coarse models have a negligible computational cost
compared with that for the fine model. Hence, the number of SM iterations within ASM
is still a good measure for the final computing time. The proper selection of the coarse
model is an important key for the SM technique since convergence can be greatly
improved by an adequate choice.

3.2 Problem EPE2, the coreless actuator
3.2.1 Introduction and analysis. EPE2 is a three-dimensional magnetostatic problem for
an axisymmetric coreless actuator. It was proposed in Saldanha et al. (1992) as a test
for nonlinear optimisation applied to magnetic actuators design. Here we study it with
a double aim. Apart from seeing the effect of SM, compared with other efficient
minimisation methods, we also want to find a proper strategy for the construction of a
coarse model. In view of our experience with the EPE1 experiment, the latter is
probably a delicate part. We will apply a whole hierarchy of coarse models and this
will give us some insight into the question how coarse a model should be selected in a
problem like EPE2.

The actuator is shown in Figure 7. It consists of a moving cylindrical magnet
with length lm ¼ 36 mm and radius rm ¼ 14:7 mm and two fixed toroidal coils with
inner radius rc ¼ 15 mm and the geometry specified by the design parameters x1

(internal thickness), x2 (half distance), x3 (length) and x4 (external thickness). We
combine these four parameters in the vector x. The design in Saldanha et al. (1992)
is bounded by

Figure 7.
EPE2: geometry of the
coreless actuator
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2:5 mm # x1 # 20 mm

5:0 mm # x2 # 25 mm

2:5 mm # x3 # 50 mm

2:5 mm # x4 # 20 mm

8>>>>><
>>>>>:

ð10Þ

The sets X and Z both coincide with this region.
The permanent magnet in Saldanha et al. (1992) has a constant residual flux density

Br¼ 0:35 T and is assumed to be linear with a relative magnetic permeability equal
to 1. The current density in the coils is taken constant, with a value Jc ¼ 2:68 A=mm2:
The magnet can be moved from the centre, along its axis over some distance d.

The specification y is the force response exerted on the rod at different locations d,
which should be constant and equal to 5 N. By force response we mean the force
(statically) computed when the magnet is displaced over a distance d along the z-axis.
For this purpose the force is determined at 20 regularly distributed displacements di
between 0 and 15 mm from the centre. Both the specification and the computed force
are vectors of length 20.

Again, finite elements are employed in the fine model. The axisymmetric vector
potential formulation of the magnetostatic equations is solved using second-order
Lagrangian interpolants as basis functions. The mesh is adaptively refined and the
number of degrees of freedom is around 7,000-18,000. The force is computed via
Lorentz’s formula. This is done by post-processing after the finite element
computation.

3.2.2 A hierarchy of coarse models. Although we know that the coarse model should
be an easy-to-calculate approximation of the fine one, it is difficult to establish
beforehand how (in)accurate it may be, still providing an acceleration of the
optimisation process. In order to investigate this question, here we build a coarse model
that can be tuned as (im)precise as the user desires by means of two parameters.

The first parameter, Nm, refers to the treatment to the magnet. In EPE2 the effect of
the magnetization is equivalent to a surface current density Jm ¼ Br=m0: In our coarse
model this current density is approximated by Nm current loops. They are equally
distributed over the vertical surface of the magnet, each with radius rm and carrying a
current Jmlm=Nm: The magnetic flux density is computed by the Biot-Savart law.

The second parameter, Nc, relates to the representation of the coil. Since the coil
volume-current density is constant in the coil and because of the axial symmetry of the
problem, the force computation is reduced to the integration of the radial component of
the flux-density caused by the magnet over each coil cross-section. This cross section is
divided into ðNc 2 1Þ £ ðNc 2 1Þ pieces. The regular partition is made by Nc21 layers
of Nc21 cells, as shown in Figure 8 for Nc ¼ 5: The coarse model considers the flux
density to be piecewise constant over this partitioning. The value for the radial flux
density in every cell is computed at its baricentre. The integral over the cross-section is
approximated by the sum of the calculated values, weighted by their cell area. This is
equivalent to substituting the coil by (Nc21)2 loops situated in the baricentre of each
region and with a current equal to the one in that area.

Thus, a coarse model is then identified by the pair of integer parameters (Nm, Nc).
As long as the values for Nm and Nc are increased, the coarse model will be more
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accurate and therefore, computationally more expensive. This behaviour is also
reflected in Figure 8 where x1 ¼ x4 ¼ 16 mm; x2 ¼ 18:50 mm and x3 ¼ 15 mm; and
the coarse models (Nm, Nc)¼ (4,2), (8,4) and (16,8) are used.

At first sight the response associated with model (4,2) seems very different from the
one obtained with the finite element simulation. But apparently this does not influence
its use as a coarse model. As will be seen in the Section 3.2.3, this very coarse model
model eventually performs more efficiently than (8,4). The SM function compensates
the strong model misalignment and guarantees the final accuracy.
3.2.3 Results. In this section, we compare the efficiencies for several optimisation
techniques and different SM strategies. The SM technique performs best. Surprisingly,
extremely inaccurate coarse models lead to very efficient optimisation schemes.

Unlike in EPE1, we cannot expect now perfect mapping. Therefore, the criterion
equation (7) is not adequate for comparing SM with some other schemes. As in
Saldanha et al. (1992), we take kfðxÞ2 yk2=kyk2 for the cost function. In the
experiments the solution process is stopped when this measure is below 0.08.

Figure 8.
A hierarchy of models for
EPE2. The figure at the
top shows the cells ðNc ¼
5Þ in the coil for which the
flux density is considered
constant, with its value
computed in the baricentre
(indicated by a cross).
These points also indicate
the position of the loops
that approximate the coil.
The figure at the bottom
shows the force response
for different coarse
models, compared with the
fine model force response
x1 ¼ x4 ¼ 16 mm;
x2 ¼ 18:50 mm and
x3 ¼ 15 mm:
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It is interesting to notice that indeed we find solutions that satisfy the design
criterion with sufficient accuracy. However, there is a whole region in the parameter
space X where the fine model satisfies the specifications. We see in Table II, how the
final design parameters obtained with the techniques considered are not unique. In fact
it appears that there exists a whole manifold of possible solutions in X, so additional
design constraints can be imposed.

The techniques analysed in Saldanha et al. (1992) are the penalty method (PM) and
the method of the moving asymptotes (MMA). PM reduces the cost function to 0.0738
in 14 fine model evaluations and MMA to 0.0825 in only 9. Both algorithms need an
initial guess. In the paper by Saldanha et al. (1992) two of them are considered.
The given results start from the point x1 ¼ x4 ¼ 16 mm; x2 ¼ 18:50 mm and
x3 ¼ 15 mm and for both PM and MMA are better than those corresponding to the
other starting point.

The NMS is modified (by penalising the cost function) so as to deal with the
constraints. The initial guesses are again the same as in Saldanha et al. (1992).
Now the best results are obtained when the starting point is x1 ¼ x3 ¼ x4 ¼
18 mm and x2 ¼ 10 mm: The cost function decreases to 0.0702 in 12 fine model
evaluations. The performance of DIRECT is much better than in EPE1. It appears
that the existence of multiple solutions makes the global search easier. The cost
function drops to 0.0676 in 11 fine model evaluations. A method based on
sequential quadratic programming (SQP) (Nocedal and Wright, 1999)[5] is also
tested. It yields to 0.0468 in 7 fine model evaluations. The initial guess is the same
as for the NMS.

Applying the SM technique entails solving two types of optimisation subproblems.
The first one is the computation of the coarse optimum z*. Since the coarse model is
very cheap to evaluate, we can afford to use global minimisation. We choose DIRECT
for this purpose. The second subproblem concerns the SM function p. Since usually
this function is close to the identity in great part of the domain (see Figure 1), the
computation of p(x) brings no significant problems. The NMS is used there and
the coarse optimum z* is always taken as the initial guess.

# Evaluations Cost function Final design (mm)

PM 14 0.0738 [17.20, 24.10, 23.90, 15.87]
MMA 9 0.0825 [16.77, 23.50, 24.27, 16.48]
NMS 12 0.0702 [16.13, 20.53, 16.46, 16.51]
DIRECT 11 0.0676 [17.08, 21.67, 26.25, 11.25]
SQP 7 0.0468 [10.25, 17.50, 34.00, 10.25]
SM-(8, 4) 7.9 0.0501 [11.25, 21.75, 24.49, 17.08]
SM-(4, 2) 2.5 0.0412 [14.33, 20.02, 27.16, 10.75]
SM-(6, 2) 1.5 0.0391 [17.73, 21.67, 20.97, 11.25]

Notes: PM: penalty method; MMA: method of the moving asymptotes; DIRECT: direct search
method; NMS: Nelder-Mead simplex; SQP: sequential quadratic programming and SM-(Nf, Nc):
space-mapping with coarse model (Nf, Nc). The first column shows the total amount of computational
work expressed in the equivalent number of fine model evaluations (approximately proportional to the
total computing time). The second column shows the minimum cost function obtained. The design
tolerance is 0.08, except for PM and MMA for which the comparable results were taken from Saldanha
et al. (1992). The third column represents the final design parameters

Table II.
Efficiency comparison

between different
optimisation methods

applied to EPE2
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We first tried the coarse models ðNm;NcÞ ¼ ð8; 4Þ and (4,2). We checked that just
with their respective coarse optima z*, the cost function is 0.0501 for the (8,4) and
0.0863 for the (4,2). The latter already yields to 0.0421 in the next iteration.
The convergence details of these schemes (the results for the first three iterations) are
shown in Table III. In order to estimate the total computing time, the coarse model
evaluations have now to be taken into account. This is done in Table II where all the
methods applied can be compared (a fine model evaluation is approximately
equivalent in computational time to 20, 200 and 300 of the coarse models (8,4), (6,2)
and (4,2), respectively). Testing several coarse models in the hierarchy shows that the
inaccurate (6,2) performs best in optimising EPE2: only two iterations (about 2.5 fine
model evaluations) are needed to reach a cost function value of 0.0259, a value clearly
acceptable in practise.

4. Conclusions
The SM optimisation technique has been presented. It accelerates the solution of an
accurate but expensive minimisation problem with the aid of a simpler and faster one.
The SM technique was employed before in optimisation in electromagnetics. Here, this
promising performance has been corroborated by two experiments that emphasise the
importance of proper coarse models. The first experiment (EPE1) shows how
improving a coarse model can lead to a gain in performance. The second experiment
(EPE2) uses a hierarchy of coarse models and it shows that even a very coarse
approximation can accelerate the optimisation process considerably. In both
experiments SM saved a significant amount of computational time when compared
with other alternative optimisation techniques.

Notes

1. By this we mean that pðx1Þ . pðx2Þ implies x1 . x2.

2. The MATLAB function fminsearch is used.

3. MatLab implementation by Finkel (2003) is employed.

SM iteration f eval. c eval. Cost f.

SM-(8,4)

1 1 135 0.0501

2 2 146 0.0375

3 3 156 0.0251

SM-(4,2)

1 1 123 0.0863

2 2 142 0.0421

3 3 150 0.0228

Note: For every SM iteration, the number of cumulative fine and coarse model evaluations as well as
the cost function is shown

Table III.
Three iterations of the
SM technique using
the coarse models
(Nm, Nc)¼ (8, 4) and (4, 2)
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4. In our case we take the cube centered in z* and with the point z*=2 at a corner, as the region
in which DIRECT works.

5. The MATLAB function fmincon from the optimisation toolbox is used.
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